UNIVERSITY OF UDINE
DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE AND PHYSICS
PH.D. IN COMPUTER SCIENCE, CYCLE XXVIII

DISSERTATION

COALGEBRAIC SEMANTICS OF
SELF-REFERENTIAL
BEHAVIOURS

CANDIDATE SUPERVISOR
MARCO PERESSOTTI PROF. MARINO MICULAN

ACADEMIC YEAR 2015/2016



Marco Peressotti

marco.peressotti@uniud.it
marco.peressotti@gmail.com

Dipartimento di Matematica, Informatica e Fisica
Universita degli Studi di Udine

Via delle Scienze, 206

33100 Udine

Italia

Prof. Marino Miculan
marino.miculan@uniud.it

Dipartimento di Matematica, Informatica e Fisica
Universita degli Studi di Udine

Via delle Scienze, 206

33100 Udine

Italia

V1.0 (3rd March 2017)


mailto:marco.peressotti@uniud.it
mailto:marco.peressotti@gmail.com
mailto:marino.miculan@uniud.it

A Marta






ABSTRACT

In this thesis we investigate the semantics of systems which can refer to themselves,
e.g., by “passing around" systems of the same kind as values (hence potential
observables). For this reason, we refer to these systems as self-referential.
Instances of this scenario are higher-order calculi like the A-calculus [16], the
calculus of higher-order communicating systems (CHOCS) [143], the higher-
order m-calculus (HO7) [124], HOcore [93], etc. It is well known that higher-
order systems pose unique challenges and are difficult to reason about. Many
bisimulations and proof methods have been proposed also in recent works [25-28,
89, 91, 93, 94, 102, 126-128, 140-142, 151]. This ongoing active effort points out
that a definition of abstract self-referential behaviour is still elusive.

We address these difficulties by providing an abstract characterisation of self-
referential behaviours as self-referential endofunctors, i.e. functors whose definition
depends on their own final coalgebra. The construction of these functors is not
trivial, since they must be defined at once with their own final coalgebra and due
to the presence of both covariant and contravariant dependencies (e.g. arising
from higher-order inputs). We provide such a construction, where algebraically
compact functors [17, 53, 54] are the key technicality, like other works dealing
with mixed-variance dependencies of some kind [25, 26, 48].

Similarly defined endofunctors arise from considering as object systems (i.e.,
those which can be values) only certain subclasses of systems (usually via some
syntactic restriction) or a syntactic representations (cf. higher-order process
algebras): self-referential endofunctors are shown to be universal among them.
Universality renders self-referential endofunctors a touchstone for similar behavi-
oural functors and offers the mathematical structure for assessing soundness and
completeness of other models via the associated universal morphisms.

As a further contribution we provide a construction capturing infinite trace
semantics by finality whereas the state of the art characterisations are weakly
final [43, 145, 146]. This result, together with existing accounts of finite traces
[63, 64, 74, 117], allows the definition of self-referential behaviours with respect
to (in)finite trace semantics.
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INTRODUCTION

In this thesis we investigate the behaviour of systems that operate on objects
endowed with their own dynamics i.e. actual systems. Instances of this scenario
are higher-order calculi like the A-calculus [16], the calculus of higher-order
communicating systems (CHOCS) [143], the higher-order 7r-calculus (HOx) [124,
129], HOcore [93], and any other language where processes or systems can be
passed around, as opposed to first-order ones which operate on static objects. It
is well known that this sort of systems poses unique challenges and is difficult to
reason about crucial properties like equivalence.

Bisimulation is an established and powerful operational method for proving
behavioural equivalence of systems by coinduction. This is a general proof
method pioneered by Milner [107] and later captured categorically by Aczel and
Mendler [2] by means of coalgebras. This generalisation led to the flourishing
of the coalgebraic framework for modelling concurrent and reactive systems,
automata, and infinite data structures [121]. The coalgebraic methodology can be
thought of as a “semantics first” approach to system reasoning: it is founded on
the principle of abstracting from any specific concrete representation of systems.
Instead, coalgebras focus on the definition of semantic models capturing the
behaviour of systems under scrutiny—strong bisimulation for CCS processes is
just bisimulation for (non-deterministic) labelled transition systems. In return,
this level of abstraction enables a fruitful cross-fertilizing exchange of definitions,
notions, and techniques with similar contexts and theories.

In the case of systems that operate on static objects (e.g. automata, labelled
transition systems with values, names) there is a common consensus about
what their behaviour is and how the associated behavioural equivalences are
defined, and the related proof methods are rather mature. The situation is
less clear when objects are actual systems as in the case of systems described
by higher-order languages. In fact, there is a decades long and ongoing effort
concerning bisimulations for higher-order calculi: many bisimulations and proof
methods have been proposed, also in recent works such as [89, 91, 93, 94, 102,
126-128, 140, 141, 151]. Each of these works considers syntactic representation of
systems given in some specific language and proposes bisimulations that, roughly
speaking, test subject and object systems with challenges that are devised on the
guise of contexts and are syntactically forged from knowledge about the observed
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computation. This approach can be traced back to the notion of contextual
equivalence which these works take as their reference semantics. This notion
of semantic equivalence is due to Morris and defines as equivalent all systems
that “behave in the same manner” in any given “context” [112]. Clearly, the
heart of this definition is understanding what “to behave in the same manner”
means, what contexts are, and how they interact with system dynamics. These
pieces of information depend on how an observer can monitor and test system
computations via constructs of the language and available knowledge on the
computation history. However fruitful, the approach followed by these works
is tied to the specific constructs of the language used for representing systems.
Moreover, there is no systematic way to derive the “right suite of tests” for a
given higher-order language—see e.g. [75, 123, 124, 127, 141] for a discussion
concerning testing of higher-order inputs and outputs and the correlation with
contextual equivalence.

In contrast, we aim to develop a uniform methodology for the definition of
semantic models for systems under scrutiny that abstracts from specific languages
used for their representation. The main motivation behind this effort is that a
characterisation of this kind enables the transfer between a wide range of systems
of existing results and the development of general ones. In order to achieve this
objective, we follow a “semantics first” approach:

* we take a completely semantic perspective on system dynamics and con-
centrate on their associated computational behaviours;

* we do not assume any programming language and avoid syntactic artefacts
such as contexts or forged processes.

Reworded, we model systems whose objects are systems of the same type as
coalgebras. This different point of view is the distinguishing trait of this work.
As a consequence, we term the behaviour of systems considered in this work
self-referential and avoid, as much as possible, the terminology usually associated
to higher-order languages—for the sake of exposition, we sometimes relate, at
the intuition level, to familiar examples of such languages.

