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Abstract: Despite recent advances, the prognosis of acute myeloid leukemia (AML) remains un-
satisfactory due to disease recurrence and the development of resistance to both conventional and
novel therapies. Engineered T cells expressing chimeric antigen receptors (CARs) on their cellular
surface represent one of the most promising anticancer agents. CAR-T cells are increasingly used
in patients with B cell malignancies, with remarkable clinical results despite some immune-related
toxicities. However, at present, the role of CAR-T cells in myeloid neoplasms, including AML, is
extremely limited, as specific molecular targets for immune cells are generally lacking on AML
blasts. Besides the paucity of dispensable targets, as myeloid antigens are often co-expressed on
normal hematopoietic stem and progenitor cells with potentially intolerable myeloablation, the AML
microenvironment is hostile to T cell proliferation due to inhibitory soluble factors. In addition,
the rapidly progressive nature of the disease further complicates the use of CAR-T in AML. This
review discusses the current state of CAR-T cell therapy in AML, including the still scanty clinical
evidence and the potential approaches to overcome its limitations, including genetic modifications
and combinatorial strategies, to make CAR-T cell therapy an effective option for AML patients.
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1. Introduction

Acute myeloid leukemia (AML) is an aggressive neoplastic disease characterized by an
impaired differentiation of hematopoietic stem cells (HSCs) resulting in the accumulation
of immature myeloid progenitors and blast cells in the bone marrow (BM) and peripheral
blood (PB), a reduced production of mature functional blood cells, and an increased risk of
infection and bleeding [1–3]. Despite generally attaining a response to first-line treatment,
the overall outcome is poor, with a high incidence of relapse and 5-year survival rates
around 40–50% in younger patients and less than 15% in older patients [4]. Therapy
intensification and allogeneic hematopoietic cell transplantation (HCT) ensure superior
survival only in a small fraction of younger patients [5], and those who have never achieved
a complete remission (CR) or have experienced early relapse succumb to their disease within
a few months [6], underlining the importance of developing novel therapy approaches.

Recent technological progress has significantly improved the knowledge of AML
pathogenesis, highlighting the genetic heterogeneity of the disease, which is relevant in
determining the response to therapy and, ultimately, the long-term prognosis. Because of
the continuous refining of the genetic classification and the recent availability of multiple
drugs targeting molecular abnormalities, the current risk stratification and management
strategies of AML are mostly based on its genetic and epigenetic signature [7]. However,
many lines of evidence prove that AML relapse is favored by the development of a permis-
sive bone marrow microenvironment [8], suggesting a role for immune therapy that might
harness an immune response.
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In this review, we focused on the potential role of chimeric antigen receptor (CAR)-T
cells in the therapy of AML, summarizing the current available data, limitations, mecha-
nisms of resistance and the possible strategies to improve their clinical efficacy.

2. CAR-T Cells: Background

Among the strategies to overcome immunosuppression and reactivate the immune
response against tumor cells, adoptive cell transfer with CAR-T cells is one of the most
innovative. CARs are engineered synthetic receptors able to redirect T lymphocytes to
recognize and eliminate cells expressing a specific target antigen in a major histocompat-
ibility (MHC) independent manner [9]. The concept of a chimeric T cell receptor (TCR),
combining an antibody-derived variable region (VH/VL) with the TCR to activate the T cell
response to antigens, was first reported in 1987 by a Japanese study [10]. In 1989, a similar
approach to induce a T cell response in a non-MHC restricted manner was described by
immunologists at the Weizmann Institute of Science [11]. They co-transfected a chimeric
TCR (cTCR) resulting from the fusion of antibody VH and VL chains with the constant
region of the alpha and beta TCR chains in a murine cytotoxic T lymphocyte, obtaining
the surface expression of the cTCR and the activation and subsequent killing of the target
cells [11]. To bypass the need for a double-chain conventional TCR complex and to im-
prove the low co-transduction efficiency deriving from the need to transfect two separate
retroviral vectors, the same group designed a chimeric receptor in which a single-chain
variable fragment (scFv) was fused to an intracellular signaling domain from either CD3ζ
or FcεRIγ [12]. When expressed in MD.45 T cells, the scFv-receptor (scFvR) independently
transduced the T cell activation signals.

Initially referred to as the “T body”, the scFvR represents the prototype of modern
CAR. Since then, four/five different generations of CAR-T cells have been developed.
At present, a CAR-T cell construct is composed of four main parts: (1) an extracellular
antigen-recognition domain, called scFv, able to specifically bind tumor surface antigens,
either a tumor-associated antigens (TAAs), the most frequent, or tumor-specific antigens
(TSAs). (2) A spacer, also called the hinge region, usually made of either an IgG-based part
(such as CH2, CH3, or CH2CH3) or an Ig-based hinge from a naïve T cell molecule (such as
CD8 or CD28), to provide flexibility. Together, ScFv and the hinge represent the ectodomain
part of CAR. (3) A transmembrane part of CAR, derived from a CD3ζ, CD4, CD8 or CD28
molecule. (4) An intracellular signaling domain, which is mainly a CD3ζ domain. Together,
the transmembrane and intracellular domains form the endodomain of CAR.

