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Abstract: The effect of biofuel blends on the engine performance and emissions of agricultural
machines can be extremely complex to predict even if the properties and the effects of the pure
substances in the blends can be sourced from the literature. Indeed, on the one hand, internal
combustion engines (ICEs) have a high intrinsic operational complexity; on the other hand, biofuels
show antithetic effects on engine performance and present positive or negative interactions that
are difficult to determine a priori. This study applies the Response Surface Methodology (RSM), a
numerical method typically applied in other disciplines (e.g., industrial engineering) and for other
purposes (e.g., set-up of production machines), to analyse a large set of experimental data regarding
the mechanical and environmental performances of an ICE used to power a farm tractor. The aim is
twofold: i) to demonstrate the effectiveness of RSM in quantitatively assessing the effects of biofuels
on a complex system like an ICE; ii) to supply easy-to-use correlations for the users to predict the effect
of biofuel blends on performance and emissions of tractor engines. The methodology showed good
prediction capabilities and yielded interesting outcomes. The effects of biofuel blends and physical
fuel parameters were adopted to study the engine performance. Among all possible parameters
depending on the fuel mixture, the viscosity of a fuel blend demonstrated a high statistical significance
on some system responses directly related to the engine mechanical performances. This parameter
can constitute an interesting indirect estimator of the mechanical performances of an engine fuelled
with such blend, while it showed poor accuracy in predicting the emissions of the ICE (NOx, CO
concentration and opacity of the exhaust gases) due to a higher influence of the chemical composition
of the fuel blend on these parameters; rather, the blend composition showed a much higher accuracy
in the assessment of the mechanical performance of the ICE.

Keywords: farm tractor; diesel engine; response surface method; biodiesel; bioethanol; kinematic
viscosity; engine performances; CO and NOx emissions; exhaust gases opacity

1. Introduction

1.1. Biodiesel and Bioethanol as Alternative Fuels

Biofuels are commonly considered one of the main paths towards a new sustainable paradigm in
transportation technologies. As stated by the World Energy Council, the definition of a sustainable
large-scale model in the sectors of energy production and transportation is based on three core
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dimensions: (a) energy security, (b) energy equity, and (c) environmental sustainability [1]. Biofuels
are able to positively tackle all of these three dimensions by helping to solve what is commonly known
as the energy trilemma [1]. In fact, due to their production technologies, their wide and different
biological origins, and their renewable nature, biofuels could ensure a high energy security and
equity [2]. Moreover, the use of biofuels as substitutes of fossil fuels is commonly associated with a
strongly-positive impact on environmental sustainability [3]. Indeed, thanks to their organic origin,
biofuels could encourage the shift towards an almost carbon-neutral transport system. Indeed whenever
biofuels are used, CO2 emissions are absorbed by the photosynthesis process of the biomass from
which they are obtained [4]. According to the European Commission report on the 2050 climate-neutral
economy strategy [5], transportation systems are responsible for around a quarter of greenhouse-gas
(GHG) emissions in the European Union. Hence, in order to reduce the amount of CO2 released in the
atmosphere, relevant changes in current transportation technologies need to be implemented.

Biodiesel, namely fatty acid methyl ester, has recently become the most widely-recognized
renewable biofuel [6]. Its physical and chemical characteristics make it suitable to be used in compression
ignition (CI) engines without any major modifications to current technologies [7,8]. In particular, the
biodiesel obtained through transesterification (the most common way to produce biodiesel [4]) is
able to ensure high-quality biodiesel suitable for operating CI engines [6]. Based on the feedstocks
origin, biodiesel can be categorized into four different groups [9]: (i) edible vegetable oils (soybean,
palm oil, etc.); (ii) non-edible vegetable oils (Jatropha curcas L., linseed, etc.); (iii) waste or recycled oils
(cooking oil, vegetable oil soapstocks, etc.); (iv) animal fats (beef tallow, pork lard, etc.). Edible oils
are known as first-generation biodiesel feedstocks; non-edible vegetable oils, waste or recycled oil as
well as animal fats, are regarded as second-generation biodiesel feedstocks. Algae-oil-based biodiesel
is instead considered a third-generation biofuel because of its peculiar origin, its high oil content,
and rapid biomass production [10]. In order to assess the use of biodiesel in internal combustion
engines the main chemical and physical properties of this fuel have to be experimentally investigated
conforming to current technical standards. The most important fuel properties which have a direct
impact on the combustion phenomena occurring in ICEs are: cetane number (ASTM D613); kinematic
viscosity (ASTM D445); density (ASTM D1298); calorific value (ASTM D240); flash point (ASTM D93);
pour point (ASTM D97); cloud point (ASTM D2500); oxidation stability (EN 14112); acid value (ASTM
D664); lubricity (ASTM D6079); carbon residue (ASTM D4530); iodine value (EN 14111), and sulphated
ash content (ASTM D874) [9]. It is interesting to notice that the reference testing conditions (i.e.,
temperature, pressure) of the cited norms are very different from the operating conditions occurring in
ICE combustion chambers and they may therefore not be completely representative of the dynamic
behaviour of the fuel pumping system and of the combustion process. However, such measurements
establish the standards in which generate scientifically sound comparisons and assessments.

Ethanol, perhaps the most common oxygenated liquid hydrocarbon fuel (together with methanol),
has been considered as an automotive fuel since the end of the 19th century [4] and has recently been
attracting increasing attention due to its renewable nature (bioethanol). As will be further discussed
below, the use of bioethanol in ICEs implies some controversial aspects, which have prevented its
spreading on the fuel market until now. It is nevertheless commonly considered a suitable biofuel
for CI engines when used as an additive for diesel and biodiesel. According to Thangavelu et al. [11],
bioethanol production can be classified based on the type of feedstocks used: (i) agricultural residues
(wheat straw, rice straw, etc.); (ii) woody biomass (industrial hemp, yellow poplar, and construction and
demolition wood waste); (iii) algae biomass (Chlamydomonas reinhardtii, microalgae, etc.). Bioethanol
production, especially when it relies on agricultural residues, represents a good opportunity for
the economic and social development of rural agriculture-based communities. At the same time,
controversial nutritional and ethical concerns must be voiced when dealing with the use of such
feedstocks: the production of bioethanol and biofuels in general must be carried out whilst ensuring
the equilibrium between land, water, and energy consumption in order to be considered sustainable [4].
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As concerns the physical and chemical characteristics of these alternative fuels, the aim is to
obtain properties as close as possible to traditional fossil fuels in order to facilitate the use of these
alternative fuels in ICEs with only minor modifications to the fuel pumping, distribution and injection
sub-systems. The most important characteristics of diesel oil, biodiesel and bioethanol are displayed in
Table 1, where typical reference values are reported [12,13].

Table 1. Diesel oil/biodiesel/bioethanol main physical and chemical properties and typical values [4,12,13].

Fuel Property Measurement Unit
Value

Diesel Oil Biodiesel Bioethanol

Cetane number - 52 51 6
Lower heating value MJ kg−1 42.5 37.5 28.4

Density @ 20 ◦C kg m−3 840 871 786
Viscosity @ 40 ◦C mPa s 2.4 4.6 1.2

Latent heat of evaporation kJ kg−1 250–290 300 840
Carbon content % (on mass) 86.6 77.1 52.5

Hydrogen content % (on mass) 13.4 12.1 13.0
Oxygen content % (on mass) 0.0 10.8 34.8
Sulphur content mg kg−1 10–30 <10 -

Boiling point ◦C 210–235 300–350 79
Flash point ◦C 52–96 120–170 12

1.1.1. Fuel Properties Effects in Compression-Ignition Engines

CI engines are the most widespread power-generation units in agricultural machines and
tractors [14]. The effects of the fuel properties on the combustion process are crucially relevant and
must be taken into great consideration when alternative fuels are used. The viscosity has a direct
effect on the fuel injection process. Since the fuel viscosity increases as the ambient temperature
decreases, when performing a cold start at low ambient temperatures the resulting higher viscosity of
the fuel causes poorer fuel atomization and vaporization, larger droplets, and a greater in-cylinder
penetration of the fuel spray [4,15–17]. High viscosity may also reduce fuel flow rates, thus affecting
the optimal functioning of auxiliary equipment such as the fuel feed pump [18,19]. The fuel density
increases as temperature decreases. The fuel injection process is also affected by the higher density
when performing a cold start at low ambient temperatures. The cetane number (CN) describes the
auto-ignition capabilities of the fuels used in a CI engine. A high CN indicates a quick ignition of the
fuel which in turn leads to a more complete fuel combustion and to a quicker start-up phase of the
engine. On the other hand, harmful NOx emissions are reduced when the CN decreases because of
the consequent ignition delay and the lower combustion temperature [20]. Water injection into the
combustion chambers of diesel engines [21] is a solution that has been proposed with the aim of curbing
the combustion temperature and, therefore, the NOx emissions. The evaporation characteristics
(boiling point, latent heat of evaporation) influence the spray structure and bear consequences on
the air–fuel mixture preparation [4]. The flash point (FP) temperature is the minimum temperature
(at a pressure of 101.3 kPa) at which the fuel ignites. Low FP values might represent issues for the
safety and a proper handling of fuels [4]. High oxygen fractions are related to higher fuel-combustion
temperatures and consequently to higher NOx-formation rates for diffusion flames [20].

1.1.2. Biodiesel and Bioethanol Use in Compression Ignition Engines

Several studies [22,23] state that biodiesel has positive effects on exhaust emissions of CI engines:
carbon monoxide (CO) is lowered up to 30–50 % depending on the share of biodiesel in the blend [24], as
well as hydrocarbons (HC) and particulate matter (PM). The main responsible for these positive effects is
the higher oxygen content and the lower hydrogen and carbon content compared to petro-diesel [6,24].
On the other hand, a variety of studies recognize [20] that biodiesel properties bring in negative effects
with respect to nitrogen oxides (NOx) emissions, whose substantial relative increase represents one of
the main cons of using biodiesel as a petro-diesel substitute [25]. Controlling NOx emissions is crucial
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in order to meet the EURO and TIER emission standards. Improvements in terms of NOx emissions
can be obtained by varying the biodiesel substitution rate in diesel-biodiesel blends [26], as well as
introducing small percentages of a third alcohol-based fuel (ethanol, methanol or fusel-oil [27]) to
produce ternary diesel-blends. The use of these ternary blends in diesel engines increases the brake
specific fuel consumption (BSFC) but it also decreases PM concentrations in the exhaust gases, which is
the greatest concern of traditional diesel engines [28]. Moreover, the effect of biodiesel and bioethanol
on the power output must be considered. It has been frequently observed that the engine power and
torque increase with the increase in biodiesel percentage in the blends [29]. Such behaviours should
be credited to the higher oxygen content, the higher biodiesel consumption, an advance of injection
timing and a shorter ignition delay time [29]. On the other hand, when bioethanol is introduced in
the fuel blend, the consequent decrease of the Lower Heating Value (LHV) is responsible for a drop
in the maximum power output levels [28]. However, different indications can be found in literature
showing that the benefits in terms of cold flow properties caused by the addition of bioethanol could
boost the power output levels [30]. Hence, when using ternary blends, the substitution of fuels
in the mixture should respect a trade-off between the de-rating of performance and the reduction
of polluting emissions. For example, in Shahir et al. [28] the best results have been obtained with
5%-ethanol blends: a small increase in BSFC is measured together with sensible reductions of PM,
HC, CO and CO2 emissions [28]. However, due to the complex fuel-interactions occurring in the
combustion of biodiesel-bioethanol mixtures, the effects on NOx emissions are still not clear. Some
studies register a NOx reduction [31,32], others report an increase in pollutant concentration [28,33].
These controversial results highlight the need for further investigation in terms of assessment of
emissions and performances by developing or applying numerical optimization methods. These tools
should allow the users to predict a priori the characteristics of a fuel blend and, above all, its effect
on the motor outputs (mechanical and environmental performances). In the explained terms, these
methods can be regarded to as predictive methods.

1.2. Emissions and Performances Prediction: Application of the Response Surfaces Methodology

The Response Surface Methodology (RSM), as extensively described by Bezerra et al. [34], is
a collection of mathematical and statistical techniques based on the fit of a polynomial equation to
the experimental data. It was first developed by George E. P. Box and K. B. Wilson in 1951 [35].
The final goal of the application of RSM is to describe in a mathematically simple and intuitive way
(with multilinear models only) the behaviour of a dataset in order to carry out statistical previsions.
A response of interest relies on several significant variables, and the aim of the method is to model
and optimise such response [36]. In the last decade, several researchers in the field of alternative fuels
began applying RSM to the modelling and optimization issues. A typical engine-related RSM analysis
involves engine parameters such as load, speed, fuel injection timing to reduce fuel consumption,
exhaust emissions and noise, and aims to improve engine performance [37–39] or to study the behaviour
of auxiliary organs [19]. A selection of works from the extensive review paper by Yusri et al. [36], and
how to proceed with RSM application in the field of biodiesel and bioethanol, is presented hereinafter.

