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Abstract

Potassium K+ is a fundamental actor in the shaping of action potentials, and its
concentration in the extracellular microenvironment represents a crucial modulator of
neural excitability. Yet, its employment as a neuromodulation modality is still in its
infancy. Recent advances in the technology of ionic actuators are enabling the control of
ionic concentrations at the spatiotemporal scales of micrometers and milliseconds,
thereby holding the promise of making the control of K+ concentration a key enabling
technology for the next generation of neural interfaces. In this regard, a theoretical
framework to understand the possibilities and limits offered by such technology is
pivotal. To this aim, we exploit the Hodgkin-Huxley modeling framework, augmented to
account for the perturbation of extracellular K+ concentration. We leverage methods of
bifurcation analysis to investigate which regimes of electrical activity arise in the space
of the input variables, namely the extent of ionic actuation and the synaptic current.
We show that, depending on the type of target neuron, switchings of the class of
excitability may occur in such space. These effects could rule out the possibility of
eliciting tonic spiking when the extracellular K+ concentration is assumed as a sole
control input. Building upon these findings, we show in simulations how to address the
problem of neuromodulation via ionic actuation in a principled fashion. In this respect,
we account for a bidirectional scenario, namely from the perspective of both inhibiting
and stimulating electrical activity. We then provide a first-order motivation for the
switchings of neural excitability in terms of the conductances of the K+-selective
channels. Finally, we introduce a Pinsky-Rinzel-like model to investigate the effects of
performing the ionic actuation locally at the neural membrane.

Author summary

Neural interfaces rely on technologies to sense and perturb the electrical activity of
neurons. For the latter aim, many strategies have been established to date, each one
targeting a different actor involved in the electrophysiology of neurons. Examples
include electrical, chemical, and optogenetic techniques. However, the main actors that
shape neuronal signals, namely ions such as potassium K+, are still not directly
targeted. Recent advances in bioelectronic technologies are enabling the manipulation of
ionic concentrations as a viable strategy for neuromodulation, which we refer to as ionic
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actuation. These findings come mainly from the experimental literature, and the
theoretical understanding of how ionic actuation can be used to shape neural activity is
still lacking. This paper aims to help fill this gap, adopting the ionic actuation of K+ as
a case study. Our results could guide the design and control of novel neural interfaces
targeting the ionic composition of cellular fluids. Moreover, they may suggest novel
therapies for pathologies related to impairments in the regulation of ionic homeostasis,
such as drug-resistant epilepsy.

Introduction 1

The electrical activity of neurons relies on the correct balance and movement of various 2

ionic species. Indeed, it emerges from the interplay of the homeostatic regulation of 3

their concentrations in the cellular fluids, as well as their electrodiffusive transport 4

across the neural membrane [1]. When transmembrane fluxes balance each other, 5

steady-state conditions are established. Otherwise, instability arises and generates 6

action potentials (also denoted as spikes). Once understood, one may attempt to 7

artificially induce the desired electrical activity via these underlying phenomena, either 8

directly or indirectly, paving the way to neuromodulation devices [2]. We point out that 9

the term neuromodulation is used in this context to refer to a generic strategy able to 10

perturb the electrical excitability of neurons and not to the more specific action of 11

neuromodulators (e.g., serotonin, acetylcholine, dopamine) in the nervous system. 12

The possible strategies to accomplish neuromodulation are manifold and reflect the 13

plethora of physiological actors that determine neural activity. Chemical methods 14

involve the release of neurotransmitters such as GABA or glutamate in the extracellular 15

microenvironment [3]. Electrical methods rely on the injection of electric currents in the 16

nervous tissue through electrodes [4]. Optogenetics can also be deployed to this aim, 17

expressing light-sensitive proteins able to induce transmembrane ionic fluxes in 18

neurons [5]. Notwithstanding, the central role played by ions in neural electrophysiology 19

suggests the direct manipulation of the ionic milieu as a further neuromodulation 20

strategy. Indeed, a change in the ionic concentrations unbalances the transmembrane 21

drift and diffusion fluxes, possibly affecting the excitability of nerve cells. In what 22

follows, we shall refer to this technique as ionic actuation. 23

Arguably, one of the foremost candidates for ionic actuation is potassium K+ [6]. 24

Indeed, an increase (respectively, decrease) of K+ extracellular concentration from its 25

physiological level induces a depolarization (respectively, hyperpolarization) of the 26

membrane potential. As a consequence, K+ may act as a modulator of the activity of 27

neurons and other brain cells. For instance, a large body of literature reports oscillations 28

of K+ as one of the main causes of the firing patterns observed in epilepsy and 29

spreading depression, both experimentally [7–10] and computationally [11–18]. Further, 30

K+ is a driver of the motility of the brain’s immune cells (microglia) [19] and is involved 31

in sleep-wake cycles [20]. Such findings have recently suggested K+ concentration as a 32

possible control variable to steer neurons to desired regimes of electrical activity [21, 22]. 33

In this work, we aim to further explore this idea, considering an ionic actuation strategy 34

where K+ is the ionic species under control, as depicted in Fig. 1 (left). 35

Recent technological advances gave rise to integrated devices able to deliver and 36

uptake ionic species at spatiotemporal resolutions of micrometers and milliseconds, 37

which we shall refer to as ionic actuators. They enable the implementation of the 38

previously mentioned speculations in realistic applications of neural engineering. 39

Examples of such devices have stemmed from iontronics [23] and have been successfully 40

deployed to deliver K+ ions into nervous tissues, both in-vitro [24] and in-vivo [25]. 41

These devices can also be deployed to deliver other charged molecules, such as the 42

neurotransmitter GABA [26–31]. However, such neuromodulation strategies 43
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Fig 1. Neuromodulation via ionic actuation of potassium K+. Left) cartoon of the neuromodulation system under
study. A K+-selective ionic actuator is placed in contact with the extracellular fluid nearby a neuron. It allows perturbing the
local extracellular concentration of potassium, thereby steering the neuron to the desired regime of electrical activity. Right)
equivalent Hodgkin-Huxley model employed in the analysis of the system. It is endowed with a variable K+ reversal potential
VK = VK,0 + ∆VK, see Eq. (2), to account for the release or uptake of ions in the extracellular milieu. Further, a parallel
current Isyn is added to explore the excitatory or inhibitory action of synapses (or other external stimuli), which are regarded
as uncontrolled input of the system under study.

fundamentally differ from the aforementioned ionic actuation in the mechanism that 44

affects the membrane potential. Indeed, neurotransmitters target specific binding sites 45

to open ionic channels at synapses, while the manipulation of K+ concentration directly 46

alters the drift-diffusive fluxes across the K+-selective channels. 47

To guide the design and control of ionic actuators in a neuromodulation scenario, a 48

theoretical framework to assess the impact of ionic actuation on the electrical activity of 49

neurons is pivotal. For instance, it would be helpful to identify which regimes of 50

electrical activity can be reached by perturbing the K+ concentration. Moreover, it 51

would be desirable to obtain a budget of the amount of K+ release or uptake required to 52

eventually elicit such regimes in a neuron. Due to the high non-linearity of the neural 53

membrane’s dynamics, the answers to such questions are not readily available. The 54

present work aims to help bridge this gap, exploiting the Hodgkin–Huxley (HH) 55

framework and methods of bifurcation analysis [32,33]. Together, they establish a 56

principled framework to guide the inhibition and stimulation of electrical activity via 57

the proposed neuromodulation modality. 58

The paper is structured as follows. First, we introduce the single-compartment 59

model deployed in our main investigations. It is an HH-type model which is augmented 60

to account for the presence of ionic actuation and synaptic activity, namely the input 61

variables of the system. We then leverage bifurcation analysis to find which regimes of 62

electrical activity arise in the space of the input variables. This analysis reveals possible 63

switchings of the class of neural excitability that may rule out the triggering of tonic 64

spiking via ionic actuation. Building upon these findings, we show how the system can 65

be ionically steered to the desired regime in a principled fashion, regardless of the 66

presence of a synaptic current. We further propose an interpretation of the switchings of 67

the class of excitability based on the effect of the conductances of the K+-selective 68

channels. Finally, we investigate the possibility of a spatially localized ionic actuation 69

deploying a Pinsky-Rinzel-like two-compartment model. 70
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Methods 71

To investigate the effects of the proposed neuromodulation via ionic actuation of 72

potassium, we employ the Hodgkin-Huxley (HH) formalism [34,35] to model the 73

electrical excitability of a neuron, as depicted in Figure 1 (right). For the sake of 74

simplicity, we consider only K+ and Na+ channels responsible for the generation of 75

action potentials. We denote with [K+]o and [K+]i the extracellular and intracellular 76

concentrations of K+ in physiological conditions, i.e., in absence of ionic actuation. 77

Instead, ∆[K+]o is the perturbation of the extracellular concentration of K+ induced by 78

the ionic actuator, which is assumed as a controlled input to the model. The effect of 79