In CAR-T cell therapy, CAR transgenes are transferred into previously isolated pa-
tient’s naïve T cells and the newly generate CAR-T cells are expanded in vitro and then
re-infused into the patients [13,14]. Different transfection methods are used to enforce
CAR expression, such as viral vectors, gene editing techniques, mRNA electroporation, or
liposomes [15–18]. Different generations of CAR-T cells have been developed starting form
this basic construct to improve their activation and to enhance the CAR-T cell persistence,
proliferation and killing activity. The first generation CAR-T cells, comprising only a CD3ζ
chain as a signal transmitter from TCR, demonstrated good activity in preclinical murine
models but had limited in vivo antitumor action due to their short persistence in the tumor
site and to their scanty proliferative capacity [19–22]. The second generation CAR-T cells
were generated by adding a costimulatory domain, such as CD28, 4-1BB (CD137L) or OX40
(CD134) to the CD3ζ domain, thus amplifying signals and inducing a CR in patients with
relapsing acute lymphoblastic leukemia (ALL) and in relapsed/refractory (R/R) mature
B-cell malignancies [23–27].

The unprecedented success of anti-CD19 CAR-T cell therapy in advanced B cell
malignancies, with CR rates around 50% and an overall response rate (ORR) in more than
80%, resulted in the approval by the FDA of six anti-CD19 CAR-T cell products since
2017 [28–35]. In multiple myeloma (MM), limited activity has been observed with anti-
CD19 CAR-T cells due to the low antigen expression on plasma cells, but encouraging
results and good tolerability have been observed in clinical trials with anti-CD138 and
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anti-BCMA CAR-T cells in R/R MM [36,37]. A recent meta-analysis of 38 reports including
a total of 2134 patients with R/R ALL identified 4-1BB costimulatory endodomain, low
dose cyclophosphamide leukodepletion and cytologic CR as factors predicting longer
survival [38]. Moreover, a retrospective analysis of 809 patients with R/R diffuse large B
cell lymphoma (DLBCL) treated with axicabtagen–ciloleucel (using a CD28 costimulatory
endodomain in a gammaretroviral vector) demonstrated higher efficacy but also higher
toxicity compared to tisagenlecleucel (that uses a 4-1BB costimulatory endodomain in a
lentiviral vector) [39].

To extend the anti-tumor efficacy a third generation CAR-T cell, comprising two cos-
timulatory endodomains such as CD28-OX40 or CD28-4-1BB, with an improved activation
signal, prolonged proliferation and enhanced effector function, has been developed [40].
The CD19-CD3ζ-CD28-4-1BB CAR-T cells induced a high remission rate in R/R ALLs [41].
The fourth generation CAR-T cells, also known as armored or TRUCK CAR-T cells, were
engineered from a second-generation CAR endodomain to secrete cytokines, thus improv-
ing their function, or equipped with safety switches to regulate the persistence of CAR-T
cells (i.e., an inducible caspase 9 suicide switch) and to modulate their on target/off tumor
side effects. The fifth generation includes additional expression of a receptor domain,
such as the IL2R chain β, to stimulate STAT3/STA5 intracellular pathways. A schematic
representation of the different CAR generations is shown in Figure 1.
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3. CAR-T Cell Therapy in AML

Different from ALL, where anti-CD19 CAR-T cells have demonstrated an impressive
response rate, the translation of this approach to AML remains challenging. The lack
of specific target antigens, the leukemic clonal heterogeneity, the variable expression
in the different phases of the disease, the immunosuppressive role of the leukemic BM
microenvironment and the very low mutation frequency in AML compared to solid tumors
(which limits the appearance of neo-antigens), all reduce the efficacy and potentially cause
unacceptable BM toxicity and off-target adverse events. So, at present, no CAR-T cell
therapy has obtained FDA approval for AML treatment.

The first trial reporting the biological activity of CAR-T cells in R/R AML was pub-
lished by Ritchie et al. in 2013. They used a second-generation CAR targeting the Lewis
Y antigen. Lewis Y is a surface glycoprotein expressed on granulocytes, in 50% of AML
patients, in the syncytiotrophoblast during embryogenesis and in ovarian cancer, where it is
thought to promote tumor invasion and metastasis [42,43]. The trial proved limited efficacy
but also very low hematopoietic toxicity, paving the way for the use of CAR-T cells in AML
patients [44]. Currently, there are several clinical trials testing CAR-T cells in AML, mostly
targeting CLL1, CD123, and CD33, that are all myeloid antigens overexpressed in leukemic
blasts but also in their normal stem cell counterpart; however, various other myeloid
antigens (e.g., CD64, CD13, CD93, and CD38) as well as repurposed lymphoid antigens
(e.g., CD19, CD7, and CD70) are under investigation. The available results, including the
very few patients treated to date, are summarized in Table 1.
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Table 1. Summary of published data on CAR-T in AML. Studies are grouped by target molecule and by year of publication.

