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Statistical accuracy of molecular dynamics-based
methods for sampling conformational ensembles
of disordered proteins†

Adolfo Bastida, *a José Zúñiga,a Federico Fogolari b and Miguel A. Soler *b

The characterization of the statistical ensemble of conformations of intrinsically disordered regions

(IDRs) is a great challenge both from experimental and computational points of view. In this respect, a

number of protocols have been developed using molecular dynamics (MD) simulations to sample the

huge conformational space of the molecule. In this work, we consider one of the best methods

available, replica exchange solute tempering (REST), as a reference to compare the results obtained

using this method with the results obtained using other methods, in terms of experimentally measurable

quantities. Along with the methods assessed, we propose here a novel protocol called probabilistic MD

chain growth (PMD-CG), which combines the flexible-meccano and hierarchical chain growth methods

with the statistical data obtained from tripeptide MD trajectories as the starting point. The system

chosen for testing is a 20-residue region from the C-terminal domain of the p53 tumor suppressor

protein (p53-CTD). Our results show that PMD-CG provides an ensemble of conformations extremely

quickly, after suitable computation of the conformational pool for all peptide triplets of the IDR

sequence. The measurable quantities computed on the ensemble of conformations agree well with

those based on the REST conformational ensemble.

1 Introduction

The prevalence of proteins with intrinsically disordered regions
(IDRs) in eukaryotic genomes1 and the increasing evidence of
their important role in different biological processes,2–4 despite
lacking a folded three-dimensional structure, explain why their
study is nowadays an active research field.1,2,5–8 IDRs dynami-
cally explore their huge conformational space replete with local

minima separated by small free energy barriers that can be
overpass under physiological conditions. The image of a
unique native structure must then be replaced in IDRs by a
conformational ensemble. Consequently, the paradigms suc-
cessfully applied over decades to describe the functionality
of structured proteins (structures encoded in the amino acid
sequence, lock-and-key mechanism, effect of mutations, . . .) are
basically useless in describing the function and biological
evolution of IDRs and make it necessary to rework the
experimental9,10 and theoretical11,12 methods applied.

On the experimental side, nuclear magnetic resonance
(NMR) spectroscopy is the most widely used tool for probing
the properties of proteins with IDRs at atomic resolution.9,10

Chemical shifts (CSs), scalar couplings (SCs), and residual
dipolar couplings (RDCs) provide averaged information about
the backbone dihedral angle distributions and/or the long-
range contacts between distant parts of the molecule. NMR
data can be complemented by small angle X-ray scattering
(SAXS) or small angle neutron scattering (SANS),13 which probe
the apparent size of proteins in solution. Other techniques10

such as Förster resonance energy transfer (FRET) and nuclear
paramagnetic relaxation enhancements (PREs) have been used
much less extensively. In practice, the number of experimental
observables is always many orders of magnitude smaller than
the size of the conformational ensemble, so the IDR ensemble
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reconstruction from the measured data14,15 is a task full of
uncertainties complicated by the fact that different ensembles
may provide the same experimental results within the error
resulting after averaging.10,14,16–19

On the theoretical side, molecular dynamics (MD) simula-
tions are the standard tool to simulate the dynamics of a
protein with IDRs. Their limitations are mainly concentrated
on two independent factors,20–22 which are the inaccuracies of
the force field and the difficulties in achieving statistical
convergence of the structural sampling of the IDR. The recent
optimizations of force fields specifically for IDRs have proved
their reliability to reproduce accurately experimental structural
data when the statistical sampling of the simulations is
adequate.18 Therefore, the most important challenge currently
facing MD is to achieve the statistical convergence of the
generated conformational ensembles.

In this work, we compare the reliability and computational
efficiency of different MD-based methods to build conforma-
tional ensembles, using as a quality criterion their ability to
converge the NMR and SAXS variables. We selected these
particular descriptors since they represent the true linkage with
the experimental information of IDRs.18,22–26 As other collective
variables, NMR and SAXS variables reduce the dimension of the
conformational ensemble while keeping some representative
structural information of the IDRs (see the Methods section
2.1). Extensive comparative analysis of these descriptors with
other structural variables allows us to determine in this work
the degeneracy of the conformational states and the loss of
structural information associated with their employment.

In order to suppress the force field accuracy factor from our
comparative study, we use as references the computational
results for NMR and SAXS data obtained from replica exchange
solute tempering (REST)27 simulations, since they provide at
present the most accurate statistical sampling in IDRs.18,28,29

The other MD-based methods evaluated in this work are
standard MD simulations, the Markov state model approach
(MSM),30,31 and a novel method, called probabilistic MD chain
growth (PMD-CG), both based on the flexible-meccano23,32–34

and the hierarchical chain growth24,26,35 approaches. Likewise,
we have discarded in our comparative study coil libraries-based
approaches since the force field accuracy as well as the statis-
tical robustness of the coil libraries for certain amino acid
triplets would hinder the direct comparison between the
method performances and accuracy.

The IDR selected in this work is a 20-aa region (364–383)
from the C-terminal domain of p53 tumor suppressor protein
(p53-CTD). This region has been extensively studied36–39 due to
its essential role in the functionality of p53 as a transcription
factor. Nevertheless, the regulation mechanisms of p53-CTD
are still a work-in-progress because of its structural versatility in
adopting different secondary motifs when bound to receptors,
while its structure remains disordered in solution.37,38

Overall, our work aims to be a practical guide for researchers
who need to interpret experimental NMR and SAXS data of
proteins with IDRs, assess the quality of the force fields used,
analyze the effect of mutations in the protein chain or predict

the presence of particular motifs in conformational ensembles,
among other possible applications.