In this introductory chapter we recall the coalgebraic approach to modelling
of operational semantics, describe the main challenges posed by self-referential
behaviours, and the overall methodology we put forward in order to solve them.
In Section 1.1 we briefly discuss coalgebras and some basic notions relevant to the
constructions described in the sequel of this chapter. In Section 1.2 we illustrate
the semantics of self-referential systems by means of a simple example which
we rephrase in Section 1.3 using the language of coalgebras. In Section 1.4 we
outline the structure and the main contributions of the thesis.
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1.1 COALGEBRAS

Coalgebras are a well established framework for modelling and studying the
operational semantics of (abstract) computational devices such as automata,
concurrent systems, and reactive ones; the methodology is termed universal
coalgebra [121]. In this approach, the first step is to define a behavioural
endofunctor I over Set (or other suitable category), modelling the computational
aspects under scrutiny in the sense that, for X a set of states, F'X is the set
of possible behaviours over X. Then, a system is modelled by an F'-coalgebra
i.e. apair (X,h: X — FX) where the set X (called carrier) is the state-space
of the system and the map h (called structure) associates each state with its
behaviour. Coalgebras are often identified with their structure; in this situation
the carrier X of an F-coalgebra h: X — FX will be denoted by |h|. The
definition of the endofunctor F' constitutes the crucial step of this method, as it
corresponds to specify the behaviours that the systems under scrutiny are meant
to exhibit i.e. their dynamics and observations. Hence, F'-coalgebras and the
systems they model are said to be of type F'. Once a behavioural endofunctor
is defined, this canonically determines a notion of coalgebra homomorphism
(i.e. structure preserving maps between carriers) and bisimulation (which is
the abstract generalization of Milner’s strong bisimulation, see e.g. [121, 138]).
Moreover, under mild conditions on the behavioural endofunctor F, there exists
a final F-coalgebra v(F') which describes all abstract behaviours of type F'. Final
F-coalgebras are final objects in the category formed by F'-coalgebras equipped
with their homomorphisms [2, 149]. Finality means that every F'-coalgebra
h has a unique homomorphism !}, into the final F-coalgebra. The morphism
|h| — | v(F)| underlying !5, : h — v(F") uniquely associates each state in || with
an semantics, called final semantics, in the form of an abstract behaviour (see
the example below). Final semantics uniquely associates bisimilar states to the
same abstract behaviour. As a consequence, states of final coalgebras can only be
bisimilar to themselves. This property is called strong extensionality and identifies
final homomorphisms with the coinductive proof principle [73]. Because of its
relation with coinduction, the unique homomorphism from a coalgebra h into
the final one is also called coinductive extension of h.

As an example, we discuss stream systems i.e. computational devices that
perform deterministic transitions and outputs. Fix an alphabet of output symbols
A, a stream systems on A is a triple (X, o,t) where X is the set of states forming
the system, o: X — A is the output function associating each state with its
output symbol, and ¢: X — X is the successor function associating each state
with its successor state. For (X, o0,t) and (X', 0/,t') stream systems on the same
output alphabet A, a stream bisimulation on them is any relation R C X x X'



4 1. INTRODUCTION

with the property that it relates only states whose outputs are equal and whose
successor states are related by R as well i.e.:

rRa = o(z) =d (@) At(z) R ().

A stream system homomorphism from (X, o,t) into (X', ¢, t’) is any function
f: X — X' that preserves outputs and successors i.e.:

Vo € X (o) = (0 o f)(@) A (f o B)() = (o f)(a)) -

Equivalently, homomorphisms are functional relations with the additional prop-
erty of being stream bisimulations for their source and target systems. Because
spans of maps are in bijective correspondence with maps into products, stream
systems on an alphabet A are in bijective correspondence with coalgebras for
the endofunctor A x Id over Set. In particular, a stream system (X, o,t) is
modelled by the coalgebra (X, (o,t)) where (0,¢): X — A x X is the function
universally induced by o and ¢ that takes each = € X to the pair (o(x),t(x)).
The coalgebraic notion of bisimulation for this functor instantiates to that of
stream bisimulation. The functor A x Id admits a final coalgebra which consists
in the set A“, of streams on A, together with (the map into A x A“ induced
by the span of) the functions head and tail. Finality guarantees that for every
system there is a unique function into the coalgebra of streams that is coherent
with system dynamics and observations. Reworded, the coinductive extensions
associate a state x with the unique sequence of output symbols generated by the
deterministic computation starting at x. This correspondence exhibits coalgebras
of type A x Id as an adequate model for the semantics of stream systems. The
universal property of final semantics has an additional, and extremely useful,
consequence: it allows the definition of streams and operations on them as
constructions of suitable stream systems [62, 122] which in turn can be regarded
as “compact” representations of streams.

Besides canonical notions of bisimulation and abstract behaviours, many
important properties and general results can be readily instantiated: general
automata determinisation and minimisation [8, 30, 32, 131], the construction of
canonical trace semantics [33, 43, 64, 70, 74, 84], weak bisimulations [34, 35,
58, 104, 120, 134, 135], the notion of abstract GSOS [82, 144], etc. We stress the
fact that behavioural functors are “syntax agnostic”: they define the semantic
behaviours, abstracting from any specific concrete representation of systems.
In the wake of these important results, many functors have been defined for
modelling a wide range of behaviours: deterministic and non-deterministic
systems [121]; systems with I/0, with names, with resources [50, 51]; systems
with quantitative aspects such as probabilities or stochastic rates [47, 85, 105, 106,
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136]; systems with continuous states [13], etc. Indeed, the theory of coalgebras
is under active development and constitutes an established approach to several
disparate areas.

SELF-REFERENTIAL SYSTEMS AND THEIR BEHAVIOURS

In this section we present an introductory discussion about the main characteristics
and challenges of self-referential systems. To this end we consider stream systems
and their self-referential equivalent as a case study. Self-referential stream systems
are represented as “ordinary” stream systems except that they output objects
endowed with their own dynamics. These dynamics are again that of a self-
referential system of the same type and can be given in the same way. Therefore,
a possible representation of self-referential stream systems are pairs composed by:

* astream system whose carrier is the actual state-space and whose structure
define the system transitions and outputs;

* a stream system whose carrier is the output alphabet and whose structure
describes the dynamics of each output symbol.

Dynamics of self-referential stream systems and ordinary ones are of the same
form since devices of both classes perform deterministic transitions and outputs.
What tells them apart is what can be observed about these computations:

* in the case of ordinary stream systems, outputs are indistinguishable to an
external observer whenever they are the same symbol;

* in the case of self-referential stream systems, outputs are indistinguishable
to an external observer whenever they generate observationally equivalent
computations.

Reworded, outputs of self-referential stream systems are essentially streams in
the eye of the observer. Assuming otherwise would mean to ignore the structure
of alphabets and regard self-referential systems as ordinary ones. All in all, this
would be like comparing programs for they source code: we know these strings
can drive the computation of some device but per se they are just plain text i.e. a
static object. Finally, we remark that regarding outputs of self-referential stream
systems as streams is coherent with that interpretation of states from an ordinary
stream systems as representations of streams.

Recall from the previous section that the set of all streams for an alphabet
carries the canonical stream system describing the behaviour of every other
system on the same alphabet. It follows that to an external observer, all self-
referential systems use as alphabets sets of streams equipped with their canonical
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system. Formally, these alphabets/sets of streams are exactly all the solutions to
the following equation:

Z 7%, (1.1)

This equation has infinitely many (non-isomorphic) solutions: for Y any set,
the set Y“ solves (1.1). This situation poses the question of which solutions
should be considered and under which circumstances. To this end we observe
that functions between alphabets translate outputs of stream systems in a way
that preserves behavioural equivalences. In this sense, a function f: A — B
between alphabets that are solutions to (1.1) exhibits systems on B as complete
with respect to those on A and vice versa it exhibits systems on A as sound with
respect to those on B. If we organise solutions to (1.1) into a category whose
morphisms are said functions, then the initial and final objects are characterised
by the following property:

* the initial solution is sound with respect to any solution;
* the final solution is complete with respect to any solution.