Target Antigen Transduction
Mechanism

Costimulatory
Domain

CAR-T Cells
Source

AML Status/
Patients N◦ Prior HCT Outcome Toxicity

Ritchie et al.,
2013 [44] LeY Ag Phase I Lentiviral CD28-CD3ζ auto Ref: 3

Rel: 1 no ORR: 2 (50%)
CR: 1 (25%) 0

Yao et al.,
2019 [45] CD123 Case

report Retroviral 41BB allo Rel: 1 yes ORR: 1 (100%)
CR: 1 (100%) 0

Wermke et al.,
2021 [46] CD123 Phase I NA CD28 auto Rel/Ref: 3 yes

(2 pts)
ORR: 3 (100%)

CR: 2 (67%)
CRS: 2 (67%, I)

CRES: 0

Wang et al.,
2015 [47] CD33 Phase I Lentiviral 41BB-CD3ζ auto Rel/Ref: 1 no ORR: 1 (100%) CRS 1 (100%, IV)

Tang et al.,
2018 [48] CD33 Phase I Lentiviral CD28-41BB NK92 cells Rel: 3 yes

(1 pt)
ORR: 2 (67%)
CR: 1 (33%) CRS: 2 (67%, I–II)

Lin et al.,
2021 [49] CLL-1 Phase I Lentiviral CD28-CD3ζ auto-allo Ref: 1

Rel: 9 no NA NA

Zhang et al.,
2021 [50] CLL-1 Phase

I/II Lentiviral CD28-CD3ζ-
CD27 auto Rel/Ref: 4 no ORR: 3 (75%)

CR: (75%)
CRS: 3 (75%, I–II)

CRES 1 (25%)

Liu et al.,
2020 [51] CLL1/CD33 Phase I NA NA auto-allo Rel/Ref: 9 NA ORR: 7 (78%)

CR: 7 (78%)
CRS: 8 (89%) 3I, 3II, 2II

CRES: 4 (44%)

Cui et al.,
2021 [52] CD38 Phase I NA 41BB-CD3ζ auto-allo Rel/Ref: 6 yes ORR: 4 (67%)

CR: 4 (67%)
CRS 5 (83% I–II)
CRS 1 (17%, III)

Baumeister
et al.,

2019 [53]
NKG2DL Retroviral CD3ζ-Dap10 auto Ref: 4

Rel: 3 NA ORR: 0 0

Sallman et al.,
2023 [54] NKG2DL Retroviral CD3ζ auto Rel/Ref: 1 yes ORR: 1 (100%)

CR: 1 (100%) 0

Qu et al.,
2019 [55] CD19 NA NA auto-allo Ref: 1

Rel: 1
yes

(1 pt)
ORR: 2 (100%)

CR: 2 (10%) 2 (100%, I–IV)

Ref: refractory; Rel: relapsed; ORR: overall response rate; CR 1: first complete remission; CR 2: second complete remission.
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3.1. Potential AML Targets under Clinical Investigation for CAR-T Cell Therapy
3.1.1. CD123

CD123 (IL3R-α) is a membrane protein expressed in most AML blast cells and leukemic
stem cells (LSCs) and it is associated with enhanced proliferation, increased cellularity, and
a poor prognosis [56–58]. CD123 is currently the target for different therapies, including
recombinant fusion proteins, neutralizing antibodies, and CAR-T cell therapies [59]. In
the field of CAR-T cells, at present CD123 is the most used target with over 20 clinical
trials ongoing. As reported in Table 1, Yao et al. treated one patient with relapsed AML
with second generation allogeneic CAR-T cells as part of a HCT conditioning regimen,
obtaining a CR with incomplete hematologic recovery (CRi), but the patient died from
graft versus host disease on day 56 [45]. Cummins et al. enrolled seven R/R AML patients
in a phase I trial testing “biodegradable” T cells transiently expressing CD123 CAR. No
reduction of CD123 cells was observed, despite the absence of hematologic toxicity and of
treatment-related deaths [60]. An early phase pilot study, sponsored by the University of
Pennsylvania, investigating an anti-CD123-CD3-4-1BB CAR in five R/R AML patients, was
interrupted for lack of efficacy and on target/off tumor adverse events [61]. Budde et al.
reported preliminary results employing autologous CD123 CAR-T cells in seven heavily
pretreated R/R AML patients with the aim to obtain maximum disease reduction before
a second allogeneic HCT, observing a CR in two patients, a morphologic response in one
patient and a reduction of blast cells in two patients [62].