2 Methods
2.1 Dimensionality reduction of conformational ensembles
in IDRs

MD simulations are severely restricted by the computational
effort needed to guarantee the complete exploration of the
conformational space of the molecule. To illustrate this point,
let us make the following simple but reliable estimation. Let us
consider an IDR with N residues, each adopting different Ci

conformations. The total number of molecular conformations

is then
QN

i¼1
Ci. Even if we assume a coarse grained description of

the conformational space of each residue, for instance by
defining three regions such as the typical helix, the extended
and other conformations, so that Ci = 3, and a relative short
peptide with 20 residues, the total number of molecular
conformations40 is of the order of 109 (see Fig. 1a). It is true
that some molecular conformations may not be viable due to
the presence of clashes, but our tests show that this is only a
fraction of the total that does not modify the order of magni-
tude of the number of conformations.

Our simulations also show that the averaged time required
for at least one residue to change its conformation, is of the
order of tens of picoseconds. Accordingly, the hypothetical
simulation time required to visit at least once each molecular
conformation is of the order of milliseconds. Considering that
each conformation would have to be visited many times to
obtain reasonable statistics, since the molecular conforma-
tions are not equiprobables, we conclude that generating a
complete conformational ensemble of IDRs is computationally
prohibitive.

The alternative is to perform a dimensionality reduction, i.e.
to generate reduced conformational ensembles representative
of the whole conformational ensemble and able to reproduce a
given set of properties. The choice of the experimental obser-
vables described in the introduction as the average values to be
reproduced seems a practical option. In fact this strategy has
been used to evaluate the quality of conformational ensembles
generated using different approximations.18,22–26

2.2 MD-Based methods to generate conformational
ensembles

The first MD-based method considered is a new method but
was largely inspired by two groups from earlier works. In the
first group,23,32–34 that we will refer to as flexible-meccano
methods, the molecular conformational ensembles are built
using the conformational data of individual residues extracted
from the so-called coil libraries (see ref. 41 and references
therein), which include residue-specific (f, f) dihedral angle
distributions from fragments of experimental protein struc-
tures that do not form well-defined secondary structures.
In the second group,24,26,35 a hierarchical chain growth (HCG)
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approach is used to build conformational ensembles by assem-
bling the structures of fragments with 3–6 residues previously
obtained through independent MD simulations into full-length
IDRs. We merge both methods by taking advantage of our
recent work40 in which we showed that the probability of an
IDR molecular conformation can be described properly as the
product of conformational probabilities of each residue, con-
ditioned to the identity of the residue neighbours. As a result,
we can obtain the conformational probabilities of the central
residue of every triad in the IDR molecule from independent
MD simulations of the corresponding tripeptides. Basically,
this method, which we refer to as probabilistic MD chain
growth (PMD-CG), is identical to the flexible-meccano methods
but uses the results from MD simulations of the tripeptides
instead of the coil libraries as the source of the statistical
distributionst. The main difference with respect to the HGC
method is that we do not store a pool of structures of the
fragments to be later assembled since only statistical informa-
tion is transferred from the MD simulations of the tripeptides.

The second MD-based method is simply to perform stan-
dard MD simulations of the IDR molecule. We are aware that
the accumulated simulation time (2 ms) employed for every
approach for the sake of comparison in this work, may not be
long enough to obtain an accurate statistical sampling18,29 in

certain physical variables. However, this circumstance will
allow us to verify the influence of two important factors on
the sampling of the conformational space of the IDRs which are
the choice of the initial configurations of the molecule24 and
the time length of the individual trajectories.22,42 From a
computational point of view, performing many short simula-
tions instead of fewer longer ones is always advantageous since
the calculations can be straightforwardly distributed without
any lack of computational performance.

The third MD-based method considered is a Markov state
model (MSM).30,31 MSMs have been used to describe conforma-
tional ensembles in earlier studies29,43–48 following a similar
strategy. First, a long MD trajectory is carried out using an
enhanced sampling MD simulation, and then the structures
generated are clustered to create a MSM using some collective
variables (CVs) from which the weights of each cluster of
structures is evaluated. Of course, the success of this metho-
dology strongly depends on the ability of the initial MD
simulation to extensively explore the molecular conformational
space, which is always questionable in proteins with IDRs. In
this work we prefer to use the initial formulations of the MSMs
based on the exploration of the conformational space using
short simulations,49–51 where the collective variables are chosen
a priori and an adaptive sampling method52 is used to force the

Fig. 1 (a) Virtual number of conformations on the basis of the number of residues of the IDR if just three conformational regions (helix, extended and
others) are defined in the Ramachandran map of each residue’s backbone dihedral angles. (b) Graphical representation of the 20-aa region (364–383)
from the C-terminal domain of p53 tumor suppressor protein (p53-CTD).
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system to visit conformational regions with low probabilities,
that would be rarely visited in an unrestricted MD simulation.

The fourth MD-based method consists of using an enhanced
sampling MD approach. In this case we focus on replica
exchange solute tempering (REST) simulations, which have
already been used to successfully generate conformational
ensembles of IDRs.18,28,29,44 The REST method has been
used27,53 as an efficient alternative to the more traditional replica
exchange (or parallel tempering) MD (REMD) approach,54 in which
the simulation of several replicas of the same system although at
different temperatures is performed in parallel. After a certain
period, the exchange between the coordinates of neighboring
replicas is attempted with a Monte Carlo procedure. A known
issue of the REMD method27 is that the number of replicas
necessary to cover a certain range of temperatures grows with
the system size (including the solvent), since the whole system is
being accelerated by increasing the temperature. In the REST
approach, only the protein–protein and protein–water interactions
are scaled, so that the mimicked temperature is increased only on
the protein while the temperature of the solvent is maintained.
Accordingly, the replica with the lowest temperature (the unbiased
replica in which protein and solvent have the same temperature) is
the only one that provides a correct statistical distribution.