Bose et al. [40] have applied a D-optimal RSM to a single-cylinder diesel engine (with
indirect-injection system) fuelled with diesel-ethanol mixtures. Engine load and ethanol concentrations
have been used as input parameters, while BSFC and NOx, CO and HC concentrations have been
set as output variables. RSM application has shown a high precision, with a R2 in the range of 0.958
(HC) and 0.983 (BSFC). Fang et al. [41] have applied a central composite design RSM to a Isuzu
4HK1-TC direct-injection medium-duty diesel engine fuelled with diesel-ethanol mixtures. Gross
indicated mean effective pressure and engine speed have been used as input parameters, while
CO2, HC, CO and NOx concentrations have been set as output variables. Pandian et al. [42] have
applied RSM to a twin-cylinder water-cooled diesel engine (with a direct-injection system) fuelled
with diesel-biodiesel mixtures. Injection timing, injection pressure and nozzle tip protrusion have been
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used as input parameters while Brake Thermal Efficiency (BTE), BSFC, smoke opacity and NOx, CO
and HC concentrations have been set as output variables.

RSM application has shown a high precision, with a R2 in the range of 0.939 (HC) and 0.976 (NOx).
The smoke opacity is a very interesting parameter related to the quality of fuel spray formation and
the quality of the combustion, easier to be obtained than PM gravimetric distribution and, for this
reason, investigated by many researchers. Although the different combustion modes of a CI engine
could result in the emission of elemental carbon and HC, thus impacting the correlation between soot
(filter smoke number) and smoke opacity, Chen et al. [43] demonstrated the correlation of these two
quantities for diesel oil with R2 = 95%. Ensor and Pilat [44] made and extensive study on the same
topic and found many numerical relationships. The opacimeter is also a test instrument required by
the UN regulation n. 24 concerning the approval of compression ignition engines [45]. In Ileri et al. [46]
a central composite design RSM was applied to a four-cylinder turbocharged diesel engine fuelled
with canola oil biodiesel. Engine speed and injection timing have been used as input parameters, while
brake power and torque, BTE, BSFC, exhaust gas temperature, light-absorption coefficient and O2,
NOx, CO and CO2 concentrations have been set as output variables. RSM application has shown a
high precision, with a R2 in the range of 0.926 (light-absorption coefficient) and 0.999 (brake torque).
Dhingra et al. [47] have applied a central composite design RSM to a single-cylinder diesel engine
(with direct-injection system) fuelled with diesel-biodiesel blends. Engine load, blending ratio and
compression ratio have been used as input parameters, while BSFC, smoke opacity and NOx, CO and
HC concentrations have been set as output variables. RSM application has shown a high precision,
with a R2 in the range of 0.953 (HC) and 0.995 (smoke opacity). Hassan Pour et al. [27] used the
RSM to perfume a multi-objective optimization of a diesel engine fuelled with a ternary blend of
diesel-biodiesel-fusel oil. The blend composition, the engine speed (rpm) and the engine load (%)
have been used as input parameters to assess power, torque, BSFC, and some emission parameters
(NOX, UHCs, CO, and CO2) of the ICE. Through RSM a blend of 5% fusel oil, 5% biodiesel, and 90%
petro-diesel, and an engine speed of 2026 rpm at 46 % load were predicted to be optimal. Through the
many response functions, the same authors also predicted the values of delivered torque (14.2 Nm),
power (3.37 kW), and the BSFC (356.9 g (kW h)−1).

These and other [36] major findings from the literature suggest that the application of the RSM
to study the properties of alternative fuels and their effects on the performance of ICE is strongly
recommended for optimization and modelling activities, and in particular when the aim is to carry out
a sensitivity analysis of the input data (e.g., the fuel composition and properties, the engine operating
conditions) and the output parameters (the ICE performances and emissions). In order to apply the
RSM in the most adequate way, it is necessary: (i) to choose an experimental design, (ii) to fit an
adequate mathematical function, and (iii) to evaluate the quality of the engine model in relation to the
experimental data obtained [36]. If such this procedure is properly applied, high-accuracy prediction
models can be obtained.

1.3. Aims and Novelty of this Study

The first aim of this study is to demonstrate the effectiveness of a mixed experimental-numerical
approach, based on the RSM for data processing, in the investigation of the operation of a particularly
complex system such as an internal combustion engine fuelled with different biofuels blends. Indeed,
an ICE consists of several devices whose behaviour can change according to the properties of the fuel.
The interactions between the many possible influencing parameters are rather hard to grasp, and it is
difficult to define a single or simplified mathematical relationship between these parameters and the
engine performance and emissions. A first analysis is carried out to assess the effect of the different
shares of biofuel on the engine performance (torque and BSFC).

Secondly, the present study intends to investigate whether the kinematic viscosity at the
temperature stated by international norms (40 ◦C in this case, hence not necessarily linked to
the combustion-chamber conditions yet easily and quickly measured with proper equipment) could be
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a useful parameter for indirectly estimating some performance parameters related to the engines of
agricultural machines. Overall in this study, specific attention has been devoted to the engine toque,
the hourly fuel consumption, the NOx and CO concentration, and the opacity of the exhaust gases.

The relevance of this study from a practical point of view is demonstrated by the easy application
of the models and the simple applicability of the methodology; indeed, few and easily-accessible
input parameters are required to handle the mathematical relationships presented in this work. Also
unexperienced users will be able to obtain reliable forecasts of engine performance and emissions
when an ICE is fuelled with alternative fuel blends without the need to assess the detailed and complex
behaviour of each single sub-component. By doing so, it will be possible to apply this method also
to other fuel blends and/or to other CI motors, regardless their type (e.g., direct/indirect injection,
atmospheric/turbocharged) and size (i.e., light/heavy-duty).

2. Materials and Methods

2.1. Experimental Setup

The experimental procedure consisted of several tests on an agricultural tractor engine and aimed
to record the engine performance as well as the main polluting characteristics of the exhaust gas within
the full operating-range of the engine. The tests were performed on a “T4020V” farm tractor by New
Holland Agriculture (Torino, Italy). The machine was equipped with a 4-cylinder 3200-cm3 diesel
engine with direct fuel injection system (Table 2).

Table 2. Main properties of the New Holland T4020V farm tractor.

Description Specification

Engine (manufacturer; type; building year; total displacement) New Holland; F5A E9484A*A001; 2009; 3200 cm3

Cylinders (number; configuration) 4; straight

Fuel-system type (features and accessories) With: direct injection, rotary fuel-pump, turbocharger,
intercooler, mechanical speed-regulator

Nominal gross power at the engine (value, engine speed) 47.7 kW (according to ISO/TR 14396:1996) @ 2300 rpm

Maximum torque (value; engine speed) 290 Nm @ 1250 rpm

The tractor was fuelled with five fuels: pure diesel oil, two binary and two ternary blends of diesel
oil (D), biodiesel (B; Table 3) and bioethanol (E; Table 3).

Table 3. Main properties of the diesel oil, the biodiesel and the bioethanol used in the tests.

Fuel Property Value Unit Test Method

Diesel oil

Density at 15 ◦C 820.0–845.0 kg m−3 EN ISO 12185
EN ISO 3675

Viscosity at 40 ◦C 2.0–4.5 mm2 s−1 EN ISO 3104

Flash point >55 ◦C EN ISO 2719

Cetane number >51 -
EN ISO 5165

EN 15195
EN 1614

Copper strip corrosion (3 h at 50 ◦C) Class 1 - EN ISO 2160

Lubricity, correct wear scar 460 µm EN ISO 12156

Biodiesel

Density at 15 ◦C 883.1 kg m−3 EN ISO 3675

Viscosity at 40 ◦C 4.1–4.7 mm2 s−1 EN ISO 3104

Flash point >160 ◦C EN ISO 3679

Cetane number >51 - EN ISO 5165

Water content 210 mg kg−1 EN ISO 12937

Ester content 98.5 % (on mass) EN 14103
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Table 3. Cont.

Fuel Property Value Unit Test Method

Bioethanol

Ethanol content 99.3 % (on mass) EN 15721

Water content 0.150 % (on mass) EN ISO 15489

Total acidity (expressed as acetic acid) 0.001 % (on mass) EN ISO 15491

Electrical conductivity 0.45 µS cm−1 EN ISO 15938

Sulphur content 0.3 mg kg−1 EN ISO 15486

pH 8.6 - EN 15490

Specifically, these blends were: B15 (85% D, 15% B in volume), B25 (75% D, 25% B), B15E3 (82%
D, 15% B, 3% E) and B25E3 (72% D, 25% B, 3% E). An external tank was used during these tests for
rapid fuel-substitution and for the measurement of the instant consumptions; a description of such
this apparatus is available in [48]. The kinematic viscosity of the fuels involved were measured with
a “Simple VIS” portable automated viscometer by Cannon Instrument Company (State College, PA,
USA) [49]. A total of 73 measurements have been performed on the fuel samples (from 9 to 19 samples
per fuel mix at the standard temperature of 40 ◦C, see Table 4).

Table 4. Kinematic viscosity of the used fuel blends.

Denomination of the
Fuel/Blend D (%) B (%) E (%)

Kinematic Viscosity at 40 ◦C (mm2 s−1)

Mean Value Std. dev.

D100* 100 0 0 2.936 0.148

B15 85 15 0 2.912 0.062

B25 75 25 0 3.265 0.131

B15E3 82 15 3 3.073 0.129

B25E3 75 25 3 3.264 0.270

* pump diesel oil.

During the tests at the Power Take-Off-dynamometer (PTO-dyno), the following variables
were measured:

• the rotational speed, the torque at the rear PTO of the tractor and the hourly fuel consumption;
• the NOx concentration (ppm), the CO concentration (ppm) and the opacity (m−1) of the

exhaust gases.

Each test at the dyno started only after engine warm-up and included a classic test as prescribed
by the Organization for Economic Co-operation and Development (OECD-like bench test) with the
fuel pump rack fully opened [50], i.e. a test starting from the maximum engine speed with a rising
brake-force controlled by the experimenters. Although the wide-open throttle prescription does not
correspond to the most common operation mode of an engine, this test condition is a usual prescription
also in international norms (ECE R24 [45], ECE R120 [51], SAE J1349 [52]), aimed at obtaining
experimental data that are easily reproducible and fully comparable. Thanks to an instantaneous
reading of the PTO speed, it was possible to modulate the braking force applied by the dyno so as to
stabilize the tractor at six speeds of rotation (300-400-500-600-700-800 rpm at the PTO, corresponding to
822-1096-1370-1644-1918-2192 rpm at the engine), controlled by the dyno. Each operating condition was
kept constant for at least 2 minutes to allow the gas analyser instruments to collect a sufficient number of
measurements in steady-state conditions. A total of 30 experimental cases were studied, corresponding
to six different speeds per each of the five above-listed fuel blends. The trials were all performed on
the same day to have minimal influencing effects of the external environmental conditions, i.e.: an
atmospheric pressure of 99 kPa, an ambient temperature of 301 K, a relative humidity of 42% (hence
the air-intake correction factor according to [53] is 0.9788). All the measurements were performed
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thanks to the mobile testing equipment for agricultural tractors that is part of the “Laboratory for
Agroforestry Innovation” of the Free University of Bozen-Bolzano. In particular:

a “SIGMA 50 Mobile” electric-generator PTO-dyno by N. J. Froment & Co. Ltd. (Easton-on-the-Hill,
East Northamptonshire, UK) [54] was used to measure the engine torque and power at the
above-mentioned rotational speeds (Figure 1);

• the NOx and CO concentration in the exhaust gases [55] at full-load and at six different speeds
was measured with a “Vario Plus Industrial” gas analyser by MRU Instruments (Houston, TX,
USA) [56]; the gas samples (360 in total; 12 per each of the 30 fuel and speed combinations of
values) were taken only after the engine speed was stable at each set value;

• the smoke opacity of the exhaust gases (related to the soot measured by the filter smoke
number [43,44]) was measured through a “OpTrans 1600” optical Diesel smoke-meter by MRU
Instruments [45,56], conforming to NF R 10-025, PTB EO 18-09, ISO 11614 draft and ECE R24,
Annex 8/9 specifications; also in this case, the gas samples (90 in total; three per each of the
30 fuel-and-speed combinations of values) were taken only after the engine speed was stable at
each set value; the output of this instrument, based on the photometric absorbance principle, is a
measurement of the smoke density expressed as absorption coefficient from 0.00 to 9.99 m−1.
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vs. speed” (d) and “power vs. speed” space (e). 