3.1.2. CD33

CD33 is a 40 kDa glycoprotein, also known as Siglec3, normally expressed on mature
granulocytes and monocytes and with minimal expression on normal HSCs. Approximately
90% of adult AML and 80% of pediatric AML cells express CD33, as well as 9% of LSCs [63].
In preclinical studies in vitro and animal models, CD33-directed CAR-T cells demonstrated
high efficacy against AML cells [64], long persistence and prolongation of survival in
mice [65,66]. Wang et al. reported that, in the absence of lymphodepletion, anti-CD33
CAR-T cells produced a transient reduction of blast cells, but also grade 4 toxicity [47].
Tambaro et al. at the MD Anderson Cancer Center used autologous CD33 CAR-T cells
in three adult R/R AML patients: two of the three patients developed grade 3 toxicity,
and all three patients died from leukemia progression [67]. Many other clinical trials with
anti-CD33 CAR-T cells, CAR-NK and γδ T cells are currently ongoing.

3.1.3. CLL-1

C-type-lectin-like molecule-1 (CLL-1) is an inhibitory receptor expressed in AML cells
and in LCSs of adult and pediatric patients [59]. Second generation CLL1-directed CAR-
T cells have been shown to prolong survival in immunodeficient leukemic mice [68,69].
In vivo and in vitro studies with third generation anti-CLL1 CAR-T cells showed high
anti leukemia activity and wide production of effector cytokines [69]. Clinical use of
anti-CLL1 CAR-T cells has been reported in three pediatric AML patients: all achieved
a CR and underwent allogeneic HCT [50]. Jin et al. observed a CR/CRi in 7/10 R/R
adult AML patients receiving CLL1-directed CAR-T cells after lymphodepletion with
cyclophosphamide and fludarabine; six patients experienced high grade CRS while no
patient developed CAR-T cell related encephalopathy syndrome (CRES) [70]. Since CLL1
is highly expressed on normal granulocytes, bridging to allogeneic HCT can be a strategy
to rescue long term agranulocytosis due to off target toxicity.

3.1.4. CD38

CD38 is a surface glycoprotein involved in cell adhesion, migration and signal trans-
duction, and is expressed in almost all mature blood cells and in myeloid progenitors, but
not in healthy HSCs [71]. Due to its broad expression in MM, T-ALL and AML, CD38 has
been recently proposed as a pan-hematologic target for CAR-T cell therapy [72]. In AML,
anti-CD38 CAR-T cells were used in six patients relapsing after HCT; four weeks after



Biomedicines 2024, 12, 1194 6 of 17

CAR-T infusion, 4/6 (66.7%) patients achieved a CR/CRi. The cumulative relapse rate at
6 months was 50%. All six patients experienced manageable side effects, and multiparamet-
ric flow cytometry (FCM) revealed that the CD38-directed CAR-T cells had cleared the CD38
positive blast cells without off-target effects on normal monocytes or lymphocytes [52].

3.1.5. CD7

CD7 is a glycoprotein essential for T cell and T cell/B cell interactions during early
lymphoid development. CD7 is expressed on thymocytes, NK precursors, T-lymphocytes
and in about 30% of AML cases, where its high expression level has been associated with
more aggressive disease and resistance to conventional therapy [73]. The potential limit
is the high CD7 expression on normal lymphocytes, but Gomes-Silva et al. demonstrated
that the use of CD7-directed CAR-T cells in CD7 gene-knockout T cells can eliminate
AML cells [74]. Cao et al. reported on the use of CD7 autologous CAR-T cells in a young
female with R/R AML with a complex karyotype, TP53 deletion, FLT3-ITD mutation and
SKAP2–RUNX 1 fusion gene: CD7 CAR-T cells were administered after lymphodepletion
with decitabine, fludarabine and cyclophosphamide; 17 days after CAR-T cells infusion,
the patient achieved morphologic leukemia-free state (MLFS). No severe organ or CRES
toxicity were observed and two months after CAR-T cell infusion the patient underwent
an allogeneic HCT, achieving an MRD-negative CR [75]. Hu et al. treated one patient
with R/R AML in a phase I trial of anti-CD7 CAR-T cells in hematological malignancies,
with a CR 28 days after CAR-T cell infusion; no life-threatening toxicity was observed [76].
Altogether, these data suggest that CD7-directed CAR-T cells can be a suitable therapy for
R/R AML.