∆[K+]o is lumped in the model through a variable K+ reversal potential VK, which can 80

be recasted according to the Nernst equation [1] as: 81

VK =
RT

F
log

(
[K+]o + ∆[K+]o

[K+]i

)
(1)

=
RT

F
log

(
[K+]o

[K+]i

)
︸ ︷︷ ︸

VK,0

+
RT

F
log

(
1 +

∆[K+]o

[K+]o

)
︸ ︷︷ ︸

∆VK

. (2)

Here, T is the temperature, R the gas constant, and F the Faraday constant. The term 82

VK,0 is the reversal potential under physiological conditions, while ∆VK represents its 83

perturbation during the action of the ionic actuator, and depends logarithmically on the 84

fractional variation of extracellular concentration of K+. Being that the HH equations 85

are linear in VK, we use ∆VK in place of ∆[K+]o as control variable in the forthcoming 86

derivations, keeping in mind that we can map the former into the latter according to 87

∆[K+]o = [K+]o

(
exp

(
F

RT
∆VK

)
− 1

)
. (3)

We further augment the HH model with an inward current Isyn to investigate the effect 88

of synaptic activity on the electrical excitability of the neuron. An excitatory synaptic 89

current Isyn > 0 depolarizes the membrane potential V and is expected to facilitate the 90

generation of action potentials via ∆VK. The converse applies to an inhibitory synaptic 91

current Isyn < 0. Even though we refer to Isyn as synaptic current, we point out that it 92

may equivalently represent other external stimuli. 93

We assume first-order kinetics for the gating variables x ∈ {n,m, h}, which are ruled 94

by the (in)activation curves x∞(V ) and the time constants τx(V ). Along with the 95

current balance equation, they provide the full set of equations of the system: 96

dn

dt
=

n∞(V ) − n

τn(V )

dm

dt
=

m∞(V ) −m

τm(V )

dh

dt
=

h∞(V ) − h

τh(V )

dV

dt
= − 1

Cm
(IK + INa + IL − Isyn) ,

(4)

where Cm is the membrane capacitance. The transmembrane currents of the channels 97

IK, INa and the leakage current IL, which are assumed outward, read 98

IK = gK(V − VK,0 − ∆VK)

INa = gNa(V − VNa)

IL = gL(V − VL) .

(5)
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Codename Description of the model Reference

squid-hh52 Original HH model for the squid giant axon. [34]

rat-wei14 Excitatory pyramidal neuron from the CA1 region of the hippocampus. [14, Methods]

rat-cressman09 Inhibitory interneuron from the CA1 region of the hippocampus. [11, Methods]

rat-wang96 Fast-spiking inhibitory interneuron from the CA1 region of the hippocampus. [40, Methods]

rat-pospischil08-FSinh Fast-spiking inhibitory interneuron from the somatosensory cortex. [41, Fig. 4]

rat-pospischil08-RSexc Regular-spiking excitatory pyramidal neuron from the somatosensory cortex. [41, Fig. 2a]

Table 1. HH-type models used as case studies. With the exception of the classical model of the squid giant axon, all
the models have been fitted as single-compartment models to reproduce electrophysiological measurements of rat cortical
neurons. We refer to Appendix A for the details regarding the membrane parameters and the channel kinetics.

Here, gK = ḡKn
4 and gNa = ḡNam

3h. The terms ḡK and ḡNa are the channel densities, 99

gL is the membrane conductance, VNa is the Na+ reversal potential. VL sets the rest 100

potential Vr of the membrane at ∆VK = 0 and Isyn = 0. 101

In our model, we assume the presence of ionic actuators as the sole responsible for 102

the perturbation of the extracellular concentration of K+, thereby adopting VK as a 103

control input of the model. However, there exist several physiological actors that are 104

involved in the regulation of K+ concentration and in principle may interfere with the 105

action of the ionic actuators. Examples include the Na+/K+ pumps, the buffering of 106

glial cells, or diffusion in the extracellular microenvironment [15,36]. Our choice of 107

neglecting such phenomena is prompted by recent advances in the technology of ionic 108

actuators, which is reaching temporal resolutions comparable to the time scales of 109

synaptic activity [37,38]. From a mathematical perspective, we perform a time scale 110

separation [12,39] that disentangles the fast dynamics of action potentials generation (∼ 111

milliseconds) and ionic actuators operation (∼ tens of milliseconds) from the slower 112

dynamics of the regulation of ionic concentrations (∼ seconds). 113

We support our discussion with analyses of several HH-type models taken from the 114

literature, which are calibrated on electrophysiological data of cortical neurons in rats. 115

As a comparison, we also consider the classical HH model of the squid giant axon. All 116

the key references of these models are summarized in Table 1, while the details 117

regarding their membrane parameters and channel kinetics can be found in Appendix A. 118

Some of these models slightly differ from the model in Eq. (4) that is considered for the 119

mathematical derivations in the sections Equilibrium points of the model and The 120

conductance of K+-selective channels affects switchings of the class of neural excitability 121

in the ∆VK − Isyn plane. For instance, they may include further voltage-gated channels 122

or K+ and Na+ specific leak currents. The generalization of such derivations to these 123

cases can be found in Appendix B. 124

Equilibrium points of the model 125

We deploy bifurcation analysis [32,33] to investigate the qualitative behavior of the 126

system (4) when both ionic and current stimuli are present. In this regard, the 127

equilibrium points (also denoted as steady states) play a central role. They are found 128

imposing the time derivatives in Eqs. (4) to zero, and therefore constitute a vector in 129

the form (n∞(Vs),m∞(Vs), h∞(Vs), Vs). The allowed values of the membrane potential 130

at equilibrium Vs are set by ∆VK and Isyn according to 131

gK,∞∆VK + Isyn = gK,∞(Vs − VK,0) + gNa,∞(Vs − VNa) + gL(Vs − VL) , (6)

where gK,∞, gNa,∞ are the steady-state conductances, evaluated at x = x∞(Vs), with 132

x ∈ {n,m, h}. Since the steady-state variables are solely a function of Vs, we shall 133
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denote an equilibrium point by only the value of Vs. We point out that, for a fixed Isyn 134

(respectively, ∆VK), Eq. 6 establishes a map that provides the value of ∆VK 135

(respectively, Isyn) required to set a given Vs. Namely, 136

∆VK = FIsyn
(Vs) with fixed Isyn , (7)

Isyn = F∆VK(Vs) with fixed ∆VK , (8)

where we have defined the functions 137

FIsyn(Vs) = g−1
K,∞ (gK,∞(Vs − VK,0) + gNa,∞(Vs − VNa) + gL(Vs − VL) − Isyn) (9)

F∆VK
(Vs) = gK,∞(Vs − VK,0 − ∆VK) + gNa,∞(Vs − VNa) + gL(Vs − VL) . (10)

The stability of an equilibrium point Vs can be assessed by studying the Jacobian matrix 138

J of the system, with respect to the state variables (n,m, h, V ), evaluated in such point: 139

J =



− 1

τn
0 0

1

τn

dn∞

dV

0 − 1

τm
0

1

τm

dm∞

dV

0 0 − 1

τh

1

τh

dh∞

dV

J41 − 1

Cm

dgNa,∞

dm
(Vs − VNa) − 1

Cm

dgNa,∞

dh
(Vs − VNa) −gtot,∞

Cm


, (11)

with g∞,tot = gK,∞ + gNa,∞ + gL and J41 the only entry that explicitly depends on ∆VK, 140

J41 = − 1

Cm

dgK,∞

dn
(Vs − VK,0 − ∆VK) . (12)

Equivalently, J41 can be expressed as a function of Isyn as 141

J41 = − 1

Cm

dgK,∞

dn
(Vs − VK,0 −FIsyn

(Vs)) . (13)

An equilibrium point Vs is (asymptotically) stable if all the eigenvalues λi of J have a 142

negative real part. Conversely, it is (exponentially) unstable if at least one eigenvalue λi 143

of J has a positive real part [32]. Assuming ∆VK as bifurcation parameter and Isyn 144

fixed, we can study the stability of the equilibrium points Vs inspecting the eigenvalues 145

traces λi(Vs) of the Jacobian matrix (11), using J41 as in Eq. (13). Equivalently, Isyn 146

can be used as bifurcation parameter, fixing ∆VK and using J41 as in Eq. (13) in the 147

Jacobian. We used such methodology in the study of bifurcations of equilibria discussed 148

in the Results section, which was carried out in Matlab [42]. We also studied the 149

bifurcations of limit cycles resorting to the MatCont toolbox [43]. 150

Two-compartment model 151

The single-compartment model of Fig. 1 mimics a setting where the ionic perturbation 152

occurs throughout the microenvironment surrounding the neuron. However, the spatial 153

resolution of ionic actuators has already approached the single-cellular and sub-cellular 154

scale of micrometers, paving the way to an ionic actuation that is spatially localized at 155

the neural membrane, e.g., to a portion of the soma. As a result, the perturbation of K+
156

extracellular concentration directly affects only the K+ channels in such membrane 157

patch. To account for such a scenario, we also consider the two-compartment model in 158