Figure 1. Examples of outputs from the PTO-dyno during a (speed-controlled) manual test on the New
Holland T4020V farm tractor fuelled with pure pump diesel oil (D100); (top) temporal trends of PTO
speed (a), torque (b) and power (c); (bottom) positioning of the experimental points in a “torque vs.
speed” (d) and “power vs. speed” space (e).

It is worth mentioning that the emissions of NOx and CO are supplied by the measurement
equipment in terms of ppm on a volume basis [12,24,46,57–60]. The data elaboration and the following
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RSM have been carried out using the data with this measurement unit rather than g (kW h)−1, which
is a quantity that can supply an indication of the emissions in compliance also with the indications
of the international norms on pollutants (EURO, TIER). If not disposing of a mass flowmeter for the
exhaust gases, it is however possible to have an indirect indication of the emissions in g (kW h)−1.
The conversion procedure between ppm and g (kW h)−1 is rather straightforward once the operating
conditions and the power output of the engine are known, as reported in the results section of this
work. Specifically, a paper by Pilusa et al. [61] supplies the correlations required for the conversion
and indicates some practical conversion factors for heavy-duty diesel engines such as the engines
equipping agricultural machines.

2.2. The Response Surface Methodology

One of the key points of this experimental procedure is to avoid any specific modification to
the power unit when the fuelling is changed, hence no re-calibration of the mechanical and of the
exhaust gas cleaning after-treatment systems have been performed in the tested tractor. Since the
engine responses are not directly proportional to the fuel feed change, it is not possible to define direct
analytical correlations based on the physics of the system. Therefore, having simple mathematical
relationships at the users’ disposal to assess the machine outputs in case of use of alternative fuel
blends can be very interesting from a practical point of view. In order to assess and overcome these
limitations, a very practical but effective methodology based on a statistical analysis was adopted.
Specifically, for each of the investigated variables, an interpolating function was derived to estimate
the value of the independent variables (here: the engine torque, the hourly consumptions, the NOx and
CO concentration and the opacity of the exhaust gases) by using the values of the dependent variables.
From a formal point of view, the final formulation, and hence the mathematical relationships among
the quantities, is completely independent from the physics of the represented process, being mainly
oriented to obtain numerically-acceptable results within the validity domain and therefore a reliable
prediction ability.

All the collected data concerning the mechanical and environmental performances of the engine
have been elaborated statistically. After an Analysis of Variance (ANOVA) test, aimed at highlighting
the parameters of influence on the above-indicated variable (response), the subsequent application of
the Response Surface Methodology (RSM) allowed the calculation of the regression function coefficients
that describe the effects of the statistically-significant independent variables on the response [62]
(Figure 2).
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Figure 2. General procedure of use of experimental data to build a model later useful to indirectly
forecast the values of an independent variable y, given the values of m dependent variables xi.
(parallelograms/rectangles: input/output quantities; ellipses: tools involved in the computations).
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The RSM is a very effective numerical tool that allows the calculation of an explicit polynomial
regression-function from a set of input data that is the best approximation, in a limited validity domain,
of the real function governing the phenomenon under study [63–67]. As opposed to other mathematical
tools such as artificial neural networks [68], the RSM gives as a result an explicit polynomial function
that is the first part of the Taylor series of an unknown real function f(xi). This polynomial function
can be used to study and/or optimize a system by making some quantitative predictions about the
involved quantities. Design-Expert 7.0.0 software (Stat-Ease, Minneapolis, MN, USA) was used for
these calculations.

If y and xi are, respectively, a generic response (i.e., an independent variable) and a generic
numerical factor (i.e., a dependent variable), non-coded (i = 1 to m, with m the number of investigated
variables; m ≥ 1), a0 is the interception coefficient, and ai, aii, aiii, aij and aijk (i , j , k) are respectively the
coefficients of the linear, quadratic, cubic, 2nd-order and 3rd-order interaction terms, the most generic
regression model used in RSM (i.e., a “full-cubic model”) is:

y(xi; i = 1 to m) = f (xi) = a0 +
m∑

i=1

aixi +
∑

1≤i≤ j≤m

ai jxix j +
∑

1≤i≤ j≤k≤m

ai jkxix jxk (1)

For the present study, after analysing the data, the software automatically selected for most of the
models a (multi-) linear 2nd-order model with interactions (more precisely, a “full-quadratic model”)
as starting point to build the mathematical model for each of the investigated responses:

y(xi; i = 1 to m) = f (xi) = a0 +
m∑

i=1

aixi +
∑

1≤i≤ j≤m

ai jxix j (2)

The validity domain of each polynomial function f is given by the lower and upper values of each
independent variable xi (i = 1 to m) and, therefore, is the following hyperspace:

Dom( f ) =
m∏

i=1

(xi,min; xi,max) ⊆ <m (3)

The ANOVA, which is part of this methodology, allows the analyst to identify the most significant
factors and polynomial terms, thus operating a partial simplification of the resulting polynomial
models based on the p-values (threshold value: 0.05).

2.3. System Modelling

The need to introduce here an approach based on the RSM rather than on other tools (e.g., numerical
simulations) follows the awareness that the determination of the operative point of a generic machine
equipped with an internal combustion engine is not simple since the power conversion occurring
inside the combustion chamber is very complex (Figure 3). Indeed, numerical simulations require
more technical and physical details to model the involved phenomena. Indicatively, it is necessary
to know and to model all the parameters indicated in Figure 3, so this approach requires a complete
knowledge of the machine, including several parameters typically known only by the manufacturer or
by disassembling the machine. Instead, RSM allows to easily obtain a precise prediction of the value of
some quantities that represent the global expression of the operation of the machine (e.g., the torque or
the NOx emissions). Indeed, by writing a sort of (polynomial) “transfer function” that characterizes the
system “tractor” under consideration (i.e., with its specific engine, auxiliaries, settings, maintenance
history, age), it is possible to predict the outputs even in correspondence to input values different from
the values used to set up the transfer functions coefficients (i.e., the test conditions) and plot complete
output curves/surfaces. While the approach and its application procedure are absolutely general and
applicable to every farm tractor, the so-developed polynomial models, characterized by a series of
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numerical features (i.e., the polynomial order, the selected and remaining terms after a backward
elimination leaded by an ANOVA, the values of each coefficient) are specific for the considered tractor.
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Figure 3. Detailed list of all technical characteristics, machine settings and other quantities (independent
variables; on the left) fixing the operative point of a tractor involved in performing a task, defined by
the engine speed and a certain level of power delivered by the engine, of consumptions, of CO, NOx

and particulate matter in its exhaust gases (dependent variables; on the right).

Much of the variability of outputs that can be recorded during the experiments on real machines
is due to a variety of structural characteristics of the machines under test. By carrying out more tests
on the same day and on the same machine as in this study, many parameters of influence (specifically:
the engine structural characteristics, the fuel system settings, the environmental conditions) remain
constant. Furthermore, the test protocol of OECD standards reduces the variability of the operating
settings as it requires the fuel pump rack fully-opened (i.e., the accelerator position at 100%) to be
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able to detect the properly-said “engine characteristic curves”, i.e. the limit curves of the motor in its
operating range.

Among all possible factors of influence on the operating point of a tractor, this study aimed at
evidencing the effect of the fuel mix composition by varying the operative conditions in terms of
applied load/engine speed (numerical factor controllable by the experimenters through the PTO-dyno).
Specifically, the here-reported analyses considered the following characteristics to characterize the
fuel blends:

1. The percentage parts of the three base fuel-components (numerical factors controllable by the
experimenters; biodiesel ranges from 0% to 25%, bioethanol can assume only two possible values:
0% or 3% to avoid damages to the fuel system and the engine); please notice that the percentages
of the three components composing the fuel mixes are not fully independent from each other as
their sum must be always 100; therefore, one of these was excluded by the analyses as it is not
properly an “independent variable”; the proposed numerical models have therefore only two of
three fuel percentages;

2. The absolute kinematic viscosity, measured at the reference temperature of 40 ◦C, as prescribed
by international standards [69–73].

It is worth mentioning that the reference temperature for viscosity, although quite far from
the injection temperature of the fuel in the combustion chamber, allows the comparison among
different mixes and the formulation of hypothesis on its influence in the spray formation, hence on the
performances. Indeed, viscosity at the reference temperature of 40 ◦C is used in the characterization of
all the fuel samplings, thus granting a metrological uniformity. Then again, the fuel viscosity in the
injection conditions is not known; it is not the object of any measurement in the literature and it is
hardly measurable. Even if available, it would not be significant in the construction of an empirical
predictive model. Vice versa, the temperature at 40 ◦C can be measured with commonly-available
instruments. A total of 30 experimental cases were investigated: six engine speeds with five different
fuels/viscosity values.

2.4. Numeric Models of the System Making Use of the Blend Composition

During the PTO tests, the system tractor, fuelled with one of the presented fuels, stabilizes on a
different engine speed every time a new value of the load (expressed as braking torque) is applied by
the dyno; therefore, the following equation holds:

n(rpm) = f1[T(Nm); B(%); E(%)] (4)

Thanks to the subsequent elaborations of the quadruple [n(rpm);T(Nm);B(%);E(%)] made with
RSM, it is possible to obtain a first model of the torque as a function of the engine speed and the blend
composition (expressed through its percentages of biodiesel and ethanol), to be used to make reliable
forecasts:

T(Nm) = g1[n(rpm); B(%); E(%)] (5)

During the same experiments at the PTO-dyno, the hourly consumption, the NOx concentration,
the CO concentration and the opacity of the exhaust gases by varying the value of the load (i.e., braking
torque) applied by the dyno have also been detected, formally stating the following correlations:

ch
(
g · h−1

)
= f2[T(Nm); B(%); E(%)] (6)

NOx(ppm) = f3[T(Nm); B(%); E(%)] (7)

CO(ppm) = f4[T(Nm); B(%); E(%)] (8)

Opacity
(
m−1

)
= f5[T(Nm); B(%); E(%)] (9)
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Considering the expression for the torque (Equation 5) above, it is possible to correlate each of the
above-listed variables directly with the engine speed, thus raising the predictive capabilities of the
so-created models by using a parameter very easy to detect: ch

(
g · h−1

)
= f2[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]
⇒

⇒ ch
(
g · h−1

)
= g2[n(rpm); B(%); E(%)]

(10)

{
NOx(ppm) = f3[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]
⇒

⇒ NOx(ppm) = g3[n(rpm); B(%); E(%)]

(11)

{
CO(ppm) = f4[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]
⇒

⇒ CO(ppm) = g4[n(rpm); B(%); E(%)]

(12)

 Opacity
(
m−1

)
= f5[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]
⇒

⇒ Opacity
(
m−1

)
= g5[n(rpm); B(%); E(%)]

(13)

At the end of these elaborations, this approach allows to use a simple tool to infer the desired
outputs, as represented in the following Figure 4.

Energies 2019, 12, x FOR PEER REVIEW 13 of 46 

 

Considering the expression for the torque (Equation 5) above, it is possible to correlate each of 436 
the above-listed variables directly with the engine speed, thus raising the predictive capabilities of 437 
the so-created models by using a parameter very easy to detect:  438 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]%;%;rpmhg

%;%;rpmNm
%;%;Nmhg

2
1

1

2
1

EBngc

EBngT
EBTfc

h

h

=⋅






=
=⋅

−

−

 (10)

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]%;%;rpmppm
%;%;rpmNm

%;%;Nmppm

3

1

3

EBngNO
EBngT

EBTfNO

x

x

=






=
=

 (11)

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]%;%;rpmppm
%;%;rpmNm

%;%;Nmppm

4

1

4

EBngCO
EBngT

EBTfCO

=






=
=

 (12)

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]%;%;rpmm

%;%;rpmNm
%;%;Nmm

5
1

1

5
1

EBngOpacity

EBngT
EBTfOpacity

=






=
=

−

−

 (13)

At the end of these elaborations, this approach allows to use a simple tool to infer the desired 439 
outputs, as represented in the following Figure 4. 440 

 441 
Figure 4. Variables considered in the assessment of the performances of the tested tractor (model 442 
including the composition of the fuel blends). 443 

2.5. Numeric models of the system making use of the viscosity 444 
The blend viscosity at 40 °C depends on the blend composition and can be generically 445 

expressed by a further equation by using, as independent variables, the percentages of biodiesel and 446 
bioethanol in the blend, as follows: 447 

( ) ( ) ( )[ ]%;%smm 6
12 EBf=⋅ −ν  (14)

One of the key aspects of this study is to propose a correlation between the four explicated 448 
responses and the viscosity (Figure 5). Four new formulations have been obtained, as follows: 449 

Complex 
interactions 

• Torque T (Nm) 

DEPENDENT VARIABLES (RESPONSES) 

• NOx concentration (ppm) 
• CO concentration (ppm) 
• Exhaust gases opacity (m-1) 

Mechanical outputs (at the PTO) 

Environmental outputs (at the exhaust gas) 

RSM 

• Engine speed n (rpm) 
• Blend composition:  

D(%), B(%), E(%) 

Inquired (numerical) 

INDEPENDENT VARIABLES (FACTORS) 

• Hourly fuel consumptions ch (g h-1) 

Energy requirements 

Figure 4. Variables considered in the assessment of the performances of the tested tractor (model
including the composition of the fuel blends).