3.1.6. CD19

CD19 (B-lymphocytes surface antigen B4) is a marker of B cell differentiation with
expression restricted to B-lymphocytes. CD19 is crucial for regulating B-cell activation via
B-cell receptor-dependent and -independent signaling pathways [77]. Aberrant expres-
sion of CD19 has been identified in t(8;21) AML and in 66% of mixed-phenotype acute
leukemia [78,79]. Danylesko et al. employed second-generation anti-CD19 CAR-T cells in a
patient with t(8;21) AML relapsing after allogeneic HCT. Lymphodepletion was obtained
with fludarabine and cyclophosphamide and a persistent clinical and molecular CR was
reached on day 28 after CAR-T cell infusion. Grade 3 CRS required inotropic support and
tocilizumab [80]. Qu et al. observed similar results in two young patients with R/R AML
with t(8;21), suggesting that CD19-directed CAR-T cell therapy is a promising and safe
approach to manage R/R t(8;21) AML [55].

3.1.7. CD70

CD70 is a member of the TNF receptor superfamily that plays an important role in im-
mune responses through interactions with CD27 [81]. In AML, CD70 is expressed in many
leukemic cells and in LSCs, but not in normal HSCs, making it a promising therapeutic
target for AML patients [82,83]. Sauer et al. investigated several anti-CD70 constructs with
different hinge regions and costimulatory domains, reporting potent anti-leukemia activity
without HSC toxicity in two xenograft models [84]. Wu et al. produced second-generation
anti-CD70 CAR-T cells with a 4-1BB costimulatory molecule with high cytotoxic activity
and activation ability in a MOLM 13 xenograft mouse model. However, despite promis-
ing results in vitro, such CAR-T cells do not completely eliminate leukemia cells in vivo,
suggesting the need either to generate a combinatorial CAR construct or to increase CD70
expression on leukemic cells before CAR-T cell exposure [85]. Along this latter line, Riether
et al. previously demonstrated that hypomethylating agents (HMAs) increase CD70 expres-
sion in LSCs through hypomethylation of the CD70 promoter, enhancing the efficacy of the
anti-CD70 antibody cusatuzumab in eliminating LSC in vitro and in vivo [86]. A phase I
study of anti-CD70 CAR-T cells for CD70 positive hematologic neoplasms, including AML,
is currently recruiting (NCT04662294).
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3.1.8. CD44v6

CD44v6 is the splicing variant 6 of CD44, a surface glycoprotein involved in leukocyte
activation and malignant transformation. Its expression is restricted to neoplastic cells,
where it is required for tumor growth, making it a good candidate for CAR-T cell therapy,
also considering that CD44 expression has been associated with a poor prognosis in AML
and MM [87]. In an immunocompromised mouse model, Casucci et al. demonstrated
that a second generation of T cells targeting CD44v6 mediated potent antitumor effects
against primary AML and MM while sparing normal HSCs and CD44v6-expressing ker-
atinocytes [88]. Monocytopenia was observed as the only hematologic toxicity. A phase
I/II clinical trial (NCT04097301) in R/R AML and MM with a single dose of anti-CD44v6
CAR-T cells after lymphodepletion with fludarabine and cyclophosphamide was prema-
turely terminated due to a low recruitment rate; no hematologic response was observed in
2/2 evaluable patients, and in one patient, CD44v6 CAR-T cells were detectable at day 14
and 21. Neutropenia, anemia and pneumonia were observed as off-target toxicities.

3.1.9. FLT3

FLT3 (Fms-like-tyrosine kinase 3) is a cytokine receptor belonging to the receptor
tyrosine kinase III. In the hematopoietic system it is expressed in myeloid progenitors,
in B-cells, in dendritic cells and in NK cells, and it is involved in stem cell mainte-
nance and differentiation. In AML, FLT3 internal tandem duplication (ITD) is found in
around 25% of patients and point mutations in the tyrosine kinase domain (TKD) in about
5–7% [89,90]. The mutated FLT3 kinase activates the PI3K/AKT, JAK/STAT5, and MEK/
ERK pathways and promotes leukemia progression [91]. FLT3 mutations have been as-
sociated with reduced survival [92]. On this basis, FLT3 is a potential target for CAR-T
therapy. In in vitro studies, the binding of a second-generation CAR-T cell with leukemic
cells induced the release of IFN-γ and IL-2 [93]. In mice, an inhibition of leukemic cell
proliferation with acceptable hematologic toxicity were observed [94]. Karbowski et al.
used cynomolgus monkeys to “mimic” the human microenvironment to test tolerability,
safety, and dose-dependent efficacy vs. toxicity [95]. At present, some clinical trials of
FLT3-directed CAR-T cells are recruiting, but results are not yet available.