Fig. 2. It is inspired by the Pinsky-Rinzel model [44], originally introduced to lump the 159
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Fig 2. Two-compartment model. It mimics a scenario where an ionic actuator of sub-cellular size is employed. The
actuated (respectively, non-actuated) compartment lumps the dynamics of the membrane patch that perceives (respectively,
does not perceive) the action of the ionic actuator through the manipulation of [K+], and hence the variation of VK. The
same current Isyn is assumed in both compartments. The parameter gc is a conductance per unit of area and accounts for the
electrical coupling between the two regions. The currents in the first (respectively, second) compartment are associated to the
membrane area A1 (respectively, A2), while the current across gc is associated to the total membrane area Atot = A1 +A2. As
a consequence, the current balance equations of the two compartments are as in (14), with ρ = A1/Atot and 1 − ρ = A2/Atot.

interactions between soma and dendrites. The dynamics of the gating variables in each 160

compartment are ruled as in Eq. (4). Instead, the current balance equations in the two 161

compartments now include a coupling term. Namely, 162

dV1

dt
= − 1

Cm

(
IK,1 + INa,1 + IL,1 − Isyn − gc

ρ
(V2 − V1)

)
dV2

dt
= − 1

Cm

(
IK,2 + INa,2 + IL,2 − Isyn − gc

1 − ρ
(V1 − V2)

)
.

(14)

The first compartment lumps the dynamics of the actuated patch of the membrane, i.e., 163

that directly perceives the perturbation of the [K+]. The second compartment refers 164

instead to the non-actuated patch. ρ represents the fraction of membrane area 165

associated with the actuated patch, while gc is a conductance per unit area that 166

accounts for the electrical coupling between the actuated and non-actuated patches. 167

They both mimic the influence of the geometry in the problem. The currents of the 168

channels in the two compartments are 169

IK,1 = gK,1(V1 − VK,0 − ∆VK)

IK,2 = gK,1(V2 − VK,0)

INa,i = gNa,i(Vi − VNa) i = 1, 2

IL,i = gL(Vi − VL) i = 1, 2 .

(15)

We point out that ∆VK is applied only to the first compartment, while Isyn is applied 170

equally to both compartments. We use this Pinsky-Rinzel-like model to investigate how 171

the fraction of ionically actuated membrane affects the proposed neuromodulation 172

strategy in the last part of the Results section. To support our discussion, we still 173

employ the HH-type models listed in Table 1, whose membrane parameters and channel 174

kinetics are now associated with both the two compartments. 175

April 4, 2022 7/26



Results 176

In the present section, we first leverage methods of bifurcation analysis to understand 177

the impact of Isyn and ∆VK on neural excitability. We then exploit these findings to 178

build a principled approach to neuromodulation via ionic actuation of potassium. 179

Further, we provide a motivation for the switchings of neural excitability in the 180

Isyn − ∆VK plane, and we investigate the effects of a spatially localized actuation. 181

Bifurcation analysis of the system 182

A typical neuron may exhibit three steady regimes: rest, spiking, and depolarization 183

block (in the following, simply block). At rest and block, it eventually attains a stable 184

value of membrane potential. It is more depolarized in the latter case than in the 185

former. While spiking, the neuron generates a repetitive train of action potentials. If a 186

steady regime is the only one possible, we refer to it as tonic. Otherwise, if multiple 187

such regimes coexist, it is possible for the system to switch between them, and therefore, 188

we refer to it as bistable. We point out that with spiking, we herein refer to the presence 189

of a generic periodic trajectory, disregarding possible classifications according to the 190

firing patterns, such as the distinction between regular spiking, fast spiking, or 191

intrinsically bursting neurons [45]. 192

In a neuromodulation scenario, it is pivotal to understand which regimes arise in the 193

space of the input variables. Indeed, this enables a principled framework to effectively 194

steer the system to the desired behavior through the controllable input to the model 195

(e.g., ∆VK), possibly in a robust fashion with respect to uncontrollable input (e.g., Isyn). 196

In addition, the identification of regions of tonic behavior avoids undesired switching of 197

the system between bistable configurations, which could result from the presence of 198

noise or fluctuations of the model parameters. To these aims, we can deploy methods of 199

bifurcation analysis since the aforementioned neural behaviors readily translate into 200

properties of equilibrium points and stable limit cycles [32]. Hereafter, we first study 201

the qualitative behavior and bifurcations of the system (4) with respect to a single input 202

parameter (either ∆VK or Isyn), while the other is kept fixed. We then show how the 203

analysis generalizes to the ∆VK − Isyn plane. For ease of discussion, we describe the 204

qualitative changes of the system’s dynamics via bifurcations as observed while 205

increasing either ∆VK or Isyn. Therefore, with a little abuse of language, we refer to a 206

qualitative behavior, or a bifurcation, as occurring before, or after one another, as we 207

implicitly assume to move along the axis of one of these two parameters. 208

The bifurcations of equilibrium points are of two kinds: saddle-node and Hopf. In a 209

saddle-node bifurcation, a stable and an unstable equilibrium coalesce and cancel each 210

other. In a Hopf bifurcation, a stable equilibrium loses or gains stability. To identify 211

such bifurcations, we consider the eigenvalue traces λi of the Jacobian matrix of the 212

system (11), as introduced in the Methods section. We define Vth (respectively, Vblock) 213

as the value of Vs where the eigenvalue traces enter into instability (respectively, recover 214

from instability), see Fig. 3 (left). At Vth and Vblock, bifurcations of equilibrium points 215

occur. They can be revealed through the bifurcation diagrams as in Fig. 3 (right), 216

namely plotting Vs as a function of the bifurcation parameter through Eq. (7) or (8). 217

Vth corresponds to a saddle-node bifurcation if therein a real eigenvalue changes sign 218

from negative to positive. Instead, Vth corresponds to a Hopf bifurcation if therein the 219

real parts of a pair of complex conjugate eigenvalues change sign from negative to 220

positive. Vblock typically corresponds to a Hopf bifurcation since it occurs in a 221

monotonically increasing interval of the Vs curve [32]. Therefore, therein the real parts 222

of a pair of complex conjugate eigenvalues change sign from positive to negative. For 223

the sake of simplicity, we shall use Vth and Vblock to refer to both the equilibrium points 224

where such bifurcations occur, as well as to the bifurcations themselves. The rest regime 225
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Fig 3. Bifurcation analysis of equilibrium points. The equilibrium points (EQ) of the system (4), along with their
stability properties, are studied as described in the section Methods. ∆VK is assumed as bifurcation parameter. The same
plots are reported for the HH-type models squid-hh52, rat-wei14, rat-wang96 (see Table 1). Left) Real and imaginary parts of
the eigenvalue traces λi of the Jacobian matrix (11) as a function of the equilibrium value of the membrane potential Vs, with
fixed Isyn (see insets). These curves enable us to distinguish between stable and unstable Vs by inspecting the sign of the real
parts of the eigenvalues. Right) Bifurcation diagrams of the equilibrium points obtained plotting the equilibria Vs as a
function of ∆VK according to Eq. (7). These diagrams are shown for different choices of Isyn and augmented with the
stability information extracted from the study of the eigenvalue traces. Vth may correspond to a Hopf (a,b,c), or a
saddle-node (d-i), bifurcation, while Vblock is associated to a Hopf bifurcation. (i) In the case of a saddle-node at Vth, the
bifurcation can occur before or after Vblock in terms of ∆VK, depending of the value of Isyn.

disappears at Vth, which therefore acts as a threshold for the system towards a spiking 226

trajectory (when present, see below). Conversely, the block regime appears after Vblock, 227

thereby enabling the system to escape from a spiking trajectory. Fig. 3i shows that, if 228

Vth is a saddle-node, it may take place before or after Vblock, depending on the value of 229

the input parameter kept fixed during the analysis (Isyn in the figure). In the former 230

case, the system shows only an unstable equilibrium between the two bifurcations, and 231

therefore a tonic spiking regime is allowed in such interval. In the latter case, the system 232

is bistable with two stable equilibria between the two bifurcations, i.e., the rest and 233

block configurations, and the possibility of eliciting a tonic spiking behavior is ruled out. 234

Even though the notion of bistability is usually employed in the literature to refer to the 235

generic coexistence of stable trajectories [32], either equilibrium points or limit cycles, 236
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we herein restrict this notion to such coexistence of rest and block configurations. 237

The study of bifurcations of stable limit cycles is in general more involved. However, 238

for our concerns, the bifurcations that give rise to stable limit cycles are of three kinds: 239

fold limit cycle, saddle-node on invariant circle (SNIC), and saddle-homoclinic (SH) [32]. 240