2.5. Numeric Models of the System Making Use of the Viscosity

The blend viscosity at 40 ◦C depends on the blend composition and can be generically expressed
by a further equation by using, as independent variables, the percentages of biodiesel and bioethanol
in the blend, as follows:

ν
(
mm2 · s−1

)
= f6[B(%); E(%)] (14)

One of the key aspects of this study is to propose a correlation between the four explicated
responses and the viscosity (Figure 5). Four new formulations have been obtained, as follows: T(Nm) = g1[n(rpm); B(%); E(%)]

ν
(
mm2 · s−1

)
= f6[B(%); E(%)]

⇒

⇒ T(Nm) = g6
[
n(rpm); ν

(
mm2 · s−1

)] (15)
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ch

(
g · h−1

)
= f2[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]

ν
(
mm2 · s−1

)
= f6[B(%); E(%)]

⇒

⇒ ch
(
g · h−1

)
= g7

[
n(rpm); ν

(
mm2 · s−1

)] (16)


NOx(ppm) = f3[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]

ν
(
mm2 · s−1

)
= f6[B(%); E(%)]

⇒

⇒ NOx(ppm) = g8
[
n(rpm); ν

(
mm2 · s−1

)] (17)


CO(ppm) = f4[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]

ν
(
mm2 · s−1

)
= f6[B(%); E(%)]

⇒

⇒ CO(ppm) = g9
[
n(rpm); ν

(
mm2 · s−1

)] (18)


Opacity

(
m−1

)
= f5[T(Nm); B(%); E(%)]

T(Nm) = g1[n(rpm); B(%); E(%)]

ν
(
mm2 · s−1

)
= f6[B(%); E(%)]

⇒

⇒ Opacity
(
m−1

)
= g10

[
n(rpm); ν

(
mm2 · s−1

)] (19)
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Figure 5. Variables considered in the assessment of the performances of the tested tractor (models
including the kinematic viscosity of the fuel blends).

The validity domain of every model presented in this study is the hyperspace defined by the
Cartesian product of the following intervals:

nPTO(rpm) ∈ [300; 800]⇔ n(rpm) ∈ [822; 2192]
B(%) ∈ [0; 25]
E(%) ∈ [0; 3]

ν
(
mm2s−1

)
∈ [2.912; 3.265]

(20)

2.6. Validation of Numerical Models

Analogously to what is commonly done for neural networks [68,74], the acquired data were
randomly subdivided into two subsets: 80% of the experimental cases (i.e., 24 cases) were used for
building a first set of models (one per response), the remaining 20% of the experimental cases (i.e.,
6 cases) were used to verify the predictive capabilities of the different models built from the other
24 cases. By doing so, it was possible to validate the proposed approach also for the present study (i.e.,
on data of an engine fuelled with biofuel blends). The different models were evaluated in terms of:
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1. fitting of the initial set of data (through the coefficient of determination, the adjusted coefficient of
determination, the average relative fitting error, the mean squared error) and

2. predictive capabilities on the values of the several responses for the six verification cases (through
the average relative prediction error and the mean squared error).

Below there are the six experimental cases randomly chosen for the validation of the models
(control cases). Each is identified by a 3-tuple listing the engine speed (rpm), the biodiesel content (%),
the bioethanol content (%), or by the equivalent 2-tuple listing the engine speed (rpm), the kinematic
viscosity at the reference temperature of 40 ◦C (mm2 s−1):

• (822; 15; 0) ≡ (822; 2.912), i.e. a fuelling with B15 at 822 rpm;
• (1096; 0; 0) ≡ (1096; 2.936), i.e. a fuelling with D100 at 1096 rpm;
• (1370; 15; 3) ≡ (1370; 3.073), i.e. a fuelling with B15E3 at 1370 rpm;
• (1644; 25; 0) ≡ (1644; 3.265), i.e. a fuelling with B25 at 1644 rpm;
• (1918; 25; 3) ≡ (1918; 3.264), i.e. a fuelling with B25E3 at 1918 rpm;
• (2192; 25; 3) ≡ (2192; 3.264), i.e. a fuelling with B25E3 at 2192 rpm.

The relative error of fitting or prediction (for the six control cases) for the i-th case (identified
by the 4-tuple [n(rpm);T(Nm);B(%);E(%)] or 3-tuple [n(rpm);T(Nm);v(mm2s-1)] has been calculated
as follows:

εr,i(%) =
pi −mi

mi
· 100 (21)

where:

• pi is the prediction of the model for the selected quantity in the i-th case;
• mi is the experimental measurement of the selected quantity in the i-th case.

After validating the method, the RSM was applied once again to the whole dataset (30 cases) to
give the reader an extended, more complete, model for each of the investigated responses (Figure 6).
Then these models were also evaluated using the same metrics (e.g., the coefficient of determination
and the average relative fitting error) to have an indication of the enhanced fitting capabilities given by
the addition of six more points to the initial set of 24.

3. Results and Discussion

The following paragraphs show the final correlations found with the proposed numerical model.
The mathematical relationships are obtained using the set of selected terms resulting from the systematic
backward-elimination of not-significant terms (one by one). This process was performed as follows:
after each single elimination an ANOVA was performed, and the new p-values were calculated.
On such basis it was possible to decide whether to proceed with the selection of factors until a set of
solely significant factors which would then appear in the final regression model.
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Figure 6. Procedure followed in the application of the Response Surface Methodology (RSM) approach
to the experimental data.

3.1. Mechanical and Environmental Outputs as a Function of the Fuel Blend Composition

3.1.1. Engine Torque as a Function of the Fuel Blend Composition

The following Table 5 shows the numerical regression models, based on 24 and 30 experimental
cases respectively, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are
used without any conversion, scaling or non-dimensionalization. The following Figures 7 and 8 give
a graphical (2D/3D) representation of these equations, allowing the visualization of the trends and
absolute values.

Table 5. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the engine torque.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

T [Nm] = +749.85629 +
0.86775 · B [%] −5.46458 · E [%]

+ 8.48014 · 10−3 · n [rpm]
−6.15737 · 10−5 · {n [rpm]}2

T [Nm] = +751.73874+0.77198 · B
[%]−5.63968 · E [%] + 9.55847 · 10−3 · n

[rpm]−6.24263 · 10−5 · {n[rpm]}2

Fitting (on available
cases)

R2 0.9918 0.9930 (+0.0012)

Adj. R2 0.9901 0.9918 (+0.0017)

Ave. error 0.07% 0.00% (−0.07%)

Mean sq. er. 0.01% 0.01% (+0.00%)

Prediction (on 6 cases) Ave. error 0.38% -

Mean sq. er. 0.01% -

Within the validity domains, the two resulting numerical models can be used to predict the
engine torque at the different rotational speeds and varying the fuel mix composition by simply
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substituting the values of the input quantities. This is what has been done with the first model and the
six control cases.
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represented surface and hence are not visible). 526 

Figure 7. Contour plots (top) and 3D-graphs (bottom) of the engine torque as a function of the biodiesel
percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left) and the
3% (right) of bioethanol in the blend (NB: the values of torque are reported as labels directly on the
contours). The same pictures show also the positions of the experimental measurements (black dots
positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

Both the models resulting from the backward selection of terms are quadratic even if there is only
one quadratic term related to the engine speed. For this reason, by observing Figures 7 and 8, the
resulting response surface is a single-curvature surface.

With regards to only the cases used for the model building phase, the predictive capability of both
the models is very high: the R2 is higher than 0.9918 and the adjusted R2 is higher than 0.9930. When
considering the six control cases excluded in the building of the first model, it is possible to confirm the
very high predictive capability of this model: for such cases the average error (0.38%) and the mean
square error (0.01%) are very low.

The prediction of the engine power at the different rotational speeds and the variation of the fuel
mix composition is simple, starting from the same equation of the torque. The predicted value of
the torque should be multiplied by the engine speed expressed in rad s−1. For the above-mentioned
reasons, no model for the power has been calculated.
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positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

3.1.2. Hourly Fuel Consumption at Full Load as a Function of the Composition of the Fuel Blends

The following Table 6 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are
used without any conversion, scaling or nondimensionalization. The following Figures 9 and 10 give
a graphical (2D/3D) representation of these equations, allowing the visualization of the trends and
absolute values.

Table 6. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the hourly fuel consumption at full load.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

ch[g h−1] = −561.22973 +73.05882 ·
B[%]−725.37929 · E[%] +8.73898 ·

n[rpm] +14.39175 · B[%] ·
E[%]−0.041545 · B[%] · n[rpm] +0.56033 ·
E[%] · n[rpm] −1.59042 · 10−3 · {n[rpm]}2

ch[g h−1] = −1531.53212 +96.13334 ·
B[%]−229.40642 · E[%] +10.17610 · n[rpm]
−0.061286 · B[%] · n[rpm] +0.36366 · E[%]
· n[rpm] −2.02194 · 10−3 ·{ n[rpm]}2

Fitting (on
available cases)

R2 0.9248 0.9040 (−0.0208)

Adj. R2 0.8918 0.8790 (−0.0128)

Ave. error 0.50% 0.00% (−0.50%)

Mean sq. er. 0.41% 0.35% (−0.06%)

Prediction (on 6
cases)

Ave. error 2.48% -

Mean sq. er. 0.92% -
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Within the validity domains, the two resulting numerical models can be used to predict the engine
hourly fuel consumption at the different rotational speeds and the variation of the fuel mix composition
by simply substituting the values of the input quantities. This is what has been done with the first
model and the six control cases.
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Figure 2. Contour plots (top) and 3D-graphs (bottom) of the hourly fuel consumption at full load as a 559 
function of the biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with 560 
the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of hourly consumption are 561 
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Figure 9. Contour plots (top) and 3D-graphs (bottom) of the hourly fuel consumption at full load as
a function of the biodiesel percentage and of the engine speed referred to the 1st model (24 cases),
with the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of hourly consumption
are reported as labels directly on the contours). The same pictures show also the positions of the
experimental measurements (black dots positioned within the investigated hyperspace; notice that
many points are positioned under the represented surface and hence are not visible).

Both the models resulting from the backward selection of terms are quadratic, even with a different
number of terms. In particular, the 24-case model has a term more, related to the interaction between
biodiesel and bioethanol and this is also responsible for the slightly high value of R2 and adjusted R2

(the differences are however very low: less than 0.02).
With regards to only the cases used for the model building phase, the predictive capability of both

the models is high: the R2 is higher than 0.9040 and the adjusted R2 is higher than 0.8790. By looking
at the six control cases excluded in the building of the first model, it is possible to confirm a good
predictive capability of this model: for those cases, the mean square error is 0.92% and the average
error is 2.48%. Even if it is not as low as for other investigated responses, it should be considered that it
is however lower than 5%, which is commonly considered the threshold for the acceptability of every
measurement and predictive system.

Analogously to the engine power, which can be calculated from the torque prediction, the
prediction of the brake specific fuel consumption at the different rotational speeds and varying the
fuel mix composition can be obtained from the same equation of the hourly consumption. For the
explained reason, no model for the BSFC has been calculated.
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3.1.3. NOx Concentration in the Exhaust Gases as a Function of the Composition of the Fuel Blends

The following Table 7 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are
used without any conversion, scaling or nondimensionalization. The following Figures 11 and 12
give a graphical (2D/3D) representation of these equations, allowing to visualize the trends and
absolute values.