2.3 Computational details

MD simulations of the A364HSSHLKSKKGQSTSRHKKL383

peptide (see Fig. 1), which has a sequence taken from the
C-terminal IDR domain of p5337 (p53-CTD), were carried out
in order to test the reliability of the molecular conformational
ensembles provided by the different approximations described
below. This peptide with an heterogeneous sequence has been
previously used as a test system in our previous study on the
characterization of IDR ensembles through probabilistic
expressions.40 In addition, MD simulations of the 18 tripep-
tides encoded in the peptide sequence (AHS, HSS, . . ., HKK,
KKL) were performed. All molecules were blocked using acetyl
and N-methyl groups.

MD simulations were carried out with the molecules dis-
solved in water using the GROMACS package v2021.2.55,56 Each
solute molecule was surrounded by a number of water mole-
cules ranging from 900 to 12000 (depending on the length of
the peptide) and placed in a cubic box of a size chosen to
reproduce the experimental density of the liquid at room
temperature. All the molecules were described using the
CHARMM36m57 force field and the flexible TIP3P model was
used for the solvent water molecules. This force field has been
shown58,59 to provide a good representation of proteins with
IDRs. Periodic boundary conditions were imposed in the simu-
lations using the Particle–Mesh Ewald method to treat the long-
range electrostatic interactions. All H–X bonds were kept fixed
using the LINCS algorithm.60 The equations of motion were
integrated using a time step of 2 fs. All simulations were carried
out in a NVT ensemble by coupling to a thermal bath using the
stochastic velocity rescaling method by Bussi et al.61

2.3.1 MD simulations of tripeptides. Every system was
equilibrated following a two-step method. In the first step,

the system was propagated during 1 ns at 500 K to allow
extensive exploration of the molecular conformational space.
In the second step, the system was equilibrated at 298 K during
1 ns. This procedure was repeated 100 times for every molecule.
Each of these 100 initial configurations were propagated during
10 ns generating the same number of trajectories. During these
production runs, the values of the dihedral angles were written
every 10 fs. From these data we computed the 2D histograms of
the (f, c) dihedral angles, the 1D histograms for the o dihedral
angle and the 1D histogram of the C–N, Ca–C and N–Ca

interatomic distances of the backbone chain. The resolutions
of the histograms were 11 and 0.02 Å for the angles and
distances respectively.

2.3.2 Probabilistic MD chain growth (PMD-CG). Molecular
conformations of the peptide were built using a protocol
similar to that employed in the flexible-meccano methods.
In particular, we basically followed the steps detailed in the
DIPEND tool,33 the main of them being:
� An extended initial conformation was built using open-

source Pymol v2.3.0.62

� Values of the f, c and o dihedral angles and the C–N,
Ca–C and N–Ca distances were randomly selected from the
corresponding histograms of the tripeptides taking into
account the identity of the nearest neighbour residues. Angles
and distances were modified using Pymol62 and Chimera
v1.16,63 respectively.
� Non-backbone atoms were erased and the side chains were

placed again using SCWRL4.64 Some tests were also performed
using FASPR,65 showing that the results were largely unaffected
by the choice of either of the two packages.
� The resulting molecular structures were tested for the

presence of steric clashes using Chimera with default para-
meters. If a clash was detected, the structure was discarded.
Approximately one third of the structures was found to pass the
clash test.

These steps were repeated until generating 40 000 molecular
conformations. A summary work-flow is shown in Fig. 2 to help
understand how the PMD-CG method works in practice.

2.3.3 MD equilibration. Two different sets of equilibrated
systems were calculated. The first one was generated from a
common extended conformation of the peptide. To facilitate
the exploration of the conformational space, we followed a two-
step method as in the case of tripeptides. In the first step, the
system was propagated during 2 ns at 500 K to allow explora-
tion of the molecular conformational space. In the second step,
the system was equilibrated at 298 K during 5 ns. These
structures were simply referred to as standard MD (S-MD)
structures. The second set took as starting point one of the
conformations generated using the PMD-CG method chosen
randomly. Since these structures were already generated to
explore the conformational space of the peptide, the high-
temperature step was not necessary and the system was equili-
brated only at 298 K during 0.5 ns. These structures were
referred to as PMD-CG-MD structures. These two procedures
were repeated to generate as many equilibrated structures as
required.
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2.3.4 Standard MD production runs. Each initial equili-
brated configuration was propagated during 1, 10 or 100 ns,
exporting the results every 1 ps for further analysis. In every
case, the total number of trajectories was that necessary to
reach an accumulated propagation time of 2 ms, leading to
2000, 200 and 20 trajectories, respectively. For the 10 ns runs,
two independent production sets were carried out using the
equilibrated trajectories from the S-MD and PMD-CG-MD
structures as starting points. 1 ns and 100 ns trajectories were
only generated from the PMD-CG-MD structures.