3.1.10. NKG2D

Natural killer group 2D (NKG2D) is an activating receptor of T cells and NK cells
for recognition of abnormal cells (i.e., leukemic blasts). NKG2D interacts with MHC class
I related molecules (the MIC family or ULBP6 family). A broad expression of NKG2D
ligands has been found in hematologic malignancies, such as AML and MM, and in
solid tumors, but not in normal cells [96,97], thus making NKG2D a potential target for
CAR-T cell therapy in AML. Baumeister et al. tested anti-NKG2D CAR-T cells in a first-
in-human phase I clinical trial, observing a safe profile but no clinical responses [53].
Driouk et al. increased the efficacy of anti-NKG2D CAR-T cells in vitro by inducing ligand
upregulation with histone deacetylase (HDAC) inhibitors [98]. Sallman et al. recently
published the results of a multicenter open-label, dose-escalation phase I study of NKG2D-
directed CAR-T cells for R/R AML, MDS and MM. They reported a transitory response in
3/12 patients, with two of them later proceeding to allogeneic HCT; seven patients had
grade 3–4 treatment-related toxicity across all dose levels, suggesting the need for a combi-
natorial antigen targeted approach [54].

3.1.11. WT1

Wilms tumor 1 (WT1) is an oncogenic, zinc-finger transcription factor with an impor-
tant physiologic role in organ development, cell differentiation, proliferation and apop-
tosis [99]. In AML, WT1 overexpression has been reported in 70% of patients and seems
to be correlated with a poor prognosis [100]. Chapuis et al. treated 12 AML patients
relapsed after allogeneic HCT with anti-WT1 CAR-T cells; all of the patients responded,
with a relapse-free survival of 100% at a median of 44 months, compared to 54% in patients
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not receiving CAR-T cell therapy. Moreover, they observed long-term persistence of the
CAR-T cells [101].

3.1.12. ILT3

ILT3, or LILRB4, is an inhibitor of MHC class I immune activation, and structurally it is
like NK cells’ KIR receptors. ILT3 presentation by antigen-presenting cells (APCs) induces
CD4+ T helper cell anergy and CD8+ T suppressor cell differentiation. Expression of ILT3
has been observed in monocytic cells and in monocytic/monoblastic AML [102], where its
expression may change during disease progression and upon therapeutic pressure [103].
Preclinical in vitro and in vivo studies demonstrated the efficacy of an anti-ILT3 cell model
against ILT3+ AML cell lines [104]. An early phase I trial of anti-ILT3 CAR-T cells in R/R
M4-M5 AML is currently recruiting (NCT04803929).

3.1.13. Siglec-6

Siglec-6 is an adhesion molecule expressed on mast cells and granulocytes, in mucosal
lymphoid cells, and in placental syncytiotrophoblasts. Jetani et al. developed anti-Siglec-6
CAR-T cells with promising killing activity in AML cell lines [105]. A phase I/II clinical
study of anti-Siglec-6 CAR-T cells in R/R AML is active in China (NCT05488132).

4. Limitations and Challenges in CAR-T Cell Therapy

Many other molecules with variable expression in different AML subsets are under
in vitro investigation as potential targets of CAR-T cells. However, at present, none fulfills
all of the criteria for being an ideal target for immune therapy. Many are expressed only in
some AML subsets, and probably do not justify the costs of large-scale production; others
are partially expressed in normal HSCs, increasing the risk of on-target/off-tumor side
effects. Moreover, some leukemic antigens may be down modulated under therapeutic
pressure, increasing the possibility of antigen escape. The identification of newly formed
antigens that result from a mutation associated with or driven by AML itself would
represent the preferred target for CAR-T cells [106].

Technological advances, such as whole genome sequencing, and the development of
algorithms for epitope prediction, might facilitate the identification of targets potentially
suitable for immunotherapies. The Cancer Genome Atlas Research Network conducted a
comprehensive study to examine the mutational composition in AML, identifying several
recurrent mutations involved in leukemogenesis [107]. However, it must be underlined
once more that AML genomes are amongst those with the lowest mutational burden, and
very few neo-antigens can be expected [108]. Nonetheless, some neoantigens have been
identified, including mutations in the metabolic enzymes IDH1 and IDH2, present in about
20% of AML cases overall [109], to which immunogenicity has been demonstrated [110].
Even mutations of the NPM1 gene, one of the most frequent genetic alterations in AML,
have been shown to be immunogenic, inducing CD4+ and CD8+ T cell responses, becoming
potential candidate targets for immune therapy. The intracellular expression of these
antigens may represent a limitation, but Rafiq et al. generated a CAR construct against
WT1, thus demonstrating not only the possibility to extending CAR-T recognition beyond
extracellular antigens, increasing the number of potential leukemia-specific targets, but
also that these antigens can be harnessed for CAR-T cell therapy [111]. A different source
of neoantigens is dysregulated splicing, resulting in neo-isoforms distinct from the wild
type counterpart. Adamia et al. used genome-wide alternative splicing screening in a
cohort of AML cells, finding that approximately 29% of them expressed differently spliced
oncogenes, tumor suppressor proteins, splicing factors, and proteins involved in apoptosis,
cell proliferation, and spliceosome assembly; they concluded that aberrant splicing is a
common feature in AML, and that the splice variants may provide novel disease markers
and potential targets for small molecules or immune therapies [112]. An example of this
mechanism is the CD44 isoform, called the CD44v6 variant, discussed above. Splice variants



Biomedicines 2024, 12, 1194 9 of 17

of FLT3 and NOTCH2 have also been reported in over 50% of AML cases, but not in normal
hematopoietic progenitors [113].