The initial solution is the empty set 0 and corresponds to a degenerate case of
stream systems where the alphabet is empty. The dynamics of stream systems
prescribe computations to output a symbol at each transition and because there
are no symbols no output can be performed: the codomain of the output function
is the empty set and this forces the state-space to be empty as well. The final
solution is the singleton 1 and corresponds to another degenerate case of stream
systems where there is exactly one output symbol and hence exactly one stream.
To understand why, consider the canonical stream system carried by the set of
all streams. In the ordinary case, computations of the canonical system can be
pictured as infinite sequences of output symbols.

\,
N
a[; \ .

a

a

In the self-referential case, computations of the canonical system can be pictured
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as binary trees since the state-space and output alphabet coincide.
P AN

These trees are all isomorphic since they have no leaves and are binary.

In order to present examples of non-degenerate final solutions, let us consider
partial stream systems. A partial stream systems is a triple (X,o,t) whose
components are defined as in the case of (total) stream systems except for the
successor function ¢ which can be partial. For (X, 0,t) and (X', 0',t’) partial
stream systems on A, a stream bisimulation on them is any relation R C X x X'
with the property that it relates only states whose outputs are equal and whose
successor states are either both in R or both undefined i.e.:

z R = o(z) = o(a’) A ((t(x)t At (")) V t(z) RT' ("))

where the predicate ¢(x)1 is true if and only if ¢ is undefined on x. The semantics
of these systems associates states with the non-empty finite or infinite sequences
of symbols observed as output. For brevity we will refer to these sequences as
“partial streams”. Note that these definitions coincide with those for total stream
systems whenever these are regarded as partial ones. Self-referential partial
stream systems are defined as one would expect i.e. as partial stream systems
whose alphabet carries a similar structure. To an external observer, outputs are
partial streams which also form their alphabet. Formally, these alphabets/sets of
partial streams are exactly all sets solution to the following equation:

ZxZt4zv (1.2)

A solution to this equation is the set of all infinite trees with the property that
each of their nodes has one or two children.

Stream bisimulation is oblivious to the additional structure carried by alpha-
bets of self-referential stream systems and, in general, it fails to capture their
semantics. We observe that the semantics of ordinary and self-referential stream
systems coincide whenever their alphabets are solutions to (1.1) i.e. whenever
their alphabets are composed by the all abstract behaviours of self-referential
stream systems. This correspondence is a consequence of the strong exten-
sionality property presented by the canonical stream systems carried by these
alphabets.
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Systems of this type have the remarkable property that final semantics
coincides with the semantics of self-referential systems they model. This presents
us with a situation somehow similar to that of timed automata and timed
transition systems where the former are concrete representations of systems
whose semantics is modelled by the latter [9, 24, 36]. Because of their rdle, timed
transition systems are often called semantic models of timed automata dynamics.
We adopt this terminology also for self-referential (partial) stream systems:

* concrete representations are the pairs of (partial) stream systems described
at the beginning of this section;

* semantic models are (partial) stream systems on alphabets identified by
solutions to equation (1.1) (equation (1.2)).

We remark that semantic models are intended for reasoning about the beha-
viour of self-referential systems and that in practice one should prefer concrete
representations. In fact, semantic models require solutions to (1.1) and (1.2)
to be known in advance whereas the dynamics of enough symbols from the
output alphabet can be finitely expressed by a suitable stream system or other
formalisms.

SELF-REFERENTIAL ENDOFUNCTORS

Stream systems on an alphabet A are modelled by coalgebras for the endofunctor
A x Id over Set. Actually, the definition of these behavioural endofunctors is
generic where the term “generic” has to be interpreted in the sense of parametric
polymorphisms: these endofunctors use symbols from their alphabet in the same
way. In fact, this definition schema corresponds to a functor:

S: Set — End(Set)

associating alphabets and substitutions (i.e. functions) with endofunctors model-
ling stream systems and natural transformations between as formalised by the
following mappings:

A AxId s s x Id.

These in turn extends to functors between categories of coalgebras that “imple-
ment” the alphabet substitution:

(X, (0, 1)) — (X, (soo,t)) fe=f.

In this work, we refer to functors like .S as (covariant) behavioural schemata.
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Behavioural schemata offer the base for rephrasing the concrete notions of
representations and semantic models of self-referential stream systems into the
coalgebraic language. Concrete representations of these systems are pairs of
coalgebras (h: X — Sa(X),d: A — Sa(A)) where h describes the state-space
and transitions of the system and d the dynamics of each output symbol. Semantic
models of self-referential stream systems are coalgebras whose type is obtained
instantiating the schema .S on an alphabet of all streams of the same type i.e. a
solution to (1.1). These behavioural endofunctors are precisely the solutions of
the equation below.

F=|vF|xId (1.3)

Likewise, semantic models of self-referential partial stream systems are coalgebras
for endofunctors that are solutions to the equation below.

FX|vF|x (Id+1). (1.4)

The correspondence with (1.1) and (1.2) is immediate once the equations are
reformulated in the unknowns F' and Z representing the behavioural endofunctor
and the carrier of its final coalgebra:

F=~7xId F2Zx(Id+1)
Z = |vF] Z = |vF|

This is enough to prove that definitions based on (1.1) and (1.3) (resp. (1.2)
and (1.4)) are equivalent. In fact, final coalgebras for these behavioural endo-
functors correspond to the canonical system on the sets of all (partial) streams.
Endofunctors modelling self-referential systems present us with the challenging
characteristic of being defined in terms of their own final coalgebra, which can
be defined (if it exists) only after the endofunctor is defined—a circularity!

This circularity is the gist of self-referential systems and behaviours: any
attempt to escape it would be restricting and distorting. One may be tempted to
take as values some representation of behaviours (e.g., states of a stream system,
processes, terms), but this would fall short:

* first, the resulting behaviours would not be really self-referential, but rather
behaviours manipulating some ad hoc representation of behaviours;

* second, we would need some mechanism for moving between behaviours
and their representations—which would hardly be complete;

* third, the resulting functor would not be abstract and independent from
the syntax of processes, thus hindering the possibility of reasoning about
the computational aspect on its own, and comparing different models that
share the same kind of behaviour.
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This fundamental shift from terms/processes as values to behaviours as values is
at the hearth of this work.