2.3.5 Markov state models. Each MSM trajectory was
composed of 200 segments corresponding to short MD simula-
tions of 50 ps. The initial conformations of each segment were
chosen from one previously visited using the adaptive sampling
method52 in order to force the system to visit conformational
regions with low probabilities that would be rarely visited in an
unrestricted MD simulation. The time length of the segments
was chosen as a compromise between two factors. It must be
long enough to allow conformational changes of the molecule
which places its value in the order of tens of picoseconds at
least. Simultaneously it must be short enough to allow an
efficient exploration of the collective variables space through
the adaptive sampling method. Three independent sets of MSM
simulations were carried out using two collective variables
(CVs) to map the conformational space to be chosen among
the radius of giration (Rg), the end-to-end distance (dee) and the
sphericity (g). The corresponding intervals were Rg A (0.5 nm,
2.0 nm), dee A (0 nm, 7.5 nm) and gA (0, 1), which were divided
into 50 bins. For the Rg–g MSM calculations, two independent

production sets were carried out using the equilibrated trajec-
tories from the S-MD and PMD-CG-MD structures as the start-
ing point, and for the Rg–dee and dee–g MSM calculations only
the initial PMD-CG structures were considered. 200 indepen-
dent trajectories were thus run in every case to reach an
accumulated propagation time of 2 ms exporting the results
every 1 ps for further analysis. Equilibrium populations
were obtained using standard procedures and the maximun
likehood estimate method66 was applied to assure detailed
balance.

2.3.6 REST. We employed the replica exchange with solute
tempering 2 method (REST2)53 as implemented in GROMACS
(v.2021.7)67 patched with PLUMED (v.2.9.0).68,69 All p53-CTD
atoms were selected for the scaling of the solute–solute and
solute–solvent interactions. Eight replicas of p53-CTD in water
at the effective solute temperatures of 298, 310.8, 324.1, 338.1,
352.6, 367.7, 383.5 and 400 K were run in order to ensure an
exchange probability of approximately 0.3 between all replicas.
The coordinate exchange was attempted every 500 steps. Two
REST simulations at constant NVT for 1.1 ms were performed.
The first 100 ns were considered an equilibration period and
therefore discarded from all production runs. For analysis, only
the unscaled replica at T = 298 K was employed. Snapshots of
the system were saved every 10 ps during the production phase.

2.3.7 Calculation of experimental magnitudes. We used
standard tools to evaluate the J-couplings,10,33 the chemical
shifts,24,26,41 the residual dipolar couplings (RDCs),26,33 and the
SAXS profiles41 from the IDR ensembles generated using the
different MD-based methods. The J-couplings were evaluated

Fig. 2 Work-flow of the PMD-CG method.
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using parametrized Karplus70,71 equations included in the chi
module of GROMACS.55,56 The NMR chemical shifts were
calculated with SPARTA+,72 the RDCs with PALES,73 and the
SAXS profiles with CRYSOL.74 In order to compare the results
from the different MD-based methods we have fixed the total
accumulated propagation time equal to 2 ms. In order to
measure the statistical confidence of the results for every
magnitude, we evaluated their standard deviations using a
block averaging approach in which the conformations gener-
ated in every MD-based method were split into four groups of
the same size.

3 Results and discussion

The performance of three validated MD-based sampling meth-
ods, i.e. MD, Rg–g MSM and REST with the initial S-MD
structures, was first evaluated in an IDR system by comparing
the different NMR and SAXS variables obtained from their
trajectories (see the Methods section 2.3.7). Since the three
approaches employ the same force field, system and condi-
tions, our first analysis focused on the evaluation efficiency
of each sampling method to provide statistically converged
conformational ensembles for these variables at equal
(computationally accessible) simulation length times.

In principle, it is expected that the conformational ensembles
from the three methods are equivalent at infinite simulation times

but they may reach convergence at completely different time
scales. The average values of J-couplings, chemical shifts, RDC
and SAXS intensities obtained from each method are shown in
Fig. 3. For the sake of clarity, the standard deviation bars are
hidden for each average value in Fig. 3, while the average standard
deviations of each experimental-based variable are shown in
Fig. 4a for all three methods.

The variables studied plotted in Fig. 3 show, in general,
similar profiles for the three different approaches. However,
significant differences are found in some variables, such as the
RDC and the SAXS intensities (Fig. 3f and j), in which the REST
data clearly differ from those obtained from MD and MSM
trajectories. The standard deviation calculated by block analy-
sis is an indicator of the convergence of the associated average
value.20 Comparison of the standard deviations associated with
these (and indeed for all) variables in Fig. 4a shows that the
REST results have the lowest values. This agrees with previous
computational works in IDRs that demonstrate the high effi-
ciency of the REST method to provide accurate conformational
ensembles in affordable computational times.18,29,44 Also, the
poor convergence obtained in other variables extracted from
MD trajectories is expected, in agreement with the same pre-
vious works already showing that longer simulation times
(from 5–30 ms) are needed to obtain convergent results from
standard MD trajectories for IDRs of similar length. MSM
methods have the highest average standard deviations in most
of the variables.

Fig. 3 NMR and SAXS variables obtained from REST, MD and Rg–g MSM using the S-MD structures and PMD-CG conformational ensembles of p53-
CTD. Average values of (a)–(e) J-couplings, (f) SAXS intensities, (g)–(i) chemical shifts and (j) RDC couplings.
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We therefore conclude that the conformational ensembles
of p53-CDT obtained from REST trajectories can be considered
as the reference for the comparison with the other MD-based
approaches. Accordingly, the results obtained from REST tra-
jectories were used as a reference to calculate the root mean
squared error (RMSE) for all the NMR and SAXS variables
obtained from MD and MSM trajectories (see Fig. 4b).

3J-Couplings measure the spin–spin interaction between
atoms at a distance of 3 bonds, and they can offer local
structural information via Karplus equations. Four backbone
and one side-chain 3J-couplings have been evaluated from our
trajectories. Certain J-coupling variables show higher differ-
ences than others. In particular, the 3JCi�1Ha

, which involves the
peptide bond between two residues, are those who show the
highest RMSE among all J-couplings. The differences between
the RMSE values of the MD and MSM results are small and not
significant as accounted for by their standard deviations.