Table 7. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the NOx concentration in the exhaust gases.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

NOx[ppm] = +500.71510 −0.61435 · B[%]
+25.06639 · E[%] +0.13109 · n[rpm] −1.77110
· B[%] · E[%]−4.43123 · 10−4 · B[%] · n[rpm]
−3.82978 · 10−3 · E[%] · n[rpm] +0.21606 ·

{B[%]}2 −1.25658 · 10−4 · {n[rpm]}2

NOx[ppm] = +488.75020 −0.37219 · B[%]
+25.65112 · E[%] +0.14445 · n[rpm] −1.81991
· B[%] · E[%]−5.89491 · 10−4 · B[%] · n[rpm]
−4.67969 · 10−3 · E[%] · n[rpm] +0.22224 ·

{B[%]}2 −1.29296 · 10−4 · {n[rpm]}2

Fitting (on
available cases)

R2 0.9825 0.9820 (−0.0005)

Adj. R2 0.9820 0.9816 (−0.0004)

Ave. error 0.36% 0.11% (−0.25%)

Mean sq. er. 0.17% 0.15% (−0.02%)

Prediction (on 6
cases)

Ave. error 1.40% -

Mean sq. er. 0.25% -
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values, this means that the six control cases are well aligned with the calculated response surface and 619 
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Figure 11. Contour plots (top) and 3D-graphs (bottom) of the NOx concentration as a function of the
biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left)
and the 3% (right) of bioethanol in the blend (NB: the values of NOx are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

Within the validity domains, the two resulting numerical models can be used to predict the engine
NOx concentration at the different rotational speeds and the variation of the fuel mix composition by
simply substituting the values of the input quantities. This is what has been done with the first model
and the six control cases.

Both the models resulting from the backward selection of terms have a quadratic form with two of
the factors (biodiesel content, engine speed) raised to the second power. The resulting response surface
presents double curvature in a shape resembling a roofing-tile. The values of R2 and adjusted R2 are
very high for both the models (24 and 30 cases) and approximately at the same values (about 0.982).

Firstly, this means that the predictive capability of both the models is high with respect to only the
cases used for the model-building phase. Secondly, concerning the very small difference of R2 values,
this means that the six control cases are well aligned with the calculated response surface and that the
trend has been completely respected when including also those cases in the second model.

By looking at the same six control cases, it is possible to confirm the very high predictive capability
of the first model: indeed, for those cases the mean square error is 0.17% and the average error is 0.36%,
both essentially negligible.

Figure 11. Contour plots (top) and 3D-graphs (bottom) of the NOx concentration as a function of the
biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left)
and the 3% (right) of bioethanol in the blend (NB: the values of NOx are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

Within the validity domains, the two resulting numerical models can be used to predict the engine
NOx concentration at the different rotational speeds and the variation of the fuel mix composition by
simply substituting the values of the input quantities. This is what has been done with the first model
and the six control cases.

Both the models resulting from the backward selection of terms have a quadratic form with two of
the factors (biodiesel content, engine speed) raised to the second power. The resulting response surface
presents double curvature in a shape resembling a roofing-tile. The values of R2 and adjusted R2 are
very high for both the models (24 and 30 cases) and approximately at the same values (about 0.982).

Firstly, this means that the predictive capability of both the models is high with respect to only the
cases used for the model-building phase. Secondly, concerning the very small difference of R2 values,
this means that the six control cases are well aligned with the calculated response surface and that the
trend has been completely respected when including also those cases in the second model.

By looking at the same six control cases, it is possible to confirm the very high predictive capability
of the first model: indeed, for those cases the mean square error is 0.17% and the average error is 0.36%,
both essentially negligible.
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Figure 12. Contour plots (top) and 3D-graphs (bottom) of the NOx concentration as a function of the
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left)
and the 3% (right) of bioethanol in the blend (NB: the values of NOx are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

3.1.4. CO of the Exhaust Gases as a Function of the Composition of the Fuel Blends

The following Table 8 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are used
without any conversion, scaling or non-dimensionalization. In this case the multilinear model is given
as a function of the natural logarithm of the CO concentration, to better handle the high ratio between
the minimum and the maximum experimental values. The following Figures 13 and 14 give a graphical
(2D/3D) representation of these equations, allowing the visualization of the trends and absolute values.

Table 8. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the CO concentration in the exhaust gases.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

Ln(CO[ppm]) = +20.34397 −9.60882 · 10−3 ·
B[%]−0.026016 · E[%]−0.017564 · n[rpm]

+4.31472 · 10−3 · B[%] · E[%] +5.77145 · 10−6

· B[%] · n[rpm] −4.00363 · 10−4 · {B[%]}2

+4.82341 · 10−6 · {n[rpm]}2

Ln(CO[ppm]) = +20.35606 −5.47853 · 10−3 ·
B[%]−0.077395 · E[%]−0.017594 · n[rpm]

+5.69115 · 10−3 · B[%] · E[%] +4.64820 · 10−6

· B[%] · n[rpm] −4.26751 · 10−4 · {B[%]}2

+4.83437 · 10−6 · {n[rpm]}2

Fitting (on
available cases)

R2 0.9879 0.9869 (+0.001)

Adj. R2 0.9876 0.9866 (+0.001)

Ave. error −1.46% −1.84% (+0.38%)

Mean sq. er. 3.32% 3.18% (+0.14%)

Prediction (on 6
cases)

Ave. error −0.91% -

Mean sq. er. 4.47% -
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Within the validity domains, the two resulting numerical models can be used to predict the engine
CO concentration at the different rotational speeds and the variation of the fuel mix composition by
simply substituting the values of the input quantities. This is what has been done with the first model
and the six control cases.
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dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

Due to the very high ratio between the minimum and the maximum experimental values
(respectively: 90 and 10,597 ppm), the method and the software suggest operating a transformation of
the response data before performing the ANOVA and to build the model in the same form (polynomial).
Consequently, the models give an estimation of the natural logarithm of the CO concentration in
correspondence at an n-tuple of values for the involved factors. The subsequent calculation of the CO
concentration is simple, involving a rising to the power of the Napier’s constant. Apart from this initial
transformation, both the models resulting from the backward selection of terms have a quadratic form
with two of the factors (biodiesel content and engine speed) raised to the second power. The effect of
the biodiesel content on the global shape of the surface is however inferior with respect to the engine
speed, so the curvature due to the biodiesel content is very small.

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and
substantially at the same levels (about 0.987). This means, firstly, that the predictive capability of both
models is high with regards to only the cases used for the model building phase. Secondly, concerning
the very small difference of R2 values, this means that the six control cases are on average well aligned
with the calculated response surface, and the general trend has been completely followed when
including also those cases in the second model. By looking at the same six control cases, it is possible to

Figure 13. Contour plots (top) and 3D-graphs (bottom) of the CO concentration as a function of the
biodiesel percentage and of the engine speed referred to the 1st model (24 cases), with the 0% (left)
and the 3% (right) of bioethanol in the blend (NB: the values of CO are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

Due to the very high ratio between the minimum and the maximum experimental values
(respectively: 90 and 10,597 ppm), the method and the software suggest operating a transformation of
the response data before performing the ANOVA and to build the model in the same form (polynomial).
Consequently, the models give an estimation of the natural logarithm of the CO concentration in
correspondence at an n-tuple of values for the involved factors. The subsequent calculation of the CO
concentration is simple, involving a rising to the power of the Napier’s constant. Apart from this initial
transformation, both the models resulting from the backward selection of terms have a quadratic form
with two of the factors (biodiesel content and engine speed) raised to the second power. The effect of
the biodiesel content on the global shape of the surface is however inferior with respect to the engine
speed, so the curvature due to the biodiesel content is very small.

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and
substantially at the same levels (about 0.987). This means, firstly, that the predictive capability of both
models is high with regards to only the cases used for the model building phase. Secondly, concerning
the very small difference of R2 values, this means that the six control cases are on average well aligned
with the calculated response surface, and the general trend has been completely followed when
including also those cases in the second model. By looking at the same six control cases, it is possible to
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notice an acceptable predictive capability of the first model: indeed for those cases, the average error is
−0.91%, essentially negligible, but the mean squared error has a bit higher value (4.47%), which is still
acceptable but close to the threshold of 5% commonly considered for predictive models. This means
that the deviations of the predicted values from the real values are equally distributed above and
below the zero, and nevertheless quite significant in absolute terms. It is possible to therefore conclude
that the model gives a good approximation of the trend of the plotted quantity (the CO concentration,
in this case), but should be used with caution in formulating specific predictions. Nevertheless, this
does not constitute a problem in the present case since it means that the model is fully reliable to draw
conclusions concerning the influence of the factors on this response.
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Figure 14. Contour plots (top) and 3D-graphs (bottom) of the CO concentration as a function of the
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left)
and the 3% (right) of bioethanol in the blend (NB: the values of CO are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

3.1.5. Opacity of the Exhaust Gases as a Function of the Composition of the Fuel Blends

The following Table 9 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors i.e., the terms are used
without any conversion, scaling or non-dimensionalization. In this case the multilinear model is
given as a function of the natural logarithm of the opacity, to better handle the high ratio between the
minimum and the maximum experimental values.
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Table 9. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the opacity of the exhaust gases.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

Ln(Opacity[m−1]) = +11.84735 −0.21196 ·
B[%] +0.60734 · E[%]−0.016407 · n[rpm]
−0.020619 · B[%] · E[%] +2.41216 · 10−5 ·
B[%] · n[rpm] +6.11103 · 10−3 · {B[%]}2

+4.50634 · 10−6 · {n[rpm]}2

Ln(Opacity [m−1]) =+11.44037 −0.14504 ·
B[%] +0.61544 · E[%]−0.016037 · n[rpm]
−0.023313 · B[%] · E[%] +4.80098 · 10−3 ·

{B[%]}2 +4.43092 · 10−6 · {n[rpm]}2

Fitting (on
available cases)

R2 0.9242 0.8993 (−0.0249)

Adj. R2 0.9159 0.8922 (−0.0237)

Ave. error −5.60% −9.48% (−3.88%)

Mean sq. er. 18.21% 22.04% (+3.83%)

Prediction (on 6
cases)

Ave. error 5.62% -

Mean sq. er. 40.07% -

Within the validity domains, the two resulting numerical models can be used to predict the
exhaust gas opacity at the different rotational speeds and the variation of the fuel mix composition by
simply substituting the values of the input quantities. This is what has been done with the first model
and the six control cases. The following Figures 15–17 give a graphical (2D/3D) representation of these
equations, allowing the visualization of the trends and absolute values.
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Figure 15. Contour plots (top) and 3D-graphs (bottom) of the logarithm of the opacity of the exhaust
gases as a function of the biodiesel percentage and of the engine speed referred to the 1st model (24 cases),
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the experimental measurements (black dots positioned within the investigated hyperspace; notice that
many points are positioned under the represented surface and hence are not visible).
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Figure 15. Contour plots (top) and 3D-graphs (bottom) of the logarithm of the opacity of the exhaust 694 
gases as a function of the biodiesel percentage and of the engine speed referred to the 1st model (24 695 
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hyperspace; notice that many points are positioned under the represented surface and hence are not 699 
visible). 700 
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on the contours). The same pictures show also the positions of the experimental measurements (black 710 
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Due to the very high ratio between the minimum and the maximum experimental values 713 
(respectively: 0.002 and 3.081 m−1), the method and software suggest operating a transformation of 714 
the response data before performing the ANOVA and to build the model in the same form 715 
(polynomial). Consequently, the models give an estimation of the natural logarithm of the opacity of 716 
exhaust gases in correspondence at an n-tuple of values for the involved factors. The subsequent 717 
calculation of the opacity is simple, involving a rising to the power of the Napier's constant. Apart 718 

Figure 16. Contour plots (top) and 3D-graphs (bottom) of the logarithm of the exhaust gas opacity
as a function of the biodiesel percentage and of the engine speed referred to the 2nd model (30 cases),
with the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of the logarithm of the
opacity are reported as labels directly on the contours). The same pictures show also the positions of
the experimental measurements (black dots positioned within the investigated hyperspace; notice that
many points are positioned under the represented surface and hence are not visible).

Due to the very high ratio between the minimum and the maximum experimental values
(respectively: 0.002 and 3.081 m−1), the method and software suggest operating a transformation of the
response data before performing the ANOVA and to build the model in the same form (polynomial).
Consequently, the models give an estimation of the natural logarithm of the opacity of exhaust gases in
correspondence at an n-tuple of values for the involved factors. The subsequent calculation of the
opacity is simple, involving a rising to the power of the Napier’s constant. Apart from this initial
transformation, both the models resulting from the backward selection of terms have a quadratic form
with two of the factors (biodiesel content, engine speed) raised to the second power. The resulting
shape of the response surface is a basin, hence with a sensible contribution of the biodiesel content and
engine speed to the curvature of the surface.