To avoid the circularity of (1.3), one may consider to model the semantics of
self-referential stream systems by means of coalgebras like X — X x X. This
point of view aligns with the interpretation of outputs as forked computations
and still captures the initial and final solutions to (1.1): in fact 0 and 1 carry the
initial and final invariants for Id x Id, respectively. Nonetheless, this strategy is
bound to fail due to the following issues:

* system outputs are restricted to the system own state-space since outputs
are modelled by the first projection of X — X x X;

* this approach cannot be used to model systems with inputs since elements
of their state-space would occur in contravariant position e.g. X — XX,

Both issues are non-trivial problems and, although the first one may be object
of debate, the second is not. The modelling of self-referential behaviours with
inputs prompts us to maintain inputs and outputs as parameters in the definition
of behavioural endofunctors and thus to consider (mixed-variance) behavioural
schemata. This approach allows us to define self-referential endofunctors also
in presence of inputs and outputs via recursive equations akin to (1.3). Solving
these equations is non-trivial, especially because unknowns may occur in both
covariant and contravariant positions, initial and final invariants for behavioural
endofunctors may be used in combination and potentially nested, and said
invariants may not exist. We equip solutions with a notion of morphism that
capture soundness in the following sense: solution morphisms induce functors
between categories of coalgebras that preserve state-spaces and bisimulations. In
this setting we identify as initial and final solutions as canonical solutions since:

* final solutions identify behavioural endofunctors that are complete with
respect to any other endofunctor within the given schema;

* initial solutions identify behavioural endofunctors that are sound with
respect to any other endofunctor within the given schema.

These canonical solutions support reasoning about self-referential systems (for
the same schema) even if they may have semantic models of different type.
Solution morphism into the final solution induce functors into a shared category
of coalgebras such that they preserve bisimulations and carriers. Dually, solution
morphisms from the initial solution induce functors from a shared category of
coalgebras and such that they preserve bisimulations and carriers.
Algebraically compact functors and categories [17, 53, 54] are the technical
foundation enabling most of our constructions. These notions were initially
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introduced by Freyd and Barr as part of an abstract framework for developing
category theoretic domains. Since these seminal works, two main classes of
algebraically compact functors have emerged: that of locally continuous functors
and that of locally contractive functors. Historically, the former is the first
non-trivial class of algebraically compact functors to be identified (see [17]) and
was initially studied as part of a categorical generalisation of order-theoretic
constructions used in domain theory, especially Scott’s limit-colimit coincidence
result [130]. The class of locally contractive functors was introduced more recently
as the technical foundation of guarded (co)recursion and guarded type theory
[25—28, 142]. In the thesis we instantiate our abstract construction for computing
self-referential endofunctors to both classes of algebraically compact functors and,
whenever this is not possible, we provide alternative constructions for computing
approximated semantics of self-referential behaviours using techniques akin to
abstract interpretation and forcing.

STRUCTURE AND MAIN CONTRIBUTIONS OF THE THESIS

In Chapter 2 we recall preliminary notions on sheaf categories and algebraically
compact functors; the chapter is mainly aimed at fixating the notation and the
terminology that will be used in the rest of the thesis. All the material in this
chapter is not original and can be found in the referred works and any textbook
on sheaf theory. The only content we were not able to directly find in the
literature is limited to a short section about categories enriched over categories
of sheaves. Nonetheless, basic definitions contained in that section are instances
of standard notions from enriched category theory.

In Chapter 3 we focus on linear and trace semantics for coalgebras. This
chapter is mainly aimed at presenting an alternative semantics that can be used
in the definition of self-referential behaviours. To this end we firstly recall how
linear semantics, and especially trace semantics, are captured via final semantics
in Kleisli categories. Then we introduce a novel and general construction for
defining coalgebras whose final semantics captures (possibly) infinite trace
semantics for the systems under scrutiny. To this end, we use ingredients from
sheaf, Kleisli, and algebraically compact categories in a combination that allows
us to perform guarded (co)recursion in the context of Kleisli categories of suitable
monads. We term this technique guarded Kleisli (co)recursion. This construction,
together with the account of infinite trace semantics it underpins, are the main
contributions of the chapter. As a further contribution, an intermediate step
of our construction identifies behavioural endofunctors whose final semantics
coincides with certain behavioural pseudo-metrics due to Barr and Addmek [3,
18]. This result leads to a modest generalisation of these behavioural metrics and
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points to a possible application to richer metrics.

In Chapter 4 we present the main contribution of this work: a coalgebraic
account of self-referential behaviours. We start from systems characterised by
covariant behavioural schemata such as stream systems and then proceed towards
the general situation of systems characterised by mixed-variance behavioural
schemata like those performing higher-order inputs and outputs. For each of
these classes of self-referential systems:

* we identify endofunctors whose coalgebras are models of self-referential
systems;

* we study endofunctors characterising canonical models;
* we provide general constructions for computing such endofunctors.

We conclude the chapter considering “relaxed” models of self-referential systems.
As the keyword “relaxed” suggests, these models do not fully capture self-
referential behaviours but are only an approximation of them. Nonetheless, these
are of interests because they can be defined in a wider array of settings.



2.1

2.1.1

PRELIMINARIES

CATEGORY-VALUED SHEAVES OVER SITES

In this section we recall basic concepts of sheaf theory; we refer the reader to [19,
59, 76, 77, 101, 137] for a thorough introduction to the topic.

Sites

Sites are a categorical generalisation of topological spaces and locales. Roughly
speaking, sites are categories equipped with additional data describing how their
objects can be “covered” by families of objects: on one hand the firsts provide
“well-behaved quotients” of the seconds and, on the other hand, the latter provide
“localizations” of the former.

DEFINITION 2.1. A coverage on a category S consists of a rule J assigning to
each object U in S a collection of families of morphisms {p;: U; — U };c; called
covering families with the following property: if {p;: U; — U };c1 is a covering
family and g: V' — U is a morphism in S, then there exists a covering family
{qr: Vi — V}rex such that each composite g o gy factors through some p; as
depicted in the diagram below.

Vk E— Ui
km (2.1)
U

gk

v

A good source of examples are topologies and topological bases. A topological
base for a set .S is a collection Bg of subsets of S (called basic open sets) subject
to the following two requirements:

1. S=Bs;

2. for any Uy, Us in Bg, if s € Uy N Us then there is Uy € Bg such that s € Uy
and Uy C Uy N Us.

Given a topological base Bg, let S be the poset (Bg, C) regarded as a thin
category! and define the coverage J on it as the function mapping every basic

'A category is called thin or posetal whenever all parallel morphisms are equal.
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open set to the set of its basic open covers:
JU) = {{Ui = Uticr |U = U, Ui} -

In order to prove that this function is indeed a coverage, we construct for
each covering family on U and V' C U, a suitable covering family on V. For
{Ui = U}ier € J(U) and V — U, consider a family {V; , — V'} such that for
eachi € [ and x € VUU,, V; , is a basic open with the property that z € V; , and
Viz € VUU; (which exists by definition of base). Because V NU; = Uzcvnu, Vi
and V' = U;c;V N Uj, the family {V; , — V'} belongs to J(V'). Finally, note that
each V;;, — V satisfies (2.1) by construction. Coverages for topological spaces
are obtained via the same construction.

A special case of bases are those closed under finite intersections such as
the set {{s} } s € S} of cones in a preorder (S, <). From the point of view of
coverages, these topological bases are closed under finite intersections whenever
their coverages have pullbacks.

DEFINITION 2.2. A coverage J on a category S with enough pullbacks is said to
have pullbacks whenever it has the following property: if {p;: Ui — U}icr is a
covering family and g: V — U is a morphism, then the family of pullbacks of g
along each p; is a covering family of V.