Chemical shifts from 13C NMR spectra have been used
extensively in the structural studies of proteins. Their dependence
on the protein structure is very sensitive and complex. Many
structural factors, such as the backbone and the side-chain angles,

the identity of neighboring residues, the interaction with aro-
matic groups, the hydrogen bonding, the solvent exposure or
the geometric distortions, affect the chemical shift values.
Among the 13C chemical shifts analyzed, the highest differ-
ences are found in Cb where the values extracted from MD and
MSM trajectories are consistently lower than those obtained
with REST trajectories. Also, in this case the differences
between the RMSE values extracted from the MD and MSM
results are not significant.

The dipolar couplings between nuclear spins are typically
averaged to zero by molecular tumbling in isotropic media. In
weakly orientating media or as an effect of the molecular
magnetic susceptibility anisotropy, residual dipolar couplings
(RDC) can be present and measured in specific NMR experi-
ments. Also, software based on the molecular geometry is
available to predict the RDC measured for the weakly aligned
molecule. The interesting feature of the RDCs, similar to that of
the SAXS intensities, is that they depend on non-local confor-
mational features, in contrast with the chemical shifts and the
J-couplings, which depend mostly on the local conformation.
The RMSE values are similar for both methods and both

Fig. 4 (a) Average standard deviations, and (b) root mean square errors (RMSE) of the NMR and SAXS variables obtained from REST, MD and Rg–g MSM
using the S-MD structures and PMD-CG approaches. RMSE values have been calculated with respect to the REST results. The standard deviation and
RMSE units are the same as each variable unit as given in Fig. 3. The corresponding values for RDC have been divided by 10 and those for SAXS have been
multiplied by 500.
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underestimate the RDC values, although the shifts are more
erratic for those from the MSM values.

The scattering intensity obtained from the small angle X-ray
scattering (SAXS) method provides information about the over-
all shape and size of the proteins. The SAXS profiles obtained
from MD and MSM are very similar, although both differ from
the reference REST results at low values of the scattering vector.
The curve profile in this region is related to the globular,
partially or completely unfolded shape of the protein. The
Kratki representation of the data in Fig. S1 (ESI†) is generally
used to better understand the folding state and flexibility of the
proteins.75 The profiles obtained from MD and MSM corre-
spond to pure unfolded protein profiles. On the other hand, the
shallow maximum before the plateau in the REST profile may
indicate that in these trajectories the peptide has explored
certain folded conformations with higher probability.

In order to assess the significance of the errors affecting the
predicted NMR observables, we considered the median of the
experimental errors of the same observables as stated by the
authors of entries deposited in the biological magnetic reso-
nance database (BMRD).76 All entries were downloaded and the
statistics of the stated errors in the relevant quantities were
assessed. Apparently wrong – very large or non-numeric –
values were removed from the list of stated errors and their
mean and median were computed. Although the median and
the mean were very close in all cases, the average is reported
here as it is the most representative of the majority of fre-
quently declared errors. These results are given in Table 1.

It is apparent that for the J-couplings, the RMSEs behave
well with respect to the REST results, within the mean experi-
mental errors, which means that all the approaches reproduce
experimentally the distribution of the intervening torsion
angles. Similarly, the RMSE of the selected carbon chemical
shifts are within the median error (0.2 ppm). For the RDCs the
RMSE of MSM and MD methods are circa three times larger
than the median error value of BMRB entities, showing that the
differences are significant. As for the SAXS measurements, the
estimation of the experimental error is complex and many
mathematical models have been proposed for this task. A recent
model77 that takes into account the measurement process and the
setup geometry, estimates the experimental relative error under
different measurement conditions to always be less than 1% for
small scattering angles, i.e. where our results show the largest

differences. The SAXS RMSE values of MD and MSM methods
show significantly highest values (4� 10�4 a.u.) than the 1% of the
intensity values obtained at q o 0.2 Å.

To better understand the relationship between the NMR and
SAXS variables and the structural ensembles provided by the
MD-based trajectories, three structural collective variables, the
radius of gyration (Rg), the end-to-end distance and the aspheri-
city, are depicted in Fig. 5.

Table 1 The median of the experimental errors of the principal NMR
observables obtained from the biological magnetic resonance database76

Exptl. quantity Error

3JCi�1Ha
0.35 Hz

3JHNC 0.35 Hz
3JHaNi+1

0.25 Hz
3JHNHa

0.5 Hz
3JHNCb

0.35 Hz
dCa

0.2 ppm
dCb

0.2 ppm
dC 0.2 ppm
RDC (HN-N) 1 Hz

Fig. 5 Structural variables obtained from REST (solid black), MD (long
dashed red), MSM (short dashed blue) and PMD-CG (dash-dotted green)
conformational ensembles of p53-CTD. Histrogram profiles of the (a)
radius of gyration (Rg), (b) end-to-end distance, and (c) asphericity.
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The results obtained for the Rg and the asphericity contrast
with the general trend observed for the NMR and SAXS vari-
ables, which show similar RMSE results for the MD and MSM
trajectories. The curves extracted from the MD trajectories show
a shoulder at low Rg values while achieving their maxima at
higher values than the curves provided by MSM trajectories.
This profile is similar to that obtained from the reference REST
simulations. A similar behaviour is found for the asphericity
curves. Both variables provide slightly different structural
information. Rg focuses on the compactness of the molecule,
with 0 corresponding to the maximum of compactness, while
the asphericity indicates how much the protein deviates from
the spherical shape, with 0 corresponding to a perfect sphere
and 1 corresponding to a thin rod. Therefore, the population of
extended structures seems to be significantly higher in the
conformation ensembles obtained from MD and REST trajec-
tories than the one obtained using the MSM method. Moreover,
the maxima of the end-to-end distance curves show a shift
towards higher distances for the REST curve, as compared with
those from the other methods, indicating that there are certain
differences in the conformations explored via the different
methods.