Fig. 4 shows some examples of bifurcation diagrams of both limit cycles and equilibria 241

for the models under study. A fold occurs before Vth when it is Hopf subcritical, and 242

results in a pair of stable and unstable limit cycles. A SNIC occurs at Vth when it is a 243

saddle-node but the system is not bistable. An SH bifurcation occurs before Vblock when 244

the system is bistable. Eventually, such stable limit cycles disappear, either through a 245

limit cycle bifurcation slightly after Vblock, if it is Hopf subcritical, or at Vblock, if it is 246

Hopf supercritical. Unstable limit cycles also either appear or disappear at fold limit 247

cycle bifurcations. However, such trajectories are not of practical concern due to their 248

repulsive nature. Figs. 4h,i confirm that the bifurcation Vth must occur before Vblock to 249

elicit tonic spiking. Non-tonic spiking is allowed when fold or SH bifurcations are 250

involved. In such cases, limit cycles may coexist with rest (Figs. 4a,b,c,h), block (Fig. 251

4i) or bistable (Fig. 4h) regimes. In these cases, a tonic rest (respectively, block) regime 252

is reached sufficiently far from Vth (respectively, Vblock). 253

Neurons may be classified into three classes of neural excitability depending on the 254

properties of their f-I curve, i.e., the steady-state relation between the input current and 255

the firing frequency. Class I (respectively, II) neurons show a continuous (respectively, 256

discontinuous) f-I curve, while in class III neurons no firing is elicited irrespective of the 257

applied current [32]. Bifurcation diagrams allow us to infer the excitability class of a 258

neuron, and we refer the reader to [32] for further details. From the previous analyses 259

follows that, when no ionic actuation is present (∆VK = 0), squid-hh52 shows class II 260

excitability (see Fig. 4a), while rat-wei14 and rat-wang96 show class I excitability (see 261

Figs. 4d,g). We can introduce an analogous classification assuming ∆VK as input of the 262

model. In such setting, squid-hh52 and rat-wei14 maintain the same excitability type 263

(see Figs. 4b,c,e,f). Conversely, rat-wang96 shows class I excitability when a sufficiently 264

large Isyn is applied (not shown), but it switches to class II when Isyn is in a certain 265

range around 0.13 µA/cm2 (see Fig. 4i). This happens because an SH bifurcation gives 266

rise to the limit cycle instead of a SNIC. For smaller values of Isyn, rat-wang96 further 267

switches to class III excitability (see Fig. 4h) due to the disappearance of tonic spiking 268

and the appearance of bistability. The possibility of a ∆VK-induced switching from class 269

I to class II has been recently pointed out in the literature [39] and corroborated 270

in-vitro. Our analysis complements these findings, suggesting that these switchings may 271

occur or not depending on the type of neuron considered. Further, our study 272

emphasizes the possible emergence of a class III excitability when an ionic actuator 273

drives the system without a sufficiently large synaptic input. This fact may be 274

detrimental from a neural engineering perspective since it rules out the possibility of 275

eliciting tonic spiking in certain types of neurons. 276

In the previous analyses, we considered only one input variable among ∆VK and Isyn 277

as a bifurcation parameter while keeping the other fixed. Repeating the studies for 278

different values of the fixed parameter, it is thus possible to find the boundary curves 279

∆VK,th − Ith and ∆VK,block − Iblock that identify where the bifurcations Vth and Vblock 280

take place in the space of input variables. This leads us to the two-dimensional 281

bifurcation diagrams as in Fig. 5. They contain four regions: rest, spike, block, and 282

bistable. In the spike region, the system already underwent the Vth bifurcation, but not 283

yet Vblock. Models in this region exhibit tonic spiking behavior. In the rest, block, and 284

bistable regions, the homonym regimes are reachable, but may also coexist with limit 285

cycles, as previously observed. Such limit cycles typically disappear sufficiently close to 286

the boundary curves. An exception in this regard is the squid-hh52 model, where the 287

fold bifurcation occurs at large (negative) ∆VK if a rather large excitatory current Isyn 288

April 4, 2022 10/26



0 100 200 300
Isyn [7A=cm2]

-80

-60

-40

-20

0

20

40
V

[m
V
]

a) squid-hh52

"VK = 0:00 mV

0 10 20 30
"VK [mV]

-80

-60

-40

-20

0

20

40

V
[m

V
]

b) squid-hh52

Isyn = 0:00 7A=cm2

0 10 20 30
"VK [mV]

-80

-60

-40

-20

0

20

40

V
[m

V
]

c) squid-hh52

Isyn = 10:00 7A=cm2

-50 0 50 100 150 200 250
Isyn [7A=cm2]

-100

-50

0

50

V
[m

V
]

d) rat-wei14

"VK = 0:00 mV

-20 0 20 40 60
"VK [mV]

-100

-50

0

50

V
[m

V
]

e) rat-wei14

Isyn = 0:00 7A=cm2

-20 0 20 40 60
"VK [mV]

-100

-50

0

50

V
[m

V
]

f) rat-wei14

Isyn = 1:00 7A=cm2

-5 0 5 10 15
Isyn [7A=cm2]

-60

-40

-20

0

20

V
[m

V
]

g) rat-wang96

"VK = 0:00 mV

10 15 20 25
"VK [mV]

-60

-40

-20

0

20

V
[m

V
]

h) rat-wang96

Isyn = 0:00 7A=cm2

10 15 20 25
"VK [mV]

-60

-40

-20

0

20

V
[m

V
]

i) rat-wang96

Isyn = 0:13 7A=cm2

Stable EQ Unstable EQ Stable LC Unstable LC Vth Vblock

Fig 4. Bifurcation analysis of limit cycles. Some representative bifurcation diagrams for the different HH-type models
adopted as case studies (see Table 1) are shown. They include both the limit cycles (LC) and the equilibrium points (EQ),
along with their stability properties. Limit cycles are obtained using the MatCont [43], and are represented through their
maximum and minimum values of membrane potential. Equilibria are studied as in Fig. 3. a,d,g) The first column refers to
the case of purely current actuation, where Isyn is used as the bifurcation parameter and ∆VK = 0. The bifurcation Vth

occurs before Vblock and a tonic spiking regime can exist in between. The stable limit cycle arises either with (a) a fold limit
cycle before Vth or (d,g) a SNIC at Vth. It disappears with a supercritical Hopf bifurcation at Vblock. Before Vth, a rest regime
is possible, which is always tonic in the SNIC case and only before the fold. After Vblock, the system enters into a tonic block
regime. b,e,h) The second column refers to the case of purely ionic actuation, with ∆VK as the bifurcation parameter and
Isyn = 0. In (b,e) the models retain the same qualitative behavior as in the case of current actuation. Conversely, in (h),
Vblock occurs before Vth and therefore a tonic spiking behavior is not possible (Vth = −61.7 mV and ∆VK,th = 110 mV are not
shown because out of scale). Instead, the system is bistable between these two bifurcations, with both rest and block behaviors
accessible. Interestingly, also a stable limit cycle exists, which is not tonic. It arises via an SH bifurcation and eventually
disappears in a fold. c,f,i) The third column considers the case of ionic actuation in the presence of an excitatory current Isyn.
As a result, a lower ∆VK is sufficient to give rise to a stable limit cycle in (c,f) when compared to the cases in (b,e). Further,
the bistable region may disappear, thereby making tonic spiking possible. Compare for instance (i) and (h). Interestingly, the
bifurcations that undergo equilibria and limit cycles may change depending on whether Isyn or ∆VK is used as the bifurcation
parameter. For instance, compare the disappearance of the stable limit cycle via Hopf supercritical in (g) and a fold in (h,i).
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Fig 5. Two-dimensional bifurcation analysis of equilibrium points. The diagrams show the boundary curves
∆VK,th − Ith and ∆VK,block − Iblock, which correspond to the occurrence of the Vth and Vblock bifurcations in the space of
input parameters ∆VK, Isyn. The diagrams of all the HH-type models adopted as case studies (see Table 1) are shown. They
are obtained by repeating the one-dimensional bifurcation analysis depicted in Fig. 3 for different values of the fixed
parameter Isyn. They distinguish the four regions rest, spike, block, and bistable, named after the regimes that can emerge
therein. In spike, a tonic spiking is guaranteed, while, in the other regions, a spiking regime may coexist if limit cycle
bifurcations as SH or fold take place. Therefore, to attain a tonic regime in rest and block is necessary to move sufficiently far
away from the boundary curves. In bistable regions, both the rest and block regimes are allowed. The enumerated markers in
(d) refer to the simulations in Fig. 6. The dashed paths labeled with uppercase letters in (b,c,e,f) refer to the example
simulations of inhibition and stimulation of electrical activity in Figs. 7 and 8, with the marker denoting the initial condition.

is present, and hence far away from the ∆VK,th − Ith curve (not shown). Nevertheless, 289

we hereafter focus on the other models employed as case studies (see Table 1, since 290

cortical neurons are of major concern as targets in neuromodulation scenarios. 291