Coverages associated to topological spaces and complete Heyting algebras
are instances of a stronger notion of coverage known as Grothendieck coverage
or Grothendieck topology. These are more conveniently presented in terms of
particular covering families called (covering) sieves.

DEFINITION 2.3. For U an object in a category S, a sieve S on U is a covering
family on U that is closed by post-composition i.e., for all p and q with suitable
domain and codomain it holds that:

peES = poqgeSb.

The set {p | cod(p) = U} is the maximal sieve on U. For S a sieve in U and
g: V. — U amorphismin S, g*(S) is the sieve on V consisting of all morphisms h
such that g o h factors through some morphism in S.

DEFINITION 2.4. A Grothendieck coverage (or Grothendieck topology) on a
category S is a rule J mapping each object U of S to a collection J(U) of sieves
called covering sieves on U with the following properties:

* the maximal sieve on U belongs to the collection J(U);

e if S € J(U), then g*(S) € J(V) for any arrow g: V — U in S;
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e if S € J(U) and S’ is any sieve on U such that for all g: V' — U in S the
sieve g*(S’) belongs to J(V), then S" € J(U).

Akin to how topological bases canonically induce topologies, coverages
canonically induce Grothendieck topologies. For {p;: U; — U };cs a family of
morphisms of S, define the sieve on U generated by K as the smallest sieve .S on U
such that each p;: U; — U belongs to S. For J a coverage on a category S, define
J as the rule assigning each object U in S to the collection of sieves J(U) on U
with the following property: there exists a covering family K = {p;: U; — U };¢;
in J(U) such that the sieve on U generated by K is contained in J(U).

PROPOSITION 2.1. For J a coverage on S, .J is the smallest Grothendieck coverage
on S with the property that every covering family of J generates a covering sieve.

In virtue of this result, for J a coverage J is called its associated Grothendieck
coverage.

DEFINITION 2.5. A site is pair (S, J) where S is a category (referred as the category
underlying the site) and J a coverage for S. A site is said to have pullbacks whenever
its coverage has pullbacks. A site is called a Grothendieck site whenever its coverage
is a Grothendieck coverage. A site is called small if its underlying category is small.

Sites are equipped with a suitable notion of morphisms given by functors
between their underlying categories that are well-behaved with respect to the
associated coverages.

DEFINITION 2.6. For (S,J) and (S, J') sites, a morphism of sites f: (S,J) —
(S', J") is a functor, denoted by f as well, between their underlying categories and
subject to the following conditions:

* [t is covering-flat i.e. for every finite category 1, diagram D: 1 — S and cone
C for f o D in S’ with vertex U, the family of morphisms (actually a sieve)
with target U

{p: V — U | p factors through the f-image of some cone for D}
belongs to the collection J'(U).

* [t preserves covering families i.e. for {p;: U; — U} a covering family in J,
{f(pi): f(U;) — f(U)} is a covering family in J'.
The functor f: S — S’ is called underlying.

For B a topological base on a set S and O its generated topology, let (Sz, Jg)
and (Sp, Jo) their corresponding sites. The coverage Jz extends to a coverage
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Jp on Sp given on basic opens as Jj:

Js(U) ifU € B

0 otherwise

-]

and such that the Grothendieck coverage J! 1 associated to J is Jo. Then, there
is a morphism of sites i: (Sg, Jg) — (So, Jo) whose underlying functor is given
by the inclusion B C O.

The Alexandrov topology on a set S equipped with a preorder relation < is the
topology A(SS, <) whose open sets are all the subsets of S that downward closed:
A(S, <) = {X¥| X C S} where X+ = {s | 3z € X s.t. s < x} is the downward
closure of the subset S of S. The smallest topological base for A(S, <) is the set
{{s}|se€SAVX C S\ {s}(s\ X)} of primitive cones in (5, <). In several
examples we will consider ordinal numbers (seen as sets of ordinals) equipped
with the standard ordering (whence omitted) and their Alexandrov topology. In
particular, for o an ordinal, A(«) is the successor ordinal «v+ 1 and, since ordinals
are already cones, the smallest base for A(a) istheset {+ 1|5+ 1< a} of
all successor ordinals in «. We refer to this topological base as the successors
base for «. For instance, consider the first infinite ordinal w, that is the set of
natural numbers under natural ordering, A(w) is w+ 1 the set of natural numbers
together with w itself and the successor base for w is given by all natural numbers
except 0 (for it is a limit ordinal).

Sheaves

Let C and S be categories. A (C-valued) presheaf on S is any contravariant functor
from S to C. Presheaves and natural transformations form the category PSh¢(S)
i.e. the category of (covariant) functors Fun(S”,C). Objects of S are called
stages and will be usually denoted by letter U, V' and variations thereof. For X a
presheaf on S, the object X (U) (written also as X¢/) is called the object of sections
or value of X at stage U and the morphism X (r): X (V) — X (U) (written also
as X,) is called the restriction morphism from V' to U. When values are taken
in a concrete category, = € X (U) is called section of X at U. If S is thin, then
we denote any U — V as v and, if in addition C is concrete, we write x|y,
instead of X, |, (), for action of restriction maps on sections.

Sheaves on a site are presheaves that are well-behaved with respect to the
coverage for their site where “well-behaved” means values at any stage U are
given by families of values on any covering on U. Reworded, they are presheaves
that transport covering families to limits.

DEFINITION 2.7. A presheaf X on a site (S, J) with values on a category C is
called a sheaf if for every covering family {p;: U; — U };cs the family of restriction
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morphisms {X (p;): X(U) — X (U;) }ier induce an isomorphism

X (U) = lim X(Uy).
el

Sheaves on a site (S, J) form the full subcategory Sh¢(S, J) — PSh¢(S).

In the sequel we adopt the standard convention of omitting the category of
values for (pre)sheaves of sets and thus write PSh(S) and Sh(S, J) instead of
PShge(S) and Shge(S, J), respectively.

Sheaves on topological spaces Sites defined from topological spaces are such that
their covering families are colimiting cones. It follows that sheaves on sites of
this kind are presheaves transporting colimits induced by open covers to limits.

PROPOSITION 2.2. Let (S,.J) be a site induced by some topological space. A
presheaf X of PSh¢(S) is a sheaf of Sh¢(S, J) if, and only if, for every complete full
subcategory I: U < S:

X@I%@Xo[.

Akin to topologies and topological bases, several properties of sheaves on
topological spaces can be reduced to statements about sheaves on a base gen-
erating that topology. Formally, this situation corresponds to an equivalence
of categories induced by the inclusion of a base into its generated topology, as
stated by Proposition 2.3.

PROPOSITION 2.3. For B a topological base on a set S, O the topology generated by
B,andi: : (Sg,JB) — (So, Jo) the inclusion morphisms for their associated sites,
the following is an equivalence of categories:

She(So, Jo) 2 She(Sg, Ji).