The values of R2 and adjusted R2 are quite high for both the models (24 and 30 cases) and
substantially at the same levels (beyond 0.899). This means, firstly, that the predictive capability of
both the models is high with regards to only the cases used for the model building phase. Secondly,
concerning the very small difference of R2 values, this means that the six control cases are, on average,
well aligned with the calculated response surface, and the general trend has been completely respected
when including also those cases in the second model. The slight differences of R2 and adjusted R2

are essentially due to the simplification of the model form (exclusion of the term with the interaction
between biodiesel and engine speed) operated by the software.

By looking at the same six control cases, it is possible to notice a not-acceptable predictive capability
of the first model: indeed, for those cases, the average error is 5.62% and the mean squared error has a

Figure 16. Contour plots (top) and 3D-graphs (bottom) of the logarithm of the exhaust gas opacity
as a function of the biodiesel percentage and of the engine speed referred to the 2nd model (30 cases),
with the 0% (left) and the 3% (right) of bioethanol in the blend (NB: the values of the logarithm of the
opacity are reported as labels directly on the contours). The same pictures show also the positions of
the experimental measurements (black dots positioned within the investigated hyperspace; notice that
many points are positioned under the represented surface and hence are not visible).

Due to the very high ratio between the minimum and the maximum experimental values
(respectively: 0.002 and 3.081 m−1), the method and software suggest operating a transformation of the
response data before performing the ANOVA and to build the model in the same form (polynomial).
Consequently, the models give an estimation of the natural logarithm of the opacity of exhaust gases in
correspondence at an n-tuple of values for the involved factors. The subsequent calculation of the
opacity is simple, involving a rising to the power of the Napier’s constant. Apart from this initial
transformation, both the models resulting from the backward selection of terms have a quadratic form
with two of the factors (biodiesel content, engine speed) raised to the second power. The resulting
shape of the response surface is a basin, hence with a sensible contribution of the biodiesel content and
engine speed to the curvature of the surface.

The values of R2 and adjusted R2 are quite high for both the models (24 and 30 cases) and
substantially at the same levels (beyond 0.899). This means, firstly, that the predictive capability of
both the models is high with regards to only the cases used for the model building phase. Secondly,
concerning the very small difference of R2 values, this means that the six control cases are, on average,
well aligned with the calculated response surface, and the general trend has been completely respected
when including also those cases in the second model. The slight differences of R2 and adjusted R2

are essentially due to the simplification of the model form (exclusion of the term with the interaction
between biodiesel and engine speed) operated by the software.

By looking at the same six control cases, it is possible to notice a not-acceptable predictive capability
of the first model: indeed, for those cases, the average error is 5.62% and the mean squared error has a
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high value (40.07%), both beyond the threshold of 5% commonly considered for predictive models.
This means that the deviations of the predicted values from the real values are significant and unevenly
distributed with respect to the zero (the positive sign means that model generally overestimates the
experimental situation). Although the model can give a good approximation of the trend of the plotted
quantity (in this case, the opacity) and it can be used to draw conclusions concerning the influence of
the factors on this response, it should be used with extreme caution in formulating specific predictions.
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Figure 17. Contour plots (top) and 3D-graphs (bottom) of the exhaust gas opacity as a function of the
biodiesel percentage and of the engine speed referred to the 2nd model (30 cases), with the 0% (left) and
the 3% (right) of bioethanol in the blend (NB: the values of opacity are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

3.2. Mechanical and Environmental Outputs as a Function of the Viscosity of the Fuel Blends

In the following paragraphs the presented methodology has been applied to outline a correlation
between the viscosity of the fuel blend and the motor outputs. This attempt was made despite it being
known that the viscosity is certainly not the only parameter influencing the outputs of an engine (other
such parameters surely being the LHV and the density), as confirmed by some of the results presented
below. However, this attempt was carried out since the supply of bioethanol or biodiesel may not be
constant during the year if considering the production process of these fuels from the perspective of a
fully self-sufficient farm. Therefore, the most practical way to characterize a blend contained in a tank
without using complex and expensive procedures is a quick viscosity test.

3.2.1. Engine Torque as a Function of the Viscosity of the Fuel Blends

The following Table 10 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are
used without any conversion or scaling. The following Figures 18 and 19 give a graphical (2D/3D)
representation of these equations, allowing the visualization of the trends and absolute values.
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Within the validity domains, the two resulting numerical models can be used to predict the engine
torque at the different rotational speeds and the variation of the fuel mix kinematic viscosity by simply
substituting the values of the input quantities. This is what has been done with the first model and the
six control cases.

Table 10. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the engine torque.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation
T[Nm] = +713.67423 +7.20838 · 10−3

· n[rpm] +14.32782 · ν[mm2 s−1]
−6.14489 · 10−5 · {n[rpm]}2

T[Nm] = +5025.45458 +9.55847 · 10−3 ·
n[rpm] −2773.64811 · ν[mm2 s-1] −6.24263 ·
10−5 · {n[rpm]}2 +449.51032 · {ν[mm2 s−1]}2

Fitting (on
available cases)

R2 0.9806 0.9865 (+0.0059)

Adj. R2 0.9776 0.9843 (+0.0067)

Ave. error −0.08% 0.00% (+0.08%)

Mean sq. er. 0.03% 0.03% (+0.00%)

Prediction (on 6
cases)

Ave. error 0.40% -

Mean sq. er. 0.02% -
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Both the models resulting from the backward selection of terms have a quadratic form, even if 774 
the 30-case model is more complete, having two of the factors (engine speed, kinematic viscosity) 775 
raised to the second power. The resulting shape of the response surface is somehow similar, due to 776 
the low influence of the kinematic viscosity on the curvature. 777 

The values of R2 and adjusted R2 are high for both the models (24 and 30 cases) and 778 
substantially at the same levels (beyond 0.9806). This means, firstly, that the predictive capability of 779 
both the models is high with regards to only the cases used for the model building phase. Secondly, 780 

Figure 18. Contour plot (left) and 3D-graph (right) of the engine torque as a function of fuel kinematic
viscosity and of the engine speed referred to the 1st model (24 cases) (NB: the values of torque
are reported as labels directly on the contours). The same pictures show also the positions of the
experimental measurements (black dots positioned within the investigated hyperspace; notice that
many points are positioned under the represented surface and hence are not visible).
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Figure 19. Contour plot (left) and 3D-graph (right) of the engine torque as a function of fuel kinematic
viscosity and of the engine speed referred to the 2nd model (30 cases) (NB: the values of Table.
are reported as labels directly on the contours). The same pictures show also the positions of the
experimental measurements (black dots positioned within the investigated hyperspace; notice that
many points are positioned under the represented surface and hence are not visible).
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Both the models resulting from the backward selection of terms have a quadratic form, even if the
30-case model is more complete, having two of the factors (engine speed, kinematic viscosity) raised to
the second power. The resulting shape of the response surface is somehow similar, due to the low
influence of the kinematic viscosity on the curvature.

The values of R2 and adjusted R2 are high for both the models (24 and 30 cases) and substantially
at the same levels (beyond 0.9806). This means, firstly, that the predictive capability of both the models
is high with regards to only the cases used for the model building phase. Secondly, concerning the very
small difference of R2 values, this means that the six control cases are on average well aligned with the
calculated response surface, and the general trend has been completely followed when including also
those cases in the second model. The slight differences of R2 and adjusted R2 of the two models are
essentially due to the completion of the model form (inclusion of the term with the kinematic viscosity
raised to the 2nd power) operated by the software.

By looking at the same six control cases, it is possible to notice a high predictive ability of the first
model: indeed, for those cases the average error is 0.40% and the mean squared error has an even lower
value (0.02%), both far below the common threshold of 5% usually considered for predictive models.
This means that the deviations of the predicted values from the real values are equally distributed
above and below the zero, and the predicted values are quite close to real values. The model can give a
very good approximation of the trend of the plotted quantity (the torque, in this case), so it can be used
to draw conclusions concerning the influence of the factors on this response. Moreover, it can also be
used to make precise specific predictions.

Here, the prediction of the engine power at the different rotational speeds and the variation of the
fuel mix viscosity is obtained starting from the same equation of the torque; the predicted value of the
torque should be multiplied by the engine speed expressed in rad s−1. For the explained reason, no
model for the power has been calculated.

3.2.2. Hourly Fuel Consumption at Full Load as a Function of the Viscosity of the Fuel Blends

The following Table 11 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are used
without any conversion, scaling or non-dimensionalization. The following Figures 20 and 21 give
a graphical (2D/3D) representation of these equations, allowing the visualization of the trends and
absolute values.

Table 11. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the hourly fuel consumption at full load.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

ch[g h−1] = −2.74704 · 10+5 +10.79205 ·
n[rpm] +1.74994 · 10+5 · ν[mm2 s−1]

−2.32805 · 10−3 · {n[rpm]}2

−27922.84094 · {ν[mm2 s−1]}2

ch[g h−1] = −2.71164 · 10+5 +9.63191 ·
n[rpm] +1.74045 · 10+5 · ν[mm2 s−1]

−2.02194 · 10−3 · {n[rpm]}2

−27885.68040 · {ν[mm2 s−1]}2

Fitting (on
available cases)

R2 0.8608 0.8571 (−0.0037)

Adj. R2 0.8314 0.8343 (+0.0029)

Ave. error −0.18% −0.06% (+0.12%)

Mean sq. er. 0.66% 0.60% (−0.06%)

Prediction (on 6
cases)

Ave. error −0.86% -

Mean sq. er. 1.05% -
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Figure 20. Contour plot (left) and 3D-graph (right) of the hourly fuel consumption at full load as a
function of fuel kinematic viscosity and of the engine speed referred to the 1st model (24 cases) (NB:
the values of hourly fuel consumption are reported as labels directly on the contours). The same
pictures show also the positions of the experimental measurements (black dots positioned within the
investigated hyperspace; notice that many points are positioned under the represented surface and
hence are not visible).
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Figure 21. Contour plot (left) and 3D-graph (right) of the hourly fuel consumption at full load as a
function of fuel kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB:
the values of hourly fuel consumption are reported as labels directly on the contours). The same
pictures show also the positions of the experimental measurements (black dots positioned within the
investigated hyperspace; notice that many points are positioned under the represented surface and
hence are not visible).

Within the validity domains, the two resulting numerical models can be used to predict the engine
hourly fuel consumption at full load at the different rotational speeds and the variation of the fuel mix
composition by simply substituting the values of the input quantities. This is what has been done with
the first model and the six control cases.

Both the models resulting from the backward selection of terms have a quadratic form with the
same number of terms, having both the two considered factors (engine speed and kinematic viscosity)
raised to the second power. The resulting shape of the response surface is substantially equal (a dome),
with the kinematic viscosity having a little influence on the curvature in the considered domain.

The values of R2 and adjusted R2 are quite high for both the models (24 and 30 cases) and
substantially at the same levels (beyond 0.857). This means, firstly, that the predictive capability of both
the models is quite high with regards to only the cases used for the model building phase. The very
small difference of R2 values between the two models means that the six control cases are, on average,
well aligned with the calculated response surface, and the general trend has been completely followed
also including those cases in the second model.
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By looking at the same six control cases, it is possible to notice a high predictive capability of the
first model: indeed, for those cases, the average error is −0.86% and the mean squared error is 1.05%,
both far below the common threshold of 5% usually considered for predictive models. This means that
the deviations of the predicted values from the real values are equally distributed above and below the
zero and the predicted values are quite close to real values. The model can give a good approximation
of the trend of the plotted quantity (the hourly consumption, in this case), so it can be used to draw
conclusions concerning the influence of the factors on this response. Moreover, it can also be used to
make quite precise specific predictions.

Also in this case, as presented above the prediction of the brake specific fuel consumption at
the different rotational speeds and the variation of the fuel mix viscosity is simple starting from the
same equation of the hourly consumption. For the explained reason, no model for the BSFC has
been calculated.

3.2.3. NOx Concentration in the Exhaust Gases as a Function of the Viscosity of the Fuel Blends

The following Table 12 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are used
without any conversion or scaling or non-dimensionalization. The following Figures 22 and 23 give
a graphical (2D/3D) representation of these equations, allowing the visualization of the trends and
absolute values.

Within the validity domains, the two resulting numerical models can be used to predict the NOx

concentration at the different rotational speeds and the variation of the fuel mix kinematic viscosity by
simply substituting the values of the input quantities. This is what has been done with the first model
and the six control cases.

Both the models resulting from the backward selection of terms have a cubic form with only
the kinematic viscosity) raised to the third power. The resulting shape of the response surface is
substantially equal (a sort of wave), with the kinematic viscosity having a significant influence on the
curvature in the considered domain.