In order to complete our analysis, three additional structural
descriptors, i.e. the solvent-accessible surface area (SASA), the
number of H-bonds and the secondary structure content (helix
and strand), were evaluated along the trajectories for each
method (see Fig. S2, ESI†). A comparison of the distribution
of the solvent-exposed surface values among the three protocols
is complementary to the end-to-end distance results, in which
the maxima of MD and MSM curves are shifted with respect to
the reference one (REST). The distribution of the number of H-
bonds and the secondary structure content give specific, mean-
ingful information about the probability of the formation of
compact, structured conformations inside the conformational
ensembles generated with each MD-based protocol. Both
descriptors show the higher probability of secondary structures
containing a high number of H-bonds (4–6) in the REST
conformational ensemble with respect to those obtained from
MD and MSM.

Overall, the MD and MSM results provide similar descrip-
tions of the variables considered, with reasonable estimates of
the J-couplings and the chemical shifts which are related to
local structural information, whereas the RDCs and SAXS
profiles, which are related more to the global shape and
orientation of the disordered peptide, show significant devia-
tions from the reference REST results.

3.1 Evaluation of the PMD-CG method

We next analyze the performance of the PMD-CG method. Forty
thousand different conformations were generated for this
purpose using a flexible-meccano protocol (see the Methods
section 2.3.2 for details), and then the NMR and SAXS variables
were calculated. The resulting values are shown in Fig. 3, while
their standard deviations and the RMSE values with respect to
the REST results are displayed in Fig. 4. The average standard
deviations included in Fig. 4a just confirm the robustness of

the average values obtained from the constructed conforma-
tional ensemble.

As observed in Fig. 4, the backbone J-coupling RMSE values
are similar to those from the other methods. However, for two J-
couplings, the RMSE values are higher than those obtained
from the MD and MSM trajectories. As for the chemical shifts,
the RMSE values are greater for the 3 C atoms. Moreover, Fig. 3
shows a general shift towards higher values in dCb

, while the
shift occurs towards lower values in dC. There are also shifts in
dCa

with respect to the reference values but without any clear
trend. The overall differences in chemical shifts and J-couplings
are consistent with lesser sampling of compact conformations,
such as alpha-helix structures. For the RDC and the SAXS
variables, the PMD-CG conformational ensemble is signifi-
cantly more accurate than the ensembles obtained from MD
and MSM.

Likewise, we have calculated the three structural variables
from the PMD-CG conformational ensemble, with their curves
included in Fig. 5. For the Rg and end-to-end curves, their
maxima are located at similar values compared with the
reference maxima in the REST method. However, significant
differences are found in the shape of the curves, with the
narrower PMD-CG curves showing a significantly lower popula-
tion for the compacted conformations, in consonance with the
differences observed in the chemical shifts and the J-couplings.
The same behavior appears in the SASA distribution curves in
Fig. S2 (ESI†), in which the lowest values of SASA correspond to
the compacted conformations. The analysis of the distribution
of H-bonds and secondary structure content probability in the
PMD-CG ensembles (Fig. S2b and c, ESI†) just indicates the very
low H-bond formation probability. This result is expected due
to the stochastic nature during the construction of the IDR
conformation in the PMD-CG protocol, since the creation of
specific H-bonds between residues within the distance and
angle cut-offs would require the support of post hoc, refine-
ment protocols, such as energetic minimizations, or short MD
simulations. In contrast, the asphericity data show that the
shape distribution is similar to those from the REST and MD
trajectories.

It should be highlighted that the differences between the
PMD-CG and REST results are not due to convergence issues (as
seen in Fig. 4a), as partially occurs with MD and MSM results,
but rather to the accuracy of the PMD-CG approach. Two
different factors can mainly influence the quality of the results,
the prediction of the backbone conformational distribution
from the tripeptide library, and the prediction of the side-
chain distribution by a side-chain predictor, i.e. Scwrl4. To
evaluate separately both factors, we have analyzed the distribu-
tion of the dihedral angles f, c, and w1 of the peptide in the
different conformational ensembles. In Fig. 6 we depict the
Pearson correlation of the Ramachandran histograms and the
w1 histograms from MD, MSM, REST and PMD-CG ensembles
with respect to the tripeptide histograms. These results show
that the backbone dihedral distribution of the tripeptides and
the p53-CTD obtained from the 4 methods are similar (Fig. 6a),
in agreement with our previous work.40 Therefore, the lower
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representation of more compacted conformations in the con-
formational ensemble obtained from the PMD-CG seems to be
uncorrelated with possible inaccuracies to predict the back-
bone conformational ensemble of the peptide.

The correlations of the w1 distributions obtained from MD,
MSM and REST with respect to the tripeptide distributions are
also very high (Fig. 6b). However, the distribution obtained
from the PMD-CG method shows very low correlations for all
the p53-CTD residues, indicating that the side-chain dihedral
distributions obtained from the Scwrl4 are significantly differ-
ent compared with the distributions obtained from the other
methods and also of those calculated with the tripeptides.
Direct comparison between the w1 distributions from the REST
and PMD-CG conformational ensembles in Fig. S3 (ESI†) shows
that for both distributions the maxima of the curves are located
in similar w1 values, but the curve widths of the PMD-CG
ensemble are significantly narrower than those obtained from
the REST method, as a consequence of building side chains
from a library of rotamers. A similar conclusion holds for
independent molecular dynamics simulations when side-
chains are reconstructed on a set of 55 diverse proteins78 and
the predicted side-chain dihedral angles are compared with the
experimental values. The distributions for the w1 angles of the
Scwrl4 side-chain peaks at about the same values as the original
distributions, although with a significantly lower dispersion
(see Fig. S4, ESI†).