Examples of this situation are sheaves on Alexandrov topologies for partial
orders and sheaves on their bases of primitive cones. In particular, for o an
ordinal, B(«) the set {8+ 1| 8+ 1 < a} of all successor ordinals in «, the
inclusion B(«) C A(«) yields an equivalence for the categories Sh¢(.A(a)) and
Sh¢(B(a)). We will rely on this equivalence in several occasions, especially in
Chapter 3. For the sake of conciseness, we will write Sh¢(«) for the category of
sheaves on A(«) and on B(«) when confusion is unlikely.

Sheaves on sites with pullbacks If the category of values has enough products,
sheaves on sites that have pullbacks are precisely presheaves that satisfy the
(familiar) descent condition.
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PROPOSITION 2.4. Let (S,.J) be a site that has pullbacks and C be a category
with products. A C-valued presheaf X on (S,J) is a sheaf if, and only if, for
{pi: Ui — U}cr a covering family, the following diagram is an equaliser:

x) = [[x@) = [ XW) xo X (@)
i€l i,j€l

Sheaves of sets Sheaves taking sets as values are often introduced by the following
component-wise definition based on matching families of sections i.e. families of
sections that are pair-wise compatible with respect to restrictions sharing their
target stage.

PROPOSITION 2.5. Let (S, .J) be a small site. A presheaf X on (S, J) and with values
in Set is a sheaf if, and only if, for every covering family {p;: U; — U} and for every
family of sections {x;};c; with the property (called matching) that x; € X (U;)
and X (g)(z;) = X(h)(zj) forallg: V — U;, h: V= Uj, and i, j € 1, then there
is a unique element x € X (U) such that X (p;)(x) = z;.

Associated and constant sheaves

Let (S, J) be a site and C a category. For a presheaf X in PSh¢(S) let X denote,
when defined, the presheaf given on each stage as:

XT(U) = lim  lim  X(V)
KeJ(U)V—UeK

where the colimit is taken over covering families on U and the limits over
morphism in the covering. This construction is usually known as the plus
construction and, in general, it is not always possible for it relying on the existence
of enough (co)limits in the category of values. A sufficient condition on C is that
it is a (co)complete category but weaker conditions can be derived for particular
sites of interest. For instance, if (S, J) corresponds to the Alexandrov topology
for an ordinal «, then it suffices to assume C has limits of y-sequences for v < a.

Iterating the plus construction always results in sheaves for the given site
thus universally associating sheaves to presheaves. For X any presheaf, the sheaf
X is called the associated sheaf or shedfification of X.

PROPOSITION 2.6. For (S, .J) a site and C a category, the following are equivalent:
* every presheaf in PSh¢(S) admits sheafification;

* the inclusion i: Sh¢(S,J) — PSh¢(S) exhibits Sh¢(S, J) as a reflective
subcategory of PShc(S).
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Whenever it exists, the left adjoint to i is denoted as a and called associated
sheaf functor or shedfification functor. For this functor to exists it suffices to
assume (S, J) small and all small (co)limits in C.

There is an inclusion of the category of values C into PSh¢(S) by means of
(—ols): C — PShc¢(S) where ls: S — 1 is the final morphism in Cat. This functor
is denoted by A and called constant presheaf functor for it assigns each object Y’
in C to the constant presheaf of Y:

AVU)=Y  A(Y)(r) = idy

and each morphism f: Y — Y’ to the natural transformation whose components
are all f. Whenever C has limits for diagrams of type S, the constant presheaf
functor A has a right adjoint I': PSh¢(S) — C called global sections functor for it
maps each presheaf to the object of its global sections i.e. it maps each presheaf
X the limit of a diagram X : S — C. By composition with the sheafification
adjunction (a = i): Sh¢(S,J) — PSh¢(S), the constant presheaf adjunction
(A - T) restricts to the subcategory of sheaves Sh¢(S, J). As common practice,
we will abuse the notation and just write A and I instead of ao A and I oi. The
terminology for A and T is extended accordingly to sheaves: for X an object of
C, the sheaf A(X) is called constant sheaf of X and A constant sheaf functor,
for Y a C-valued sheaf on (S, J), I'(Y) is the object of global sections of Y and I"
is called the global sections functor.

Enrichment over sheaf categories

In this subsection we state some basic definitions about categories enriched
over categories of sheaves which will be needed in order to introduce locally
contractive functors and in the remaining of this thesis as well. Although we were
not able to find published work that explicitly introduces this blend of enriched
categories and functors, all definitions are obtained as instance of standard
notions from enriched category theory; we refer the interested reader to Kelly’s
body of work, especially [79].

Let (S, J) be a site. A category enriched over Sh(S, J) C is characterised by
the following data:

* a collection obj(C) of objects,
» asheaf C(X,Y) over (S, J) for each pair of objects X,Y € obj(C),

* apointidx: 1 — C(X,X) in Sh(S, J) determining the identity for each
X € obj(C),
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* amorphismoyx )y z: C(Y,Z)xC(X,Y) — C(X, Z) in Sh(S, J) determining
composition for each X, Y, Z € C such that it is associative

~

(CY, Z) x C(X,¥)) x C(W, X) —— (C(Y, Z) x (C(X,Y) x C(W, X))
ox,v,z X idc(W,X)J jidc(y,z) X oW, X,y
C(X, Z) x C(W, X) Z) x C(W,Y)

om %Z

and has the points from above as identities

C(Y,Y) x C(X,Y) C(X,Y) x C(X, X)
'LdY X chV J j W’Y) X ’LdX
oX,Y,)Y OX,X)Y
1% C(X,Y) ——— C(X.Y) CX.Y) ——— C(X,Y) x 1

Note that sheaf enriched categories do not have “morphisms” for their hom-
objects do not have proper elements. It is convenient however convenient to
be able to speak about “morphisms” especially in order to express “diagrams”
in sheaf enriched categories in a convenient way. For an example of what a
“diagram” looks like in this setting, see (2.2) which expresses naturality condition.
besides these practical conveniences, the ability to express what a “collection
of morphisms” is in sheaf enriched settings is of relevance to the definition of
natural transformations. Elements of a sheaf X are understood as its points i.e.
morphisms from the final objects z: 1 — X. These are defined as the “morphisms”
of a sheaf enriched category. It follows that there are several distinct enriched
categories that present us with the same morphisms; this happens because
restriction maps of hom-sheaves might not be subjections and hence hom-sheaves
are not defined by their points. Nonetheless, there is a “minimal” category
presenting a given collection of morphism: this category has the property that
its hom-sheaves are subobjects of those of any other category with the same
morphisms. If one is interested in morphisms per se, then restriction to these
minimal categories does not introduce any loss of generality.

For C a category enriched over Sh(S, J), we can associate to C a category |C|,
called its externalisation or its underlying category, defined by the following data:

* objects obj(|C]) = obj(C);

* hom-set |C|(X,Y) £ Sh(S, J)(1,C(X,Y)) for each pair of objects X, Y.
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Note that hom-sets are defined as the sets of points into hom-sheaves i.e. the
notion of morphisms in sheaf enriched categories. From this perspective, the
“minimal” category mentioned at the end of the previous paragraph is the
initial object in the thin category whose objects of categories with the same
externalisation and whose morphisms are inclusions. As common practice, we
will often abuse notation and terminology by referring to an enriched category
and its externalisation as if they were the same entity—provided the distinction
is clear from the context. In practice, we will call a (genuine) category Sh(S, J)-
enriched if it is the externalisation of some Sh(S, J)-enriched category and write
C, instead of |C], for the externalisation of C.