Antigen loss or downregulation, used by AML blasts to escape immune surveillance,
is another cause of limited efficacy of CAR-T cell therapies. Strategies to enhance target
antigen expression are needed to improve the CAR-T cell response. Targeting multiple
antigens has been proposed as a mechanism to harness CAR-T cell activity. Bispecific CAR-
T cells, in which two or more CARs with distinct antigen-recognition domains are used, can
result in hypofunction and CAR-T cell exhaustion due to signaling excess and activation-
induced death [114,115]. Tandem CAR-T cells, in which the CAR consists of distinct
antigen recognizing domains and a single intracellular domain, may enhance therapeutic
efficacy [116], but they require CAR optimization to bypass the distance between the CAR
and target cells [117]. Mixing different CAR-T cells recognizing individual antigens might
overcome this limitation, but at extremely high production costs [118]. However, a trial of
therapy with a CD38/CD33/CD56/CD123/CD117/CCD133/CD34/Mucl-directed CAR-T
cell is currently recruiting patients at Zhujiang hospital in China (NCT03473457).

Moreover, leukemic cells can induce a permissive microenvironment by upregulating
inhibitory ligands that bind to checkpoint receptors on CAR-T cells [119], preventing their
function by inducing exhaustion and anergy [120,121]. Despite the success of immune
checkpoint blockade in solid tumors, only modest efficacy has been demonstrated in
early trials in AML [122,123]. The mechanism of poor efficacy of checkpoint inhibitors is
not well understood, but possibly their use in R/R disease or cases with high leukemic
burden may be an explanation. However, their combination with CAR-T cells could
enhance the response and improve T cell persistence. CAR-T cells have been designed to
block PD-1 through secreted single chain variable fragments (scFv), antibodies, shRNA,
dominant negative receptors and CRISPR/cas9 mediated knockout [124–126]; anti-PD-1
CAR-T cells are under investigation in B cell malignancies and solid tumors. Fan et al.
recently demonstrated, both in vitro and in xenograft models, the antileukemic activity of
B7-H3 CAR modified-T cells, which prolonged mouse survival without toxicity to normal
cells [127]. Lin et al. reported the enhanced cytotoxic effect of anti-CLL1 CAR-T cell therapy
in AML cell lines and in blasts from R/R AML patients [49]. Ma et al. described two cases
of R/R AML patients, relapsed after HCT and failing multiple salvage therapies including
CD38-directed CAR-T cells, that were successfully treated with PD1-silenced anti-CCL1
CAR-T cells: both patients achieved a molecular CRi 28 days after CAR-T cell infusion and
maintained continuous remission for 8 and 3 months, respectively [128].

Besides checkpoint inhibitor upregulation, leukemic cells evade immune surveillance
by producing immune-modulating enzymes such as arginase II, indoleamine 2,3 dioxyge-
nase and ectonucleotides, leading to the accumulation of immunosuppressive metabolites
and suppression of CAR-T cell proliferation and effector function [129]. Strategies to re-
balance the leukemia microenvironment by reversing the proinflammatory signals that
increase mesenchymal cells (MSC), myeloid-derived suppressor cells (MDSC) and T regula-
tory cells (Tregs) could counteract leukemia resistance. Anti-CD33 CAR-T cells target CD33
positive blast cells but also MDSC; third-generation CAR-T cells with point mutations in
the CD28 endodomain reduce IL2 secretion and consequently Tregs activity [130]. The
fourth-generation CAR-T cells, engineered to secrete IL7 and IL15, demonstrated high
anti-leukemia activity in preclinical animal models [131,132].

The lack of AML-specific antigens, the co-expression of targets by hematopoietic
progenitors and endothelial cells, and the long persistence of CAR-T cells account for the
prolonged myeloablation after CAR-T infusion, due to significant on-target/off-tumor toxi-
city; all of these make CAR-T cells an ideal bridge to allogeneic HCT. Besides pancytopenia,
the three principal expressions of CAR-T toxicity are: (a) CRS, a potentially life threaten-
ing inflammatory response characterized by fever, hypotension, tachycardia, respiratory
distress and multiorgan dysfunction [133,134]; (b) CRES, a CAR-T associated neurological
toxicity characterized by confusion, delirium, seizure, and cerebral edema [133,134]; and
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(c) CAR-associate hemophagocytic lymphohistiocytosis (carHLH), a rare complication
characterized by fever, cytopenia, hypertriglyceridemia and high ferritin levels [135].