Consequently, the bifurcation analysis of equilibria suffices to establish a principled 292

framework to effectively drive the system to the desired tonic regime via ionic actuation, 293

as we shall see in the next section. We point out that the possibility of neglecting the 294

bifurcation analysis of limit cycles reduce considerably the computational burden of the 295

study. Fig. 5 further confirms that, depending on the neuron model considered, the 296

transition from rest to (tonic) spiking may not be possible acting on ∆VK alone, 297

without the presence of an excitatory current Isyn. In Fig. 6, we corroborate the 298

predictions of Fig. 5 for the model rat-wang96, showing the steady regimes reached by 299

the model in each one of the four regions for different initial conditions. 300

Principled neuromodulation via ionic actuation 301

In the scenario of neuromodulation via ionic actuation under study, one aims to elicit 302

the desired regime of electrical activity in a neuron via a controlled perturbation of the 303
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0 10 20 30 40 50 60 70 80 90 100

0

5

10

I s
y
n

[7
A

=
cm

2
]

Isyn = 0:30 7A=cm2

0 10 20 30 40 50 60 70 80 90 100

0

20

40

"
V

K
[m

V
]

"VK = 0:00 mV

0 10 20 30 40 50 60 70 80 90 100
Time t [ms]

-80
-60
-40
-20
0

20

V
[m

V
]

2) spike regime (rat-wang96)
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Fig 6. Possible tonic regimes and bistability. Simulations of the model rat-wang96 for four combinations of ∆VK and
Isyn values, each one corresponding to a different region of Fig. 5d (see Fig. 5’s caption). Each simulation is repeated for
several initial conditions (different colors), which are set by rapid current pulses at the beginning of the transients (duration:
1 ms; amplitude: between 1 and 10 µA/cm2). In 1), 2), and 3), a rest, a spiking, and a block regime are achieved respectively,
irrespective of the initial condition. In 4), the steady state may be either a rest or a block condition due to the bistable
configuration of the system. These simulations corroborate the theoretical findings reported in Fig. 5. We point out that 1),
3), 4) are chosen sufficiently far from the boundaries to avoid the presence of a limit cycle. Compare e.g., Figs. 5d and 4h.

extracellular concentration of K+. In a stimulation application, the target is to trigger 304

electrical activity in the neuron, hence a spiking regime. In an inhibition application, 305

the target is to silence electrical activity in the neuron. This can be accomplished by 306

either reaching a rest or a block configuration. The target regime is expected to be 307

maintained robustly, namely regardless of possible synaptic currents, at least in a 308

reasonable range of values. Further, the induced behavior should ideally be tonic to 309

avoid undesired switches to other regimes due to noise or other disturbances. 310

The previous desiderata can be accomplished in a principled fashion by means of the 311

theoretical framework developed in the previous section, especially resorting to the 312

two-dimensional bifurcation diagrams in Fig. 5. Indeed, given a range of values for Isyn, 313

it is possible to assess the extent of ionic release ∆VK > 0, or ionic uptake ∆VK < 0, 314

that would be required to reach the target regime. Regarding inhibition, we observe 315

that the curves associated with the Vblock bifurcation have a dependence on Isyn much 316

weaker than the ones associated with Vth. Therefore, the maintenance of a block regime 317
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d) rat-pospischil08-FSinh (path E)

Fig 7. Examples of inhibition of electrical activity via ionic actuation. The shaded area in each plot highlights when
ionic actuation is active. Each simulation refers to a dashed path in Fig. 5 denoted with an uppercase letter (A, B, D, or E).
The values of ∆VK were chosen as a function of Isyn and the target regime. a,b) assume a block configuration as the target.
The maintenance of such configuration is more robust to disturbance by external synaptic currents and requires a different
minimum extent of ∆VK to be established, depending on the model considered. c,d) assume a rest configuration as the target.
In this case, the maintenance of the regime is much more sensitive to Isyn, which may imply the need for a large ∆VK < 0, as
in d). Such situation could become rapidly unfeasible, leading to the complete depletion of [K+]o (see Eq. (3)).

is expected to be much less sensitive to the presence of a synaptic current than the 318

maintenance of a rest regime. We point out that a block regime can be elicited also 319

with pure current actuation (see Fig. 4a, d, g). It is not evident from Fig. 5 because it 320

requires a rather unphysiological current amplitude. 321

Fig. 7 shows examples of inhibition of electrical activity via ionic actuation. As 322

previously observed, a neuron driven in the block regime persists in such regime quite 323

irrespective of the synaptic current applied. Furthermore, the minimum extent of ∆VK 324

needed to reach this regime depends on the model and hence the type of the neural cell 325

considered, see Fig. 7a, b. If rest is assumed as a target, the maintenance of such 326

behavior is much more sensitive to the value of Isyn and may require a more accurate 327

online adjustment of ∆VK. However, when an excitatory Isyn is present, we observe 328

that it rapidly may amount to a large (negative) ∆VK, see Fig. 7d. However, this 329

implies the need for an almost complete depletion of extracellular K+ according to Eq. 330

(3), which is expected to be hardly feasible in a realistic application. 331
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a) rat-cressman09 (path C)
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b) rat-pospischil08-RSexc (path F)

Fig 8. Examples of stimulation of electrical activity via ionic actuation. The shaded area in each plot highlights
when ionic actuation is active. Each simulation refers to a dashed path in Fig. 5, denoted with an uppercase letter (C or F).
The values of ∆VK are chosen as a function of Isyn and of the target regime. a) In this model, a regime of tonic spiking can
be elicited through solely ∆VK. However, the minimum ∆VK required increases if a hyperpolarizing Isyn is present. b) This
model does not show a region of tonic spiking in the case of purely ionic actuation. Such regime is therefore accomplished
only in presence of a sufficiently large excitatory Isyn. Otherwise, the possible tonic regimes are only rest and block.

Fig. 8 shows examples of stimulation of electrical activity via ionic actuation. As 332

previously observed, different models, and hence potentially different neuron types, may 333

show or not a region of tonic spiking under purely ionic actuation. In the former case, 334

tonic spiking be reached increasing ∆VK, see Fig. 8a. The minimum extent of ∆VK 335

needed to establish such a regime increases if a hyperpolarizing Isyn is present. In the 336

latter case, tonic spiking becomes reachable only if a sufficient excitatory Isyn is present, 337

see Fig. 8b. Otherwise, the tonic regimes the system can attain are only rest and block. 338

The conductance of K+-selective channels affects switchings of 339

the class of neural excitability in the ∆VK − Isyn plane 340

From the previous analyses, it emerges that the qualitative dynamics of a neuron may 341

differ depending on whether a current or an ionic actuator is used to drive the system. 342

For instance, in the latter case tonic spiking may not occur. In other words, switchings 343

of the class of neural excitability may occur in the Isyn − ∆VK plane. An insight into 344

such qualitative changes can be obtained by inspecting how the input variables locally 345

affect the equilibrium points of the system (4). Namely, assuming a perturbation of the 346

input variables ∆VK → ∆VK + δVK and Isyn → Isyn + δIsyn, a new equilibrium is 347

established Vs → Vs + δVs. We can approximate δVs at the first-order as 348

δVs = AKδVK + AIδIsyn , (16)

where AI is obtained by linearizing Eq. (6) with respect to Vs and taking its inverse: 349

AI =
(
gtot,∞ +

dgK,∞

dV
(V − VK,0 − ∆VK) +

dgNa,∞

dV
(V − VNa)

)−1
∣∣∣∣
Vs

. (17)

As a remark, AI is a function of both ∆VK and Isyn at the linearization point, with the 350

latter dependence given implicitly by Vs. The analogous definition for AK yields 351

AK = gK,∞AI . (18)
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Scenario → Isyn = ∆VK = 0 only Isyn active (∆VK = 0) only ∆VK active (Isyn = 0)

↓ Model Metrics → AI AK gK,∞ Ith Iblock ρI ∆[K+]o,th ∆[K+]o,block ρK TS

squid-hh52 0.48 0.25 0.525 29.24 248.5 8.5 0.8 2.3 2.7 ✓

rat-wei14 9.03 0.45 0.050 0.41 204.6 498.5 0.3 4.7 13.4 ✓

rat-cressman09 8.36 0.43 0.051 1.28 316.2 247.2 0.9 5.3 6.1 ✓

rat-wang96 14.69 0.01 0.001 0.16 14.6 91.1 60.3 1.2 - -

rat-pospischil08-FSinh 22.90 0.05 0.002 0.80 25.5 31.9 35.2 1.2 - -

rat-pospischil08-RSexc 39.14 0.07 0.002 0.61 59.9 97.6 11.8 2.7 - -

Table 2. Comparison between ionic and current actuation. The Isyn = ∆VK = 0 scenario corresponds to an isolated
neuron, with no supplied input. AI and AK measure the attitude of Isyn and ∆VK to induce a perturbation of the steady
state Vs, see Eq. (16). They are related by the conductance of the K+ channel according to Eq. (18). The ∆VK = 0 and
Isyn = 0 scenarios correspond to the cases of sole current and sole ionic actuation, respectively. Here, the values of the input
where the bifurcations Vth and Vblock occur are reported, with ∆[K+] in place of ∆VK for a more physical comparison
(computed with Eq. (3)). The ratios ρI = Iblock/Ith and ρK = ∆[K+]o,block/∆[K+]o,th measure the extension of the region of
tonic spiking in the space of the input variable. The last column identifies if the model exhibits tonic spiking (TS) under sole
ionic actuation. The metrics are evaluated considering the single-compartment model of Fig. 1. Units: AI is in (mS/cm2)−1,
gK,∞ is in mS/cm2, Ith and Iblock are in µA/cm2, ∆[K+]o,th and ∆[K+]o,block are normalized to [K+]o.