Examples of categories enriched over categories of Set-valued sheaves are
sheaf categories themselves. Formally, this means that for any Sh¢(S, J) there is
a Sh(S, J)-enriched category such that its externalisation is Sh¢(S, J).

LEMMA 2.7. For C a category and (S, J) a site, the category Sh¢(S, J) is enriched
over Sh(S, J).

PROOF. For X,Y € Sh¢(S, J), the hom-sheaf Sh¢(S, J)(X,Y') takes each object
U in S to the value

She(o) (X, Y)(U) ={(f, fu) | f € She(S, J)(X,Y)}

and each morphism p: U — V in S to the restriction

She(a) (X, Y)(p)(f, fv) = (f, fu)-

We remark that the use of pairs morphism-component is crucial to the definition
restriction maps: the fact that two morphisms share their component at a given
stage, say U, does not imply that they do the same for components at each
stage V' such that V' — U € S whence information about which transformation
a component belongs to has to be included. The sheaf condition follows from
definition of morphism of C-valued sheaves. For X € Sh¢(S,J), the point
idx: 1 — Sh¢(a)(X, X) determines at each stage U to the identity on the object
of sections at U:

For X,Y, Z € Sh¢(S, J), components of (—ox,y,z —) apply composition of arrows
in C as follows:
(foxy,z 9)u = (fog. fuogu).

Diagrams for associativity and identities readily follow from the analogous
properties of composition in C. O
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A Sh(S, J)-enriched functor F': C — D between Sh(S, J)-enriched categories
is a functorial mapping such that for every pair of objects X, Y in C the assignment
Fxy:C(X,Y) — D(FX,FY) is a morphism of sheaves in Sh(S,.J). Unless
otherwise stated, we implicitly assume domain and codomain of an enriched
functor to be similarly enriched. Categories and functors enriched over Sh(S, J)
form the category Sh(S, J)-Cat. For F', G: C — D functors enriched over Sh(S, .J),
an enriched natural transformation p: F' — G is a family of morphisms

{px:1=DFX,GX)}xec

indexed over obj(C) and such that for any pair of objects X, Y € C, the following
naturality diagram commutes:

Ag/ T

1xC(X,Y) C(X,Y) x1
py X Fxy JGX,Y °px (2.2)
D(FY,GY) x D(FX, FY) D(GX,GY) x D(FX, FX)

—
— OFX,FY,GY — D(FX, GY) —OFX,GX,GY —

For C and D enriched over Sh(S, J), enriched functors and natural transform-
ations form the Sh(S, J)-enriched category Sh(S,.J)-Fun(C,D) whose hom-
sheaves are given on each pair of functors F,G: C — D as the sheaf taking
value {(p, {px.v}xec) | p: F'— G} at stage U € S. In order to keep the nota-
tion concise, we shall write Fun(C, D) instead of Sh(S, J)-Fun(C, D), provided
enrichment is clear from the context.

ALGEBRAICALLY COMPACT FUNCTORS AND CATEGORIES

In [18, 53] it is shown that for any given endofunctor there is a unique and
canonical morphism from its initial to final invariants i.e. (co)algebras—provided
both exists. In [53], Freyd termed algebraically compact categories for which that
morphism always exists and is an isomorphism. In [17] Barr observed that a
category rarely is algebraically compact in Freyd’s sense. Instead, he suggested
to treat algebraic compactness as a property of individual functors, or classes of
functors, since in several occasions it might be worth restricting the attention to
classes of functors that are “relevant” to specific situations e.g., when working in
enriched settings. In [17, 53, 54] the term algebraically complete is introduced
to indicate existence of initial invariants; clearly algebraic compactness implies
algebraic completeness.
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DEFINITION 2.8. An endofunctor F is called:
* algebraically complete if there is an initial F-algebra;
* coalgebraically cocomplete if there is a final F-coalgebra;

* algebraically compact if there is an initial F-algebra, a final F-coalgebra,
and they are canonically isomorphic.

The terminology is extended to classes of functors and categories in the
obvious way.

DEFINITION 2.9. For a category E of endofunctors over C, the category C is said:

* algebraically complete with respect to E if every functor in E is algebraically
complete;

* coalgebraically cocomplete with respect to E if every functor in E is coalgeb-
raically cocomplete;

* algebraically compact with respect to E if every functor in E is algebraically
compact.

The vast majority of works and results about algebraic compactness (or that
rely on it) consider two main classes of functors: locally continuous functors and
locally contractive functors. Historically, the former is the first non-trivial class
of algebraically compact functors identified (see [17]) and was initially studied
as part of a categorical generalisation of order-theoretic constructions used in
domain theory, especially Scott’s limit-colimit coincidence result [130].Nowadays
locally continuous functors are fruitfully applied to a broad class of problems
besides domain theoretic ones, see e.g. [11, 41, 60, 61, 64, 67, 146]. The class
of locally contractive functors was introduced more recently as the technical
foundation of guarded recursion and guarded type theory [10, 25-28, 99, 108,
116, 142]. In Sections 2.2.1 and 2.2.2 we recall preliminary notions and results
about locally continuous and locally contractive functor, respectively.

Locally continuous functors

Let Cpo be the category whose objects are (small) w-complete partial orders and
whose morphisms are continuous maps and let Cpo, be its subcategory whose
objects have bottoms and whose morphisms take bottoms to bottoms i.e. are
bottom-strict.

A Cpo-enriched category (or simply Cpo-category) C is a locally small category
whose hom-sets C(X,Y") come equipped with an w-complete partial order <x y
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such that composition (— o —): C(Y, Z) x C(X,Y) — C(X, Z) is a continuous
operation. A special case of Cpo-categories are those enriched over Cpo, i.e.
any Cpo-category C whose hom-sets C(X,Y') are additionally equipped with
a bottom element | x y and whose composition operation is also strict. We
shall drop subscripts from <y y and | xy when possible. Forgetting the order
structure from a category C enriched over Cpo (or Cpo,) leaves us with the
structure of a genuine category called underlying or externalisation and denoted
as |C]. In the vein of the usual convention of using the same notation for cpos
and their underlying sets we often write C, instead of |C'|, for the externalisation
of C. In general, we adopt the conventions on notation and terminology described
for sheaf enriched categories also for order enriched ones.
In the following let V stand for either Cpo or Cpo, .

EXAMPLE 2.1. The category V is enriched over itself. The single object category 1 is
trivially Cpo, -enriched. The dual of a V-category C is the V-category C% such that
obj(C?) = obj(C) and C?(X,Y) = C(Y, X). The product of V-categories C and D
is the V-category C x D such that (CxD)((X, X’), (Y,Y")) = C(X,Y) xD(X", Y").
The category of relations Rel = KI('P) is a Cpo -category where the order structure
is defined by pointwise extension of the inclusion order created by the powerset
monad—see e.g. [35, 36, 64] for more behavioural functors of endowed with monadic
structures yielding V-enriched Kleisli categories.