Another challenge in AML is CAR-T manufacturing, as collection, modification and
expansion of autologous T cells is time consuming and complicated, considering the
aggressivity of the disease and the different peripheral T cell compositions, influenced by
the disease and previous treatment, which can affect CAR-T cell expansion, persistence and
efficacy [136].

5. Beyond CAR-T Cells

Considering the actual limitations of CAR-T cells, CAR-NK cells may represent a
valid alternative. NK cells are a subset of cytotoxic lymphocytes recognizing target cells
in the absence of MHC. One major advantage of CAR-NK cells is that autologous cells
are not required for their manufacture, and various source can be used, including the
NK92 cancer cell line, and thus “ready to use” CAR-NK cells can be manufactured through
mass production and infused into patients at any time. A second advantage is the mild
CRS and neurotoxicity, probably due to the difference in cytokine release upon cell activa-
tion [137]. Moreover, NK cells have multiple mechanisms to target leukemic cells beyond
the CAR pathway, including antibody-dependent cell-mediated cytotoxicity (ADCC) and
KIR-mediated killing activity. Finally, CAR-NK cells have a limited lifespan, reducing CAR-
related toxicity; a potential drawback may be the need for repeated infusions to prolong
remission. CD33 and CD123 are the most used targets, but recently CAR-NK cells directed
against NKG2D, CD70, CD38, and CLL1 have been generated and proved cytotoxic activity
in AML preclinical studies [138–141]. Many clinical trials of CAR-NK cell therapy are
currently recruiting; to date, only two of them have been completed with published results.
Tang at al. treated three R/R AML patients with anti-CD33 CAR-NK cells, with low toxicity
but progressive disease in all patients [48]. Huang et al. used anti-CD33 CAR-NK cells in
ten patients with R/R AML, with a 20% CR rate and low grade CRS [142].

6. Conclusions/Perspectives

CAR-T cell therapy in AML has not replicated the enthusiastic results obtained in
ALL and B cell lymphomas. Despite several in vitro and animal models proving good
efficacy against AML, results in patients are, to date, scarce and disappointing. The
variable expression of the most frequent targets and the negative effect of the leukemic
microenvironment justify, at least in part, the limited use of CAR-T cells in AML. It must
be underlined that AML kinetics are different from that of lymphomas and MM, and the
timing of CAR-T can heavily affect disease control. In addition, the manufacture of CAR-T
cells itself may be a challenge in patients with active disease due to the detrimental effects
of AML chemotherapies toward T cells. All of the in vivo studies have been performed
in R/R disease but it is arguable that the use of CAR-T cell therapy in an earlier phase of
disease may control minimal residual disease (MRD) and, possibly, increase the success rate.
Lastly, AML is a dynamic condition and a global immune approach, combining cellular
therapies and targeted small molecules, could represent a way to enhance the response
rates in this heinous disease.

In conclusion, we think that CAR-T cell therapy also has an exciting outlook in
myeloid neoplasms, though its efficacy and safety still require well-designed clinical trials
to define the optimal setting in which this new approach is most effective. In our opinion,
this is mandatory for a correct allocation of the limited financial resources, considering
the estimated increase in costs for CAR-T cell therapy, for the management of specific
toxicities of cellular therapies, and in view of the possible replacement of “conventional”
therapies, including allogeneic transplant, with CAR-T cells. This is utterly true in AML, a
heterogeneous disease with multiple mechanisms of immune escape, where many questions
still need an answer. For instance, which is the most appropriate antigen and what is the
most appropriate timing of CAR-T in the therapeutic project? Should CAR-T cells be used at
disease relapse, or in case of measurable minimal residual disease, as a bridge to transplant
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or as a maintenance therapy alternative to stem cell transplant? A second point still in need
of definition is about the timing of autologous T cell collection; considering the impact of
chemotherapies on T cell subpopulations, an early collection may preserve their number
and function. A further issue is the mitigation of CAR-T cell on target/off tumor toxicity,
mainly prolonged cytopenia, due to a lack of specificity of antigen expression in AML cells.
It should be investigated whether it is more effective to target neoantigens, rare and often
with low expression, or to employ a tandem/multitarget approach to better discriminate
leukemic and normal hematopoietic cells; furthermore, we should test in clinical trials if
is preferable to administer multiple infusions of low CAR-T cell doses, or to limit CAR-T
persistence by engineering “off switches” or “suicide genes” into the CAR construct.

A prompt but exhaustive response to these questions will contribute to better defining
CAR-T cell efficacy in the setting of AML, limiting the risks of regulatory non-approval
and, in case of the entrance of this novel therapy into the clinical scenario, aiding in the
identification of the correct patient, thus preventing an economic collapse of health systems.
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