We observe that the transfer function of the ionic input AK is further filtered by the 352

conductance of the K+ channel. From this fact, natural comparisons with the current 353

actuation scenario follow. First, in a rest state, i.e., Vs < Vth, the gK is typically very 354

small, and therefore a larger ∆VK may be required to reach Vth in order to leave the 355

rest regime. Conversely, in a depolarization condition, i.e., V > Vth, the gK is much 356

larger due to the non-inactivation of the K+ channels that shape the action potentials. 357

Therefore, a smaller ∆VK suffices to reach Vblock in order to establish a block regime. 358

The impact of gK may be so critical that ∆VK,th overcomes ∆VK,block and bistability 359

replaces tonic spiking (see Fig. 4h). These observations are corroborated in Table 2, 360

where AI , AK, gK,∞ are reported for the models under study, assuming the case of no 361

ionic and current actuation as linearization point. We observe that gK,∞ is more than 362

one order of magnitude smaller in the models that do not show tonic spiking in the case 363

of purely ionic actuation (rat-wang96, rat-pospischil08-FSinh, rat-pospischil08-RSexc) 364

with respect to the ones that show tonic spiking (squid-hh52, rat-wei14, rat-cressman09). 365

Table 2 further reports the values of Isyn and ∆[K+]o, where the bifurcations Vth and 366

Vblock occur in the case of either sole current or sole ionic actuation, respectively. This 367

shows that, when tonic spiking is possible, the interval where it can be established in 368

the space of the input parameters is wider in the latter case than in the former. 369

Influence of the fraction of actuated membrane 370

When an ionic actuator with a sub-cellular size is employed to modulate the electrical 371

activity of a neuron, a two-compartment model as in Fig. 2 can be used to account for 372

the local perturbation of VK along the neural membrane. In this scenario, the impact of 373

the ionic actuator on the membrane potential is expected to scale with the fraction of 374

actuated membrane ρ, being that the K+ channels are directly recruited by ∆VK only 375

therein. Indeed, in the case of full coupling between the two compartments (gc → ∞), 376

the current balance Eqs. (14) reduce to the single-compartment case of Eq. (4), with 377

the only difference that the K+ current now reads 378

IK = gK(V − VK,0 − ρ∆VK) . (19)
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Fig 9. Examples of neuromodulation with ionic actuators of sub-cellular size. The two-compartment model in Fig.
2 is simulated assuming half of the cell membrane is actuated (ρ = 0.5) and a coupling of gc = 2 mS/cm2 (black traces). a)
block regime elicited with ∆VK = 46 mV. b) rest regime elicited with ∆VK = −23 mV. In a) and b), the reported ∆VK is the
minimum required to induce the target regime, rounded to the units digit. c) spiking regime elicited with ∆VK = 44.6 mV,
chosen to have the same spiking frequency obtained in the single-compartment model with ∆VK = 25 mV (blue traces). d)
mixed regime elicited with ∆VK = 80 mV, where the actuated patch is in block while the non-actuated one is in (very fast)
spiking. The oscillations in the first compartment are a consequence of the electrical coupling with the second compartment.

The single-compartment model considered in the previous sections is therefore retrieved 379

assuming full coupling and ρ = 1. Consequently, if a value of ∆VK enables to reach a 380

certain regime according to Fig. 5, it must be increased by a gain factor ρ−1 to elicit 381

the same result in the two-compartment model with full coupling but ρ < 1. The 382

presence of a finite coupling gc between the two compartments is expected to alter such 383

gain factor, possibly introducing new steady regimes in the system. 384

Fig. 9 shows examples of ionic inhibition and stimulation of electrical activity in the 385

two-compartment case. The combinations of ∆VK and Isyn that elicit the target 386

regimes can be compared with the ones predicted in Fig. 5 for the single-compartment 387

case. We observe that to accomplish inhibition the minimum required ∆VK is increased 388

by more than a ρ−1 factor (compare Figs. 9a, b with Figs. 5e, b). Conversely, to obtain 389

a similar behavior in the stimulation setting is sufficient a factor lower than ρ−1
390

(compare Figs. 9c and 5c). Interestingly, certain models reveal new steady regimes in 391

which the actuated membrane patch is in block while the non-actuated one is spiking 392

(see Fig. 9d). However, such behavior can be silenced by increasing ∆VK (not shown). 393

Discussion 394

We considered reduced single-compartment HH models to investigate the possibilities 395

and limits offered by a neuromodulation mechanism based on the perturbation of the 396

extracellular K+ concentration. For the sake of a comparative study, we took into 397

account both the classical model of the squid giant axon, along with five models of rat 398

cortical neurons, see Table 1. We augmented them with the action of an ionic actuator, 399

affecting the neuron via variations of the potassium reversal potential ∆VK, and with an 400

external synaptic current Isyn. 401
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We first leveraged bifurcation analysis to characterize the phenomenology of the 402

neural electrical activity in terms of the extent of ionic actuation ∆VK and the action of 403

synaptic current Isyn. This enabled us to identify four regions in the ∆VK − Isyn plane. 404

Namely, a region where tonic spiking can be elicited, two regions where rest and block 405

regimes are allowed and can be tonic, and a bistable region where the system can be 406

switched between rest and block states. Spiking behaviors might be possible not only in 407

the homonym region of the space of bifurcation parameters, but they are not tonic and 408

are confined nearby the boundary curves ∆VK,th − Ith and ∆VK,block − Iblock. We 409

showed that, in certain models, it is possible to elicit a tonic spiking behavior via ionic 410

actuation only if an excitatory current of sufficient amplitude is present. Conversely, a 411

bistable behavior manifests. We found that the main cause of this fact is a very small 412

sub-threshold conductance of the K+ channels. Further, the extent of ∆VK required to 413

reach the block regime shows a weak dependence on Isyn. The same does not apply to 414

the rest regime since its maintenance in the presence of an excitatory current Isyn may 415

imply the need for an almost complete depletion of [K+]o . 416

These findings allow us to approach the neuromodulation task in a principled 417

fashion. Indeed, for a given Isyn and a target regime, it is possible to choose ∆VK to 418

effectively steer the system with the information provided by the two-dimensional 419

bifurcation diagram in Fig. 5. We tested these predictions in simulations, showing 420

examples of inhibition and stimulation of electrical activity in the HH models under 421

study. This framework relies only on the bifurcation analysis of equilibrium points of 422

the system, thereby avoiding the computational burden required by the study limit of 423

cycles. We briefly took into account also the possibility of performing the ionic 424

actuation locally at the cell membrane. To this aim, we considered a two-compartment 425

model to lump the actuated and non-actuated patches of the membrane, along with 426

their electrical coupling. We found that the portion of actuated membrane ρ is a critical 427

parameter since a value of ∆VK that elicits a certain regime in the single-compartment 428

case must be increased by a factor comparable to ρ−1 to induce the same behavior in 429

the two-compartment case. The strength of electric coupling gc modulates such factor, 430

and may introduce novel steady regimes in the system. 431

A large body of literature points out K+ as a modulator of electrical activity in 432

neurons, both in experiments [7–10] and in computational studies [11–18]. These works 433

are mainly concerned with the regulation of ionic concentrations and pathological 434

conditions that result in their impairment, such as seizures and spreading depression. 435

Since such phenomena occur at time scales of seconds or even minutes, synaptic 436

currents are not typically considered as bifurcation parameters. In a neuromodulation 437

scenario, such analysis is instead pivotal since synapses act as uncontrolled input of the 438

system and the time scale of the intrinsic electrical activity of neurons is a major 439

concern. In [39], a bifurcation diagram similar to the ones in Fig. 5 is reported. 440