Table 12. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the NOx.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

NOx[ppm] = +13839.40181 −0.20309 ·
n[rpm] −8624.79484 · ν[mm2 s−1]
+0.084559 · n[rpm] · ν[mm2 s−1]
−1.02166 · 10−4 · {n[rpm]}2

+1400.09439 · {ν[mm2 s−1]}2

NOx[ppm] = +12680.14971 +0.12940 ·
n[rpm] −8011.28620 · ν[mm2 s−1]
−1.29296 · 10−4 ·{n[rpm]}2

+1318.53010 · {ν[mm2 s−1]}2

Fitting (on
available cases)

R2 0.9546 0.9397 (−0.0149)

Adj. R2 0.9538 0.9390 (−0.0148)

Ave. error 1.65% 0.08% (−1.57%)

Mean sq. er. 0.81% 0.68% (−0.13%)

Prediction (on 6
cases)

Ave. error 7.56% -

Mean sq. er. 2.67% -
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The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and 877 
substantially at the same levels (beyond 0.939). This means, firstly, that the predictive capability of 878 
both the models is very high with regards to only the cases used for the model building phase. The 879 
model can give a good approximation of the trend of the plotted quantity (the hourly consumption, 880 
in this case), so it can be used to draw conclusions concerning the influence of the factors on this 881 
response. Moreover, it can also be used to make quite precise punctual predictions. 882 

By looking at the same six control cases, it is possible to notice a generally low predictive 883 
capability of the first model: indeed, for those cases, the average error is 7.56% and the mean squared 884 
error is 2.67%, the latter far below the common threshold of 5% usually considered for predictive 885 
models. Looking at the deviations of the predicted values with respect to the real values, it is 886 
possible to notice that the high average error is substantially due to the previsions on the two cases 887 
using B25E3, which have the same kinematic viscosity of B25 (3.264 vs. 3.265 mm2 s−1) but surely not 888 
the same NOx emissions: at the same engine speed the emissions with B25 are 100 ppm higher than 889 
B25E3. Excluding those two cases, the average error drops down at −1.10%. 890 

Figure 22. Contour plot (left) and 3D-graph (right) of the NOx concentration in the exhaust gases as a
function of fuel kinematic viscosity and of the engine speed referred to the 1st model (24 cases) (NB: the
values of NOx concentration are reported as labels directly on the contours). The same pictures show
also the positions of the experimental measurements (black dots positioned within the investigated
hyperspace; notice that many points are positioned under the represented surface and hence are
not visible).
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Figure 23. Contour plot (left) and 3D-graph (right) of the NOx concentration in the exhaust gases as a
function of fuel kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB: the
values of NOx concentration are reported as labels directly on the contours). The same pictures show
also the positions of the experimental measurements (black dots positioned within the investigated
hyperspace; notice that many points are positioned under the represented surface and hence are
not visible).

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and
substantially at the same levels (beyond 0.939). This means, firstly, that the predictive capability of both
the models is very high with regards to only the cases used for the model building phase. The model
can give a good approximation of the trend of the plotted quantity (the hourly consumption, in this
case), so it can be used to draw conclusions concerning the influence of the factors on this response.
Moreover, it can also be used to make quite precise punctual predictions.

By looking at the same six control cases, it is possible to notice a generally low predictive capability
of the first model: indeed, for those cases, the average error is 7.56% and the mean squared error is
2.67%, the latter far below the common threshold of 5% usually considered for predictive models.
Looking at the deviations of the predicted values with respect to the real values, it is possible to notice
that the high average error is substantially due to the previsions on the two cases using B25E3, which
have the same kinematic viscosity of B25 (3.264 vs. 3.265 mm2 s−1) but surely not the same NOx

emissions: at the same engine speed the emissions with B25 are 100 ppm higher than B25E3. Excluding
those two cases, the average error drops down at −1.10%.
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3.2.4. CO of the Exhaust Gases as a Function of the Viscosity of the Fuel Blends

The following Table 13 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are used
without any conversion, scaling or non-dimensionalization. In this case the multilinear model is given
as a function of the natural logarithm of the CO concentration, to better handle the high ratio between
the minimum and the maximum experimental values. The following Figures 24 and 25 give a graphical
(2D/3D) representation of these equations, allowing the visualization of the trends and absolute values.

Within the validity domains, the two resulting numerical models can be used to predict the CO
concentration at the different rotational speeds and the variation of the fuel mix kinematic viscosity by
simply substituting the values of the input quantities. This is what has been done with the first model
and the six control cases.

Table 13. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the CO concentration in the exhaust gases.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

Ln(CO[ppm]) = +42.88856 −0.063008 · n[rpm] −10.69428 ·
ν[mm2 s−1] +0.020956 · n[rpm] · ν[mm2 s−1] +1.41593 ·

10−5 · {n[rpm]}2 +1.68731 · {ν[mm2 s−1]}2 −3.39237 · 10−3 ·
n[rpm] · {ν[mm2 s−1]}2−2.07463 · 10−9 · {n[rpm]}3

Ln(CO[ppm]) = +21.01646
−0.017519 · n[rpm]
−0.27489 · ν[mm2 s−1]

+4.83437 · 10−6 · {n[rpm]}2

Fitting (on
available cases)

R2 0.9929 0.9851 (−0.0078)

Adj. R2 0.9928 0.9850 (−0.0078)

Ave. error −1.91% −1.96% (−0.05%)

Mean sq. er. 2.02% 3.52% (+1.50%)

Prediction (on 6
cases)

Ave. error −5.34% -

Mean sq. er. 2.88% -
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Figure 24. Contour plot (left) and 3D-graph (right) of the logarithm of the CO concentration in the 907 
exhaust gases as a function of fuel kinematic viscosity and of the engine speed referred to the 1st 908 
model (24 cases) (NB: the values of the logarithm of CO concentration are reported as labels directly 909 
on the contours). The same pictures show also the positions of the experimental measurements (black 910 
dots positioned within the investigated hyperspace; notice that many points are positioned under the 911 
represented surface and hence are not visible). 912 

Figure 24. Contour plot (left) and 3D-graph (right) of the logarithm of the CO concentration in the
exhaust gases as a function of fuel kinematic viscosity and of the engine speed referred to the 1st

model (24 cases) (NB: the values of the logarithm of CO concentration are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).
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Figure 25. Contour plot (left) and 3D-graph (right) of the logarithm of the CO concentration as a
function of fuel kinematic viscosity and of the engine speed referred to the 2nd model (30 cases) (NB:
the values of the logarithm of the CO concentration are reported as labels directly on the contours).
The same pictures show also the positions of the experimental measurements (black dots positioned
within the investigated hyperspace; notice that many points are positioned under the represented
surface and hence are not visible).

Although the two models resulting from the backward selection of terms have different forms
(the 24-case model is cubic, the 30-case model is quadratic), the resulting shape of the response surface
is quite similar. The contribution of the engine speed on the response surface shape is prevailing over
the viscosity, and the values of the natural logarithm of the CO concentration sharply decrease with
the rising of the speed, reaching a sort of plateau above 1370 rpm.

The values of R2 and adjusted R2 are very high for both the models (24 and 30 cases) and
substantially at the same values (beyond 0.985). This means, firstly, that the predictive capability
of both the models is very high with regards to only the cases used for the model building phase.
The model can give a good approximation of the trend of the plotted quantity (the CO concentration, in
this case), so it can be used to draw conclusions concerning the influence of the factors on this response.
Moreover, it can also be used to make quite precise specific predictions.

By looking at the same six control cases, a generally low predictive ability of the first model
can be observed: indeed, for those cases the average error is −5.34% and the mean squared error is
2.88%. Notwithstanding the good fitting operated on the 24 cases used to set up the model coefficients,
the use of the fuel viscosity to predict the value of the CO concentration at several engine speeds is
not recommended.

3.2.5. Opacity of the Exhaust Gases as a Function of the Viscosity of the Fuel Blends

The following Table 14 shows the numerical regression models, respectively based on 24 and
30 experimental cases, as resulted from the backward selection of the terms forming the most complete
model handled by RSM. The equations are presented in terms of actual factors, i.e. the terms are
used without any conversion, scaling or non-dimensionalization. In this case the multilinear model is
given as a function of the natural logarithm of the opacity, to better handle the high ratio between the
minimum and the maximum experimental values. The following Figures 26 and 27 give a graphical
(2D/3D) representation of these equations, allowing the visualization of the trends and absolute values.
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Table 14. Main data concerning the two numerical models (respectively based on 24 and 30 cases) and
the predictions of the models in six selected cases for the opacity in the exhaust gases.

Quantity Model

nr. 1 (on 24 cases) nr. 2 (on 30 cases)

Regression equation

Ln(Opacity [m−1]) = −92.08952
−0.024706 · n[rpm] +70.29248 · ν[mm2

s−1] +2.57254 · 10−3 · n[rpm] · ν[mm2

s−1] +4.72809 · 10−6 · {n[rpm]}2

−11.88675 · {ν[mm2 s−1]}2

Ln(Opacity [m−1]) = −134.34316
−0.016059 · n[rpm] +94.08222 · ν[mm2

s−1] +4.44021 · 10−6 · {n[rpm]}2

−15.19390 · {ν[mm2 s−1]}2

Fitting (on
available cases)

R2 0.8781 0.8616 (−0.0165)

Adj. R2 0.8689 0.8552 (−0.0137)

Ave. error −7.14% −13.17% (−6.03%)

Mean sq. er. 25.90% 31.15% (+5.25%)

Prediction (on 6
cases)

Ave. error 18.95% -

Mean sq. er. 20.84% -
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Figure 26. Contour plot (left) and 3D-graph (right) of the logarithm of the opacity (top) and of the 951 
opacity (bottom) of the exhaust gases as a function of fuel kinematic viscosity and of the engine 952 
speed referred to the 1st model (24 cases) (NB: the values of the logarithm of the opacity are reported 953 
as labels directly on the contours). The same pictures show also the positions of the experimental 954 
measurements (black dots positioned within the investigated hyperspace; notice that many points 955 
are positioned under the represented surface and hence are not visible). 956 

Figure 26. Contour plot (left) and 3D-graph (right) of the logarithm of the opacity (top) and of the
opacity (bottom) of the exhaust gases as a function of fuel kinematic viscosity and of the engine speed
referred to the 1st model (24 cases) (NB: the values of the logarithm of the opacity are reported as labels
directly on the contours). The same pictures show also the positions of the experimental measurements
(black dots positioned within the investigated hyperspace; notice that many points are positioned
under the represented surface and hence are not visible).
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contours). The same pictures show also the positions of the experimental measurements (black dots 960 
positioned within the investigated hyperspace; notice that many points are positioned under the 961 
represented surface and hence are not visible). 962 
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than about 1000 rpm. The contribution of the engine speed on the response surface shape is well 968 
outlined in both the models (i.e., by increasing the engine speed the value of the logarithm 969 
decreases). The viscosity seems to have little influence on the figure of the opacity; only in the graph 970 
of the logarithm of the opacity this (however little) influence is evidenced by a slight waviness of the 971 
surface. 972 
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models can give a quite good approximation of the trend of the plotted quantity (the opacity, in this 976 
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response. However, it is not recommended to use them to make precise specific predictions due to 978 
the high prediction errors (using the first model to make predictions, the average error is 18.95% and 979 
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cases. Therefore, it is possible to conclude that the use of the fuel viscosity to predict the opacity 981 
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Figure 27. Contour plot (left) and 3D-graph (right) of the logarithm of the opacity (top) and of the
opacity (bottom) as a function of fuel kinematic viscosity and of the engine speed referred to the 2nd

model (30 cases) (NB: the values of the logarithm of the opacity are reported as labels directly on
the contours). The same pictures show also the positions of the experimental measurements (black
dots positioned within the investigated hyperspace; notice that many points are positioned under the
represented surface and hence are not visible).

Within the validity domains, the two resulting numerical models can be used to predict the
exhaust gases opacity at the different rotational speeds and the variation of the fuel mix kinematic
viscosity by simply substituting the values of the input quantities. This is what has been done with the
first model and the six control cases.

The two models resulting from the backward selection of terms have the same forms: both have a
quadratic form with the viscosity term reaching the second power, even if with a different number of
terms. The resulting shape of the response surface is quite similar and complex for the logarithm of
the CO concentration by varying the viscosity of the blend, and simpler when considering the CO
concentration directly: there is a wide plateau involving all cases having the engine speed greater than
about 1000 rpm. The contribution of the engine speed on the response surface shape is well outlined in
both the models (i.e., by increasing the engine speed the value of the logarithm decreases). The viscosity
seems to have little influence on the figure of the opacity; only in the graph of the logarithm of the
opacity this (however little) influence is evidenced by a slight waviness of the surface.