The differences in the conformational distribution of the
amino acid side-chains may certainly affect the accuracy of the
J-coupling and chemical shift results, which take into account
the local structural environment. However, the lower popula-
tion for the compacted conformations observed in the end-to-
end descriptor only depends on the backbone of the conforma-
tional distribution. This behavior could be related to the
rejection of locally clashing compact conformations in
the peptide building phase of the PMD-CG method (see the
Methods section 2.3.2). To confirm this, we have performed
further analysis of the distances between the backbone Ca

atoms of residues separated by a gap of 2 amino acids
(i.e. between ith and ith + 3 residues). The probability distribu-
tion of interatomic distances in Fig. S5 (ESI†) indeed shows
high similarities between the REST and the PMD-CG ensembles
except for the lowest values, associated with compacted peptide
structures, for which the REST ensemble shows probabilities
slightly higher than those from the PMD-CG curves. These
results confirm the under-population of the most compacted
peptide structures in the PMD-CG method, due to their rejec-
tion during the clashing test phase. When assembling the
fragments, we note that very small variations – of a few units
of degrees – in the local geometry can lead to significant
displacements along the peptide chain, and therefore to
clashes. This issue is enhanced when constructing compact
conformations, such as the a-helix structure, in which the
interatomic distance windows are significantly narrow.

3.2 PMD-CG conformation ensemble as a pool for MD
starting structures

Despite its limitations, the PMD-CG method provides, in prin-
ciple, a good statistical accuracy for certain collective variables,
such as SAXS intensities or RDC. Therefore, we propose the use
of the PMD-CG conformational ensemble as a pool for the
selection of the starting structures of the MD-based approaches.
In Fig. 7 we compare the standard deviation and the RMSE values
of the NMR and SAXS variables obtained from new MD conforma-
tional ensembles extracted from the PMD-CG conformations as
starting structures, with the previous data.

First, we observe that the standard deviations of the MD and
MSM results obtained using the PMD-CG structures are smaller
than those coming from the S-MD ones, that is, there is an
improvement in the convergence. And more importantly, the
RMSE values for the RDC and SAXS magnitudes are substan-
tially reduced when employing the PMD-CG conformational
ensemble as a pool of MD starting structures and are now
similar to the mean experimental errors. Indeed, the curves of
the three structural variables obtained from MD and MSM
trajectories starting from the PMD-CG conformations (see
Fig. S6, ESI†) are more similar to those from the REST trajec-
tories than the values obtained from the original MD and MSM
trajectories starting from the S-MD structures. On the other
hand, J-couplings and chemical shifts, which account for local
structural information, show, in general, minor variations in
their performance. Nevertheless, the RMSE values of those
variables previously showing the highest values, such as 3JCi�1Ha

Fig. 6 Pearson correlation coefficients for the (a) Ramachandran (f, c
dihedral angles) and (b) w1 dihedral angle histograms obtained from REST
(triangle black), MD (circle red), MSM (square blue) and PMD-CG (diamond
green) conformational ensembles of p53-CTD with respect to the histo-
grams obtained from the MD conformational ensembles of the equivalent
tripeptides.
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and dCb
, now decrease. We have also observed (results not

shown) that the use of PMD-CG starting structures, instead of
the S-MD ones, in the REST method barely affects the results as
expected from the ability of the method to explore large regions
of the conformational space independently of the initial struc-
tures of the replicas.

Other parameters that can be explored to optimize the
performance of the MD simulations in IDRs are the number
of trajectories and the trajectory lengths, while keeping con-
stant the accumulative simulation time (2 ms). The use of many
independent short MD simulations rather than few long-time
trajectories in biomolecular systems has already been
recommended.22 Nevertheless, the employment of very long
MD time lengths in IDRs is still common practice.18,29 Accord-
ingly, two additional sets of MD simulations, i.e. 20 trajectories
at 100 ns and 2000 trajectories at 1 ns, have been performed.
Likewise, both MD sets have used the PMD-CG conformational
ensemble as a selection pool of starting structures. The statis-
tical sampling evaluation of the NMR and SAXS variables have
been added to Fig. 7c and d. These results show that the
different time length of the trajectories indeed influences the
sampling quality of NMR and SAXS variables. The standard
deviations obtained from the 100 ns trajectory set are clearly
the highest. On the other hand, the 1 ns trajectory set has the
lowest standard deviation values in all calculated variables.
This confirms that the use of a larger number of different initial
structures favors the exploration of the conformational space
and therefore accelerates the convergence of the results. The

comparison with the reference average values (Fig. 7d) shows
that the accuracy of certain variables to reproduce the reference
values are more sensitive than others from the different simu-
lation time lengths. Thus, RDC and SAXS intensities show again
the greatest differences among all the different conformational
ensembles, following the same trend of the standard deviations,
i.e. the shortest the time length and the highest the number of
independent trajectories the lowest the RMSE values with respect
to the REST values. Regarding the NMR variables offering local
structural information, the influence of the time length is just
minor, since similar RMSE values are obtained in all J-couplings
and chemical shifts for the 10 and 1 ns trajectories. Nevertheless,
dCb

shows again certain differences, since the RMSE obtained from
100 ns trajectories is higher than the other two.