However, a dual perspective on the problem is assumed. In fact, in that reference, the 441

current is the main driver of neural activity, while the perturbation of [K+] is a 442

consequence of prolonged firing. The paper thus reports a switching between class I and 443

class II excitability, which is verified in-vitro and is consistent with our findings. As a 444

complement to the previous works, we show that the switchings of the class of 445

excitability depend on the type of neuron considered. Moreover, we report that also 446

switching to class III is possible. In the latter case, eliciting tonic spiking is not possible 447

if ionic actuation is assumed as the sole input of the system. Our analysis also offers a 448

comparative computational study of the differential impact of [K+] on the electrical 449

activity of neurons of different classes. Building upon these findings, one may expect 450

that neurons in-vitro or in culture may show or not transition to a spiking behavior, or 451

require different extents of ion release to enter into block. Such speculations might 452

motivate new directions for experimental investigations. 453
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There are a number of caveats to consider here. First, we described the action of the 454

ionic actuator solely as a perturbation of extracellular K+ concentration. However, the 455

dynamics of ions involve electrodiffusive processes that may influence also the electric 456

field in the extracellular microenvironment, thereby introducing further paths along 457

which ionic actuation may affect the cell’s electrical activity. If such effects are not 458

negligible, a more accurate description of the ionic actuator must be included in the 459

analysis. Second, we considered reduced HH models for the electrical activity of neurons. 460

The single-compartment models have been fitted to reproduce the electrophysiology of 461

actual neural cells and, therefore, might provide a reasonable understanding of the 462

effects of an ionic actuator that is able to perturb all the surrounding milieu of the cell. 463

However, the two-compartment model is rather artificial and was introduced to suggest 464

possible key ingredients affecting a local ionic actuation of the cell, rather than to 465

reproduce actual electrophysiological properties in this setting. Indeed, the change in 466

VK between the two compartments does not account for any spatial gradient that may 467

arise from the diffusion of ions, and the electric coupling between the actuated and 468

non-actuated regions is mimicked with a phenomenological parameter gc. Therefore, to 469

draw a more realistic insight into such scenario, it is necessary to resort to models that 470

include more explicitly the spatial nature of the phenomena. This will enable also the 471

identification of “hot zones” where the modulation of the neuron is facilitated, such as 472

the well-known initial segment for spike initialization [46]. 473

We focused on the ionic neuromodulation of a neuron. A natural generalization of 474

such application may be the control of a neuronal network. However, this introduces 475

several complications since neurons form networks where both excitatory and inhibitory 476

neurons are present. Indeed, in a single-cell scenario to silence (respectively, trigger) 477

electrical activity, it is sufficient to drive the system to either rest or block (respectively, 478

spiking). Conversely, in a network scenario, the steering of a neuron in a rest or block 479

state may reduce or increase the overall electrical activity in the network, depending on 480

whether it is part of the excitatory or inhibitory class. The converse applies to a neuron 481

that is driven to a spiking regime. It is not a surprise that these interactions underlie 482

several epileptic events [47–51], where the perturbation of the electrical activity of 483

neurons is induced by pathological conditions rather than neuromodulatory devices. 484

The scenario is further complicated by the previously mentioned differential influence of 485

[K+]o on the electrical activity of different types of neurons. The ionic neuromodulation 486

of an ensemble of neurons is therefore a more involved topic, which at the same time 487

permits to envisage a much richer ensemble of control patterns to steer such networks. 488

It is thus clear that to approach its study one cannot ignore the network interactions, as 489

well as the intrinsic peculiarities of each cell. 490

In conclusion, we provided a theoretical insight into the employment of the 491

extracellular concentration of K+ as a novel neuromodulation modality. Leveraging 492

bifurcation analysis, we highlighted the possibilities and limits offered by such modality 493

in shaping the electrical activity of neurons. We showed through simulations how these 494

findings may inform control strategies aiming to either stimulate or inhibit electrical 495

activity. Our results complement the advances in the technology of ionic actuators and 496

foster the design of novel ionic-enabled neural interfaces. 497

Matlab code 498

The code is available publicly at github.com/claudioverardo/neuro-ionact and it is 499

implemented in Matlab [42]. The simulations were made with the built-in ode15s solver. 500

The bifurcation analyses of equilibrium points were made as described in the section 501

Methods, exploiting the generalizations presented in Appendix B. The bifurcation 502

analyses of limit cycles were made with the open-source toolbox MatCont [43]. 503
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↓ Models Parameters → Vr VK,0 VNa VL ḡK ḡKm ḡNa gK,L gNa,L gL T ϕ

squid-hh52 [34] -60 -76 55 -44.5 36ϕg - 120ϕg - - 0.3ϕg 20 ϕτ

rat-wei14 [14] -66.8 -94.7 55.4 -81.9 25 - 30 0.05 0.0175 0.05 36 1

rat-cressman09 [11] -67.0 -94.7 55.4 -81.9 40 - 100 0.05 0.0175 0.05 36 3

rat-wang96 [40] -64 -90 55 -65 9 - 35 - - 0.1 37 5

rat-pospischil08-FSinh [41] -71.4 -90 50 -70.4 3.9 0.079 58 - - 0.038 36 1

rat-pospischil08-RSexc [41] -71.9 -90 50 -70.3 6 0.075 56 - - 0.021 36 1

Units → mV mS/cm2 °C -

Table 3. Parameters of the HH-type models used as case studies. In all the models, the membrane capacitance is
Cm = 1 µF/cm2. In squid-hh52, temperature correction factors are applied to both the kinetics of the gating variables

ϕτ = 3
T−6.3

10 , and to the conductances ϕg = 1.3
T−6.3

10 according to [52]. In rat-wang96, the original work [40] does not state the
temperature T explicitly, but reports experimental data recorded at 35 − 37 °C.

Appendix A: Hodgkin-Huxley-type models 504

In our investigations, we considered some HH-type models from the literature as case 505

studies. These are listed in Table 1. Their membrane parameters and the kinetics of 506

their gating variables are reported in Tables 3 and 4, respectively. These models 507

comprise two voltage-gated channels for potassium and sodium, denoted as K and Na, 508

responsible for the generation of action potentials. The models rat-pospischil08-FSin 509

and rat-pospischil08-RSexch also include a muscarinic potassium channel, denoted as 510

Km , responsible for spike adaptation. The models rat-wei14 and rat-cressman09 also 511

include ion-specific leakage channels for potassium and sodium, denoted as KL and NaL. 512

For the sake of simplicity, in the mathematical derivations of the main body of the 513

paper, we considered only the channels K and Na. However, such derivations readily 514

generalize to include further channels, as shown in the Appendix B. 515

Appendix B: generalization to arbitrary ion channels 516

The derivations presented in the main body of this paper readily generalize to HH 517

models with more channels than action potential-generating K and Na channels. Let us 518

consider a model with Nch voltage-gated channels and Nsp ionic species involved in the 519

transmembrane fluxes. gi denotes the conductance of the i-th voltage-gated channel. Xj 520

denotes the j-th ionic species (e.g., K+, Na+, Ca2+, Cl– ), VXj is the Nernst potential of 521

Xj , and gXj ,L is the Xj-specific leakage conductance. We point out that more channels 522

may share the same Nernst potential (e.g., the K and Km channels in Table 4). In the 523

case of non-specific channels involving cations, the contribute of K+ should be properly 524

split to become sensible to ionic actuation. We define: 525

gXj
=

∑
i=1,...,Nch
s.t. Xi=Xj

gi + gXj ,L the total conductance of Xj , and (20)

gtot =
∑

i=j,...,Nsp

gXj
+ gL the total conductance . (21)

The conductance of the i-th voltage-gated channel is assumed in the form gi = ḡim
ai
i hbi

i , 526

where mi is the activating gating variable and hi the inactivating gating variable. When 527

such quantities are evaluated at steady-state, we adopt the subscript “∞”. We neglect 528
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Model K channel Na channel

squid-hh52 [34] αn(V ) = 0.01(V +50)
1−exp(−(V +50)/10)

αm(V ) = 0.1(V +35)
1−exp(−(V +35)/10)

αh(V ) = 0.07
exp((V +60)/20)

βn(V ) = 0.125
exp((V +60)/80)

βm(V ) = 4
exp((V +60)/18)

βh(V ) = 1
1+exp(−(V +30)/10)

n∞(V ) = αn
αn+βn

m∞(V ) = αm
αm+βm

h∞(V ) = αh
αh+βh

τn(V ) = 1
ϕ(αn+βn)

τm(V ) = 1
ϕ(αm+βm)

τh(V ) = 1
ϕ(αh+βh)

rat-wei14 [14] αn(V ) = 0.032(V +52)
1−exp(−(V +52)/5)

αm(V ) = 0.32(V +54)
1−exp(−(V +54)/4)

αh(V ) = 0.128
exp((V +50)/18)

βn(V ) = 0.5
exp((V +57)/40)

βm(V ) = −0.28(V +27)
1−exp((V +27)/5)

βh(V ) = 4
1+exp(−(V +27)/5)

n∞(V ) = αn
αn+βn

m∞(V ) = αm
αm+βm

h∞(V ) = αh
αh+βh

τn(V ) = 1
ϕ(αn+βn)

τm(V ) = 1
ϕ(αm+βm)

τh(V ) = 1
ϕ(αh+βh)

rat-cressman09 [11] αn(V ) = 0.01(V +34)
1−exp(−(V +34)/10)

αm(V ) = 0.1(V +30)
1−exp(−(V +30)/10)

αh(V ) = 0.07
exp((V +44)/20)

βn(V ) = 0.125
exp((V +44)/80)