The values of R2 and adjusted R2 are quite high for both the models (0.8781 and 0.8616 respectively
for the 24- and 30-case model). This means, firstly, that the predictive capability of both the models is
quite high with regards to only the cases used for the model-building phase. Both the models can give
a quite good approximation of the trend of the plotted quantity (the opacity, in this case), so they can
be used to draw conclusions concerning the influence of the factors on this response. However, it is
not recommended to use them to make precise specific predictions due to the high prediction errors
(using the first model to make predictions, the average error is 18.95% and the mean squared error is
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20.84%, both far above the threshold of 5%) shown for the six control cases. Therefore, it is possible to
conclude that the use of the fuel viscosity to predict the opacity value at the several engine speeds is
not recommended. Clearly, there are different fuel blends having the same viscosity but producing
very different effects of the exhaust gases in terms of opacity, in this case.

4. Comments

As can be seen in the following Table 15, the use of the RSM allows the highly precise expression of
all the investigated variables concerning the main mechanical and environmental performances of an
engine as a function of the fuel blend composition (in terms of percentages of biodiesel and bioethanol
in the blends) and the engine speed. Observing the reported values of R2 and adjusted R2, it is possible
to conclude that the chosen factors are very good descriptors of the complex phenomena occurring in
the whole energy generation system such as the engine of an agricultural machine. In particular, the
models for the torque, the hourly consumption, the NOx concentration, the CO concentration and the
opacity all present very high values of R2 (above 0.90).

Moreover, within their validity domain, the proposed polynomial numerical models for all these
factors are very accurate approximations of the real response functions, and their trends (expressed as
first and second derivative) can be used instead of the trends of the real (unknown) response functions
to investigate the machine response to a change of fuelling and formulate interesting considerations.

Finally, excluding the models for hourly consumption and opacity, the same models are also
applicable in formulating numerical predictions of the investigated factors. It is therefore possible
to conclude that RSM can express its full potential also for ICEs when it is applied to develop
correlations involving the fuel blend composition and the engine speed. Hence, the use of RSM is
highly recommended in such a scenario as the one presented in the current paper.

Table 15. Main data concerning the numerical models of several quantities as a function of the fuel
blend composition and of the engine speed.

Investigated
Response

Model
nr.

Regr. Eq.
Order

Fitting (on available cases) Prediction (on 6 cases)

R2 Adj. R2 Ave.Error Mean sq.
Error Ave. Error Mean sq.

Error

Torque [Nm]
nr. 1 (on
24 cases) 2 0.9918 0.9901 0.07% 0.01% 0.38% 0.01%

nr. 2 (on
30 cases) 2 0.9930

(+0.0012)
0.9918

(+0.0017)
0.00%

(−0.07%)
0.01%

(+0.00%) - -

Hour cons
[g h−1]

nr. 1 (on
24 cases) 2 0.9248 0.8918 0.50% 0.41% 2.48% 0.92%

nr. 2 (on
30 cases) 2 0.9040

(−0.0208)
0.8790

(−0.0128)
0.00%

(−0.50%)
0.35%

(−0.06%) - -

NOx [ppm]
nr. 1 (on
24 cases) 2 0.9825 0.9820 0.36% 0.17% 1.40% 0.25%

nr. 2 (on
30 cases) 2 0.9820

(−0.0005)
0.9816

(−0.0004)
0.11%

(−0.25%)
0.15%

(−0.02%) - -

Ln (CO [ppm])
nr. 1 (on
24 cases) 2 0.9879 0.9876 −1.46% 3.32% −0.91% 4.47%

nr. 2 (on
30 cases) 2 0.9869

(+0.001)
0.9866

(+0.001)
−1.84%

(+0.38%)
3.18%

(+0.14%) - -

Ln
(Opacity [m−1])

nr. 1 (on
24 cases) 2 0.9242 0.9159 −5.60% 18.21% 5.62% 40.07%

nr. 2 (on
30 cases) 2 0.8993

(−0.0249)
0.8922

(−0.0237)
−9.48%

(−3.88%)
22.04%

(+3.83%) - -

In the following Table 16 it is possible to see that the use of RSM expresses the principal mechanical
performances of an engine (i.e., the torque) as a function of the fuel blend kinematic viscosity and the
engine speed with a high precision. This means that the fuel blend viscosity is a good descriptor for the
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mechanical behaviour of the tractor power unit (both R2 and adjusted R2 are above 0.98), probably due
to the operative flexibility of the injection system, which is able to compensate small differences in fuels
LHV by varying the injected fuel quantity. Within their validity domain, the proposed polynomial
numerical models for this variable are good approximations of the real response functions, and their
trends (which can be expressed as first and second derivative) can be used instead of the trends of
the real (unknown) response functions to investigate the machine response to a change of fuelling
and to formulate interesting considerations. Also, considering that some blends present a different
composition (hence also LHV) but a very similar viscosity (D100 and B15, B25 and B25E; please see
Table 3), this entails that the fuel blend viscosity is the principal driver for a correct combustion of the
fuel and in determining machine performance more than the different LHVs of the blends. This is
displayed also by the high predictive capability of the torque model based on the kinematic viscosity
and the engine speed. Nevertheless, the same conclusion cannot be drawn for the variable related to
the fuel consumption (hourly fuel consumption) where, instead, the influence of the blend composition
(through the values of LHV) is evident and reasonable.

Table 16. Main data concerning the numerical models of several quantities as a function of the fuel
blend viscosity and of the engine speed.

Investigated
Response

Model
nr.

Regr. Eq.
Order

Fitting (on available cases) Prediction (on 6 cases)

R2 Adj. R2 Ave.
Error

Mean sq.
Error Ave. Error Mean sq.

Error

Torque [Nm]
nr. 1 (on
24 cases) 2 0.9806 0.9776 −0.08% 0.03% 0.40% 0.02%

nr. 2 (on
30 cases) 2 0.9865

(+0.0059)
0.9843

(+0.0067)
0.00%

(+0.08%)
0.03%

(+0.00%) - -

Hour cons
[g h−1]

nr. 1 (on
24 cases) 2 0.8608 0.8314 −0.18% 0.66% −0.86% 1.05%

nr. 2 (on
30 cases) 2 0.8571

(−0.0037)
0.8343

(+0.0029)
−0.06%

(+0.12%)
0.60%

(−0.06%) - -

NOx [ppm]
nr. 1 (on
24 cases) 2 0.9546 0.9538 1.65% 0.81% 7.56% 2.67%

nr. 2 (on
30 cases) 2 0.9397

(−0.0149)
0.9390

(−0.0148)
0.08%

(−1.57%)
0.68%

(−0.13%) - -

Ln (CO [ppm])
nr. 1 (on
24 cases) 3 0.9929 0.9928 −1.91% 2.02% −5.34% 2.88%

nr. 2 (on
30 cases) 2 0.9851

(−0.0078)
0.9850

(−0.0078)
−1.96%

(−0.05%)
3.52%

(+1.50%) - -

Ln
(Opacity [m−1])

nr. 1 (on
24 cases) 2 0.8781 0.8689 −7.14% 25.90% 18.95% 20.84%

nr. 2 (on
30 cases) 2 0.8616

(−0.0165)
0.8552

(−0.0137)
−13.17%
(−6.03%)

31.15%
(+5.25%) - -

Finally, although the models concerning the three factors related to environmental performances
of an engine (NOx and CO concentration, the opacity of exhaust gases) have a quite high R2 and
adjusted R2 (both above 0.87), they cannot be considered reliable in the point predictions of the system
response. Indeed, the high R2 values are due to the very complex models obtained by RSM (i.e., with
a high polynomial degree and perhaps with a logarithmic transformation of initial data), but the
high non-linearity of the response as well as the poor reliability of viscosity as indirect estimator for
these variables make it inconvenient to use these models to predict exclusively the above-mentioned
emissions. The very high values of the average error and mean squared error obtained by the first
model for the six control cases confirm this, especially for the NOx concentration and the opacity of the
exhaust gases.

Therefore, it is possible to conclude that RSM applied to the performance of ICEs can be applied
also in combination with the kinematic viscosity, but only for the prediction of the mechanical
performances of the ICE. Rather, the use of RSM applied on viscosity data is not recommended for
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pollution-related factors such as NOx concentration, CO concentration and the opacity of exhaust
gases, even though literature demonstrates that a physical correlation exists between these parameters
(viscosity and emissions).

In the following Table 17, the positive or negative correlations of each factor (column headings)
with the indicated response (row headings) are reported (30-case models only). A positive correlation
between a factor and a response indicates that, when the response value increases/decreases, an
increase/decrease of the factor value is detected, meaning that the first partial derivative of the response
with respect to the investigated factor has a positive value. Vice versa, there is a negative correlation of
a response with a factor when the increasing/decreasing of that factor causes a decrease/increase of
the response (being all other factors constant); in this case the value of the partial derivative of the
response with respect to the investigated factor is negative.

Table 17. Positive (+), negative (-) or complex (x) correlations of each factor (column headings) with
the indicated response (row headings); the investigated model is nr. 2 for each response.

Investigated
Response

Engine outputs as a Function of the Composition
of the Blends

Engine Outputs as a Function of
the Viscosity of the Blends

Biodiesel [%] Bioethanol [%] Engine Speed
[rpm]

Kin. Viscosity
[mm2 s−1]

Engine Speed
[rpm]

Torque [Nm] + - - x -

Hour cons [g h−1] x + + x +

NOx [ppm] + - - x -

Ln (CO [ppm]) - + - - x

Ln (Opacity [m−1]) - - x x -

In some cases, the trend of the response is not fully determined: for example, the response can
first increase and then decrease with the increasing of a factor, meaning that the first partial derivative
of the response, made with respect to the investigated factor, is not constant. There is also another
scenario to be considered only for the models using the blends composition as factors: the response
can increase with the increasing of a factor only for a set of values of the other factor and decrease in
other parts of the domain. In this case, the investigated first derivative has a dependence also with the
other factor. For both of these two cases a complex correlation is reported in Table 17, thus directing
the reader towards the graphical representations of the response surface.

As can be noticed, the dependence on the viscosity is complex in almost all the considered
responses. This is to be expected, since a single influence factor has been voluntarily considered over
a set of influence parameters, including e.g. the LHV and the density. In practice, when looking
at responses related to the mechanical outputs, the kinematic viscosity is a good descriptor for the
system response while the same parameter, even if not so influent, is not recommended for the
pollution-related responses.

5. Conclusions

This article presents the application of the RSM to the prediction of the performance and the
emissions of a tractor engine fuelled with different biofuels blends. The RSM is a numerical methodology
based on finding a local polynomial approximation of the response of a system while varying many
factors within a set validity domain. Its use is particularly indicated for very complex systems that can
hardly be described analytically or with a simulation, but require a quite wide set of cases with many
combinations of the values for the possible influencing factors. In particular, the numerical models for
torque, fuel consumption and emissions of CO, NOx and exhaust opacity have been assessed for a
New Holland T4020V farm tractor fuelled with five fuel blends of diesel oil, biodiesel and bioethanol
in different percentages.
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The application of the RSM indicated that the fuel composition (expressed as percentages of
alternative fuels in the blend) has clear effects on the above-listed engine performances (mechanical and
environmental outputs) and the related mathematical models show a high fitting (R2 > 0.90 for both
mechanical and environmental outputs) and predictive capabilities (absolute average errors spanning
from 0.38% to 5.62% on six check cases). Therefore, it can be concluded that RSM applied to fuel blend
composition is very effective in predicting the performance of an agricultural engine.

The kinematic viscosity, a physical parameter very easily obtained also for a fuel mix of unknown
composition, is a particularly powerful indirect estimator only for the mechanical outputs of the motor
(torque, hourly consumption) of this tractor. The average errors in the prediction of the outputs are
all below 0.86% in this case. Conversely, the study also demonstrated that the motor environmental
outputs (CO, NOx and opacity) cannot be reliably predicted by the kinematic viscosity and the engine
speed alone, indicating that those responses are influenced also by other not-negligible parameters.
Indeed, the RSM showed an acceptable fitting on the initial data (R2 > 0.86), but poor predictive
capabilities (absolute average errors above 5.34% on six check cases).

In all the illustrated cases (models using the percentages of alternative fuels in the blend or using
the kinematic viscosity), even if the predictive capability of the model is not high, the RSM proves to be
a very effective tool for experimenters and machine manufacturers. Indeed, the high fitting obtained
in all the RSM models indicates that the proposed numerical models adequately describe the system
response to a variation of the considered factors. Hence, the proposed polynomial models can be used
to investigate the effect of a change of fuelling on the machine response in term of increasing/decreasing
trends: the models can be used to formulate interesting hypothesis on the characteristics which the
fuel blends should exhibit before starting new experimental surveys.
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