As far as the MSM approach is concerned, the employment
of different pairs of collective variables to map the conforma-
tional space has also been explored to optimize the statistical
sampling of the MSM conformational ensembles. Thus, two
additional sets of MSM trajectories have been performed by
using the pairs of CVs Rg–dee and dee–g, respectively. The
resulting convergence study of the NMR and SAXS variables
depicted in Fig. S7 (ESI†) shows that the employment of
different CVs in the MSM approach barely affects the accuracy
of the analyzed variables.

3.3 Computational effort

Considering the computational times of each method, the total
computational time of the PMD-CG method, tPMD-CG, is spent

Fig. 7 Influence of the use of the PMD-CG ensemble as the starting structure pool for MD-based simulations. (a) Average standard deviations, and
(b) root mean square errors (RMSE) of the NMR and SAXS variables obtained from REST (black triangle), MD (red circle) and MSM (blue square).
Comparison of (c) average standard deviations, and (d) RMSE of the NMR and SAXS variables obtained from MD trajectories at different time lengths:
100 ns (maroon diamond), 10 ns (red circle) and 1 ns (orange triangle). RMSE values have been calculated with respect to the REST results. For the MD and
MSM results the filled symbols correspond to trajectories starting from the PMD-CG structures while empty symbols are the standard protocol
trajectories. The standard deviation and RMSE units are the same as each variable unit. The corresponding values for RDC have been divided by 10 and
those for SAXS have been multiplied by 500.
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mainly in the calculation of the tripeptide conformational
ensemble library to generate ultimately the structures of
p53-CTD. For the molecule with 20 residues considered in this
work, MD and MSM approaches require both 1.4 � tPMD-CG,
which is not enough for certain variables to obtain accurate
values (unless the PMD-CG structures are used as starting
points). The REST approach requires 1.4 � R � tPMD-CG, where
R is the number of employed replicas in the simulation.

We note that the computational effort of the PMD-CG
method increases linearly with the number of residues in the
molecule, while the computational effort required in MD-based
simulations increases much faster,79 so the 1.4 factor increases
with the length of the peptide. We also recall that running
many short-time trajectories instead of fewer long-time trajec-
tories allows us a more effective distribution of the computa-
tional effort in any multicore system.

The great potential of the PMD-CG method performance is
apparent when considered under the scenario of mutagenesis
studies: a single point mutation in p53-CTD implies, in MD,
MSM and REST approaches, the simulation re-run of the p53-
CTD mutant (the same computational times for each muta-
tion). However, a single-point mutation involved in the PMD-
CG method requires the re-run of only three new tripeptides,
i.e. 0.17 � tPMD-CG. Moreover, if a MD conformational ensemble
database of all the 800 possible tripeptides was available for the
community, a complete mutagenesis study of an IDR could be
done in a number of hours. IDRs can tolerate, in general, a high
number of mutations without substantial loss of flexibility and
function. However, there are certain molecular recognition
features within IDR sequences that are highly conserved and
seem essential for the correct function of the protein.37

The complexity of the problem could be addressed using an
exhaustive computational mutagenesis approach enabling fast
identification of pathogenic mutations.

4 Conclusions

In this work, we have assessed the performance of different
molecular dynamics approaches to compute accurately NMR
and SAXS descriptors for intrinsically disordered regions of
proteins. The convergence evaluation of the structural or ener-
getic descriptors calculated from MD-based simulations is, in
general, an issue under active investigation. As far as we know,
there is not a convergence evaluation method that could
guarantee that the MD-based trajectories accurately explore
the whole conformational space of a given collective variable.
For this reason, the employment of enhanced sampling meth-
ods aims to completely explore the conformational phase
space, and have become the reference methods to study many
biophysical systems. Nevertheless, each enhanced method has
its own disadvantages and the lack of a ‘‘gold standard’’ results
in the continued exploration of new sampling methods and the
current use of the most traditional ones. A representative
example of this scenario has been the challenging characteriza-
tion of the structural ensembles in IDRs in recent years.

Using the 20-residue region from the C-terminal domain of
p53 tumor suppressor protein as a reference system, the results
obtained from standard MD and MSM protocols provide
reasonable values for the J-couplings and chemical shifts,
although fail to describe the RDC and SAXS profiles. The
PMD-CG method provides a good representation of the calcu-
lated RDC and SAXS observables but lower quality values
for two 3J-couplings and especially for the chemical shifts.
The origin of this failure is the limited representativity of the
distributions of the w1 dihedral angles provided by the libraries
used during the side-chain construction, and the generation of
clashes during the chain building procedure that decrease the
relative presence of more compact structures. In future work we
intend to address the above limitations of the approach by
employing structural minimization and/or short MD simula-
tions that can correct the possible inaccuracies of the method
for building the chains leading to misrepresentations of
more compact conformations. Moreover, additional non-homo-
logous IDR sequences with different lengths should be tested in
future to prove that our conclusions have validity for IDRs with
different structural features and functionalities.

The choice of the PMD-CG structures as the starting point in
the MD and MSM calculations is shown to be a good strategy
that greatly improves the results, especially for the RDC and
SAXS profiles, as previously argued by Hummer and
collaborators.24 Moreover, the use of many short-time trajec-
tories in MD simulations is advantageous with respect to the
use of fewer long-time ones, since they provide a wider explora-
tion of the conformational space. Under these circumstances,
the employment of a representative conformational ensemble
as a pool of starting structures for many short MD simulations
should become the ‘‘best practice’’, rather than the run of few,
very long MD simulations. Being aware of the computational
cost required to construct the conformational ensemble pool,
the use of the PMD-CG method, as proposed in this work,
would greatly enhance the study of IDRs, due to its efficient
performance.

Data availability

The inputs and scripts used to produce the PMD-CG conforma-
tional ensembles presented in this publication are provided at
https://github.com/abastidap/PMD-CG as a tagged release
(1.0.0).
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