βm(V ) = 4
exp((V +55)/18)

βh(V ) = 1
1+exp(−(V +14)/10)

n∞(V ) = αn
αn+βn

m∞(V ) = αm
αm+βm

h∞(V ) = αh
αh+βh

τn(V ) = 1
ϕ(αn+βn)

τm(V ) = 1
ϕ(αm+βm)

τh(V ) = 1
ϕ(αh+βh)

rat-wang96 [40] αn(V ) = 0.01(V +34)
1−exp(−(V +34)/10)

αm(V ) = 0.1(V +35)
1−exp(−(V +35)/10)

αh(V ) = 0.07
exp((V +58)/20)

βn(V ) = 0.125
exp((V +44)/80)

βm(V ) = 4
exp((V +60)/18)

βh(V ) = 1
1+exp(−(V +28)/10)

n∞(V ) = αn
αn+βn

m∞(V ) = αm
αm+βm

h∞(V ) = αh
αh+βh

τn(V ) = 1
ϕ(αn+βn)

τm(V ) = 1
ϕ(αm+βm)

τh(V ) = 1
ϕ(αh+βh)

Model K channel Na channel Km channel

rat-pospischil08-FSinh [41] αn(V ) = 0.032(V +42.9)
1−exp(−(V +42.9)/5)

αm(V ) = 0.32(V +44.9)
1−exp(−(V +44.9)/4)

αp(V ) = 3.3 exp((V +35)/20)
502

βn(V ) = 0.5
exp((V +47.9)/40)

βm(V ) = −0.28(V +17.9)
1−exp((V +17.9)/5)

βp(V ) = exp(−(V +35)/20)
502

n∞(V ) = αn
αn+βn

m∞(V ) = αm
αm+βm

p∞(V ) = 1
1+exp(−(V +35)/10)

τn(V ) = 1
ϕ(αn+βn)

τm(V ) = 1
ϕ(αm+βm)

τp(V ) = 1
ϕ(αp+βp)

αh(V ) = 0.128
exp((V +40.9)/18)

βh(V ) = 4
1+exp(−(V +17.9)/5)

h∞(V ) = αh
αh+βh

τh(V ) = 1
ϕ(αh+βh)

rat-pospischil08-RSexc [41] αn(V ) = 0.032(V +41.2)
1−exp(−(V +41.2)/5)

αm(V ) = 0.32(V +43.2)
1−exp(−(V +43.2)/4)

αp(V ) = 3.3 exp((V +35)/20)
608

βn(V ) = 0.5
exp((V +46.2)/40)

βm(V ) = −0.28(V +16.2)
1−exp((V +16.2)/5)

βp(V ) = exp(−(V +35)/20)
608

n∞(V ) = αn
αn+βn

m∞(V ) = αm
αm+βm

p∞(V ) = 1
1+exp(−(V +35)/10)

τn(V ) = 1
ϕ(αn+βn)

τm(V ) = 1
ϕ(αm+βm)

τp(V ) = 1
ϕ(αp+βp)

αh(V ) = 0.128
exp((V +39.2)/18)

βh(V ) = 4
1+exp(−(V +16.2)/5)

h∞(V ) = αh
αh+βh

τh(V ) = 1
ϕ(αh+βh)

Table 4. Kinetics of the HH-type models used as case studies. The models squid-hh52, rat-wei14, rat-cressman09,
rat-wang96 (top) only contain a K channel and a Na channel responsible for the generation of action potentials. In the
models rat-pospischil08-FSinh and rat-pospischil08-RSexc (bottom), there is an additional muscarinic K channel (Km)
responsible for spike adaptation. The conductance of the K channel is gK = ḡKn

4, while the conductance of the Na channel is
gNa = ḡNam

3h. When present, the conductance of the muscarinic K channel is gKm
= ḡKm

p. The values for the density of
channels ḡK, ḡNa, ḡKm

, and the temperature coefficient ϕ are reported in Table 3. In the main body of this paper, for the sake
of simplicity, only K and Na channels are assumed in the mathematical derivations. The authors refer the reader to Appendix
B for a generalization of such derivations to other channels such as Km .
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possible dependencies other than the membrane potential in the kinetics of the gating 529

variable and in the channel conductances, e.g., concentrations of neurotransmitters or 530

calcium. Therefore, the equations modeling the dynamics of the system are 531

dmi

dt
=

mi,∞(V ) −mi

τmi(V )
i = 1, . . . , Nch

dhi

dt
=

hi,∞(V ) − hi

τhi
(V )

i = 1, . . . , Nch

dV

dt
= − 1

Cm
(IK + IX̸=K − Isyn) .

(22)

Here, IK is the current associated with K+-selective channels, while IX̸=K is the current 532

associated with the remaining channels. Namely, 533

IK = gK(V − VK,0 − ∆VK)

IX̸=K =
∑

j=1,...,Nsp

s.t. Xj ̸=K+

gXj
(V − VXj

) + gL(V − VL) , (23)

where gK is defined according to Eq. (20) with Xj = K+. The equilibrium points of the 534

system (22) are in the form (. . . ,mi,∞(Vs), hi,∞(Vs), . . . , Vs), with Vs sets by 535

gK,∞∆VK + Isyn = gK,∞(Vs − VK,0) + IX̸=K,∞ . (24)

Therefore, maps as Eqs. (7) and (8) still hold, with FIsyn
and F∆VK

now defined as 536

FIsyn
(Vs) = g−1

K,∞ (gK,∞(Vs − VK,0) + IX̸=K,∞ − Isyn) (25)

F∆VK(Vs) = gK,∞(Vs − VK,0 − ∆VK) + IX̸=K,∞ . (26)

The Jacobian takes the form of a block matrix. Namely, 537

J =


. . .

...

JTL,i JTR,i

. . .
...

. . . JBL,i . . . gtot,∞

 , (27)

where, for i = 1, . . . , Nch, the blocks JTL,i, JTR,i, JBL,i have dimensions 2 × 2, 2 × 1, 538

1 × 2, respectively, and are in the form 539

JTL,i =

 − 1

τmi

0

0 − 1

τhi

 (28)

JTR,i =


1

τmi

dmi,∞

dV
1

τhi

dhi,∞

dV

 (29)

JBL,i =

[
− 1

Cm

dgi,∞
dmi

(Vs − VXi
) − 1

Cm

dgi,∞
dhi

(Vs − VXi
)

]
. (30)

Studying the eigenvalues of J is possible to find the bifurcations Vth and Vblock as 540

shown in the main body of the paper. The maximum dimension of J is 2Nch × 2Nch. 541
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However, if a gating variable is not present (ai = 0 or bi=0), the corresponding entries 542

in J must be removed, and the number of eigenvalues is reduced accordingly. 543

The first-order transfer functions AI and AV can be generalized by linearizing Eq. 544

(24). The relation AK = gK,∞AI still holds, but now AI reads 545

AI =
(
gtot,∞ +

dgK,∞

dV
(V − VK,0 − ∆VK) +

∑
j=1,...,Nsp

s.t. Xj ̸=K+

dgXj

dV
(V − VXj )

)−1
∣∣∣∣
Vs

. (31)
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27. Proctor CM, Slézia A, Kaszas A, Ghestem A, del Agua I, Pappa AM, et al.
Electrophoretic drug delivery for seizure control. Science Advances. 2018;4(8).
doi:10.1126/sciadv.aau1291.

28. Jonsson A, Inal S, Uguz L, Williamson AJ, Kergoat L, Rivnay J, et al.
Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the
same site. Proceedings of the National Academy of Sciences of the United States
of America. 2016;113(34). doi:10.1073/pnas.1604231113.

29. Jonsson A, Song Z, Nilsson D, Meyerson BA, Simon DT, Linderoth B, et al.
Therapy using implanted organic bioelectronics. Science Advances. 2015;1(4).
doi:10.1126/sciadv.1500039.

30. Williamson A, Rivnay J, Kergoat L, Jonsson A, Inal S, Uguz I, et al. Controlling
epileptiform activity with organic electronic ion pumps. Advanced Materials.
2015;27(20). doi:10.1002/adma.201500482.

31. Simon DT, Kurup S, Larsson KC, Hori R, Tybrandt K, Goiny M, et al. Organic
electronics for precise delivery of neurotransmitters to modulate mammalian
sensory function. Nature Materials. 2009;8(9). doi:10.1038/nmat2494.

32. Izhikevich EM. Dynamical Systems in Neuroscience. MIT Press; 2007.

33. Kuznetsov YA. Elements of Applied Bifurcation Theory. 3rd ed. Applied
Mathematical Sciences. Springer; 2004.

34. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of Physiology.
1952;117(4):500–544. doi:10.1113/jphysiol.1952.sp004764.

35. Koch C, Segev I. Methods in Neuronal Modeling: from Ions to Networks. 2nd ed.
MIT Press; 1998.

36. Somjen GG. Ions in the Brain: Normal Function, Seizures, and Stroke. Oxford
University Press; 2004.
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