A V-enriched functor F': C — D between V-categories is a functorial mapping
with the property that for every pair of objects X, Y in C the assignment
Fxy:C(X,Y)— D(FX,FY) is continuous and, in the case of Cpo  -functors,
strict. Functors enriched over Cpo are often called locally continuous functors (e.g.
[64, 145, 146]). Unless otherwise stated, we implicitly assume that domain and
codomain of an enriched functor are similarly enriched. Categories and functors
enriched over V form the category V-Cat. We denote the functor underlying
a V-functor F': C » Das |F'|: |C] — |D] or simply F’, when confusion seems
unlikely. For V-categories C and D, the functor category V-Fun(C,D) is the
V-category whose objects are V-functors and such that V-Fun(C,D)(X,Y’) is the
complete partial order on the set Nat(X,Y') of natural transformations given
by pointwise extension of the order on their components. When clear from
the context we shall write Fun(C, D) instead of V-Fun(C, D). A Cpo-adjunction
x: L 4 R: C— Dis given by a natural isomorphism:

x: C(L—,—) =D(—,R—): D x C — Pos

where Pos is the category of posets and monotonic maps. Actually, the above
statement defines a Pos-adjunction but, since the inclusion functor Cpo — Pos
creates isomorphisms, any Pos-adjunction involving Cpo-categories yields a
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Cpo-adjunction.

Two morphisms e: X — Y and p: Y — X in a Cpo-category C form an
embedding-projection pair (written e < p: X — Y) whenever p o e = idx and
e o p < idy or, diagrammatically:

X —sy ‘
Zdy
p

7
idx Yy
e
The components ¢ and p are called embedding (of X in Y) and projection of
(Y in X), respectively, and uniquely determine each other. Since complete
partial orders are small categories, embedding-projection pairs are coreflections;>2
henceforth we use the two terms interchangeably in the context of Cpo-categories.
Coreflections in a Cpo-category C form a sub-Cpo-category of C whose objects
are those of C and whose arrows are embedding-projections with the order on
hom-sets given by the ordering on the embeddings (note thate < ¢/ < p > p/).
We write C¥ for such category. By forgetting either the projection or embedding
part of a coreflection we get the categories C° and C? (of embeddings and
projections), respectively, and such that C* = C¥ = (CP)?.

PROPOSITION 2.8 (Limit-colimit coincidence). Assume C enriched over the category
Cpo. For an w-chain of coreflections (e, < pn: Xn — Xn+1)n<w and a cone of
coreflections (fy, < qn: X — Xp)n<w for it the following are equivalent:

1. the cocone (fn: X — X,)n<w is a colimit for the w-chain of embeddings
(en: Xn — Xn+1)n<w;

2. the cone (qn: X», — X)n<w is a limit for the w-chain of projections
(pn: Xn+1 — Xn)n<w'

The above is a slight reformulation of the limit-colimit coincidence result
used in [133] to solve recursive domain equations with unknowns occurring in
covariant and contravariant positions like the well-known domain equation:

D>~ (D — D)+ At

and in general to find invariant objects for functors that were contravariant or of
mixed variance [20].

Algebraic compactness was developed by Freyd and Barr as an abstract
framework for addressing the same question in a more principled and general

*A coreflection is an adjunction whose unit is a pseudo-cell.
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way. Results developed in the order enriched setting considered in [133] are
shown to follow from axioms of Cpo-algebraically compact categories [17]. These
categories are characterised by a limit-colimit coincidence property for initial
and final sequences of Cpo-endofunctors as formalised in the definition below.

DEFINITION 2.10. A category C enriched over Cpo is said:

* Cpo-algebraically complete whenever it is algebraically complete with respect
to the class of Cpo-enriched functors;

* Cpo-coalgebraically cocomplete whenever it is algebraically complete with
respect to the class of Cpo-enriched functors;

* Cpo-algebraically compact whenever it is algebraically compact with respect
to the class of Cpo-enriched functors;

Note that there are Cpo-enriched categories that are not Cpo-algebraically
compact, for instance Cpo. Proposition 2.9 below provides mild and easily verifi-
able assumptions on categories that are sufficient for Cpo-algebraic compactness.

PROPOSITION 2.9. The following statements are true.

1. A Cpo-category with an embedding-initial object and colimits of w-chains of
embeddings is Cpo-algebraically complete [48].

2. A Cpo-algebraically complete Cpo,-enriched category is Cpo-algebraically
compact [54].

The class of Cpo-algebraically compact categories is closed under products
and dualisation. In particular, if C is Cpo-algebraically compact then so is C%® x C.

COROLLARY 2.10. Assume C and D Cpo-algebraically compact, C? and C x D are
Cpo-algebraically compact.

REMARK 2.2. Algebraic compactness is at the core of several works on categorical
domain theory, especially by Fiore [48] who refined and extended the theory.
We restricted ourselves to Cpo-algebraic compactness in order to simplify the
exposition but results presented in this work can be formulated in the general
setting of pseudo-algebraically compact 2-categories [42].

Locally contractive functors

Let A be a complete Heyting algebra and write PSh¢(A) and Sh¢(A) for the
categories of C-valued (pre)sheaves on the Grothendieck site associated to A.
This topology is often called sup topology for its sieves are such to cover their
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supremum: the coverage on A (regarded as a thin category) is the function
mapping an element a € A to the set {(A)F | A’ C Ana=\/ A"}
Following [26, 55] define the predecessor map on A p: A — A as:

p(a) = \/{beB|b<a}.

where B is a base for A i.e. any subset of A such that each element is a supremum
for the set of elements from the base that are less or equal to it:

ac€A = a:\/{bEB|b§a}.

The predecessor map induces an endofunctor p* over the presheaf category
PSh¢(A) and defined as its inverse image p*(X ) = X o p. Restriction morphisms
induce a natural transformation next?: Id — p* whose components are given,
on each presheaf X and stage a, as nextg’m = X, .. and such that (p*, nextP)
is well-pointed3. Assume (a —1i): PSh¢(A) — Sh¢(A), then the predecessor en-
dofunctor over PSh¢(A) induces an endofunctor » over Sh¢(A) as the restriction:

> —aop oi.

This endofunctor is called later or delay in contexts where stages describe future
words. Similarly to the predecessor endofunctor p*, » is well-pointed when
equipped with a point next: Id — » defined as the composite 1 ® next® where
e denotes vertical composition in the 2-category Cat and 7: Id — aoi is the unit
of the associated sheaf adjunction. The functor » preserves all limits in Sh¢(A).

For C Sh(A)-enriched define , C as the Sh(A)-enriched category given by the
following data:

* the objects of C, obj(,C) = obj(C),
* for any pair of objects X,Y € obj(C), the sheaf , C(X,Y) =»C(X,Y),

* for each object X € obj(C), the point nextgx yy oidx: 1 — »C(X, X)
where idx: 1 — C(X, X) is the identity on X in C,

* foreach X,Y, Z € C, the morphism
»C(Y, Z) x »C(X,Y) S w(C(Y, Z) x C(X,Y)) Z2X020, yo(x, 7)

where oxy z: C(Y, Z) x C(X,Y) — C(X, Z) is composition in C.

3A well-pointed functor is any endofunctor F' equipped with a natural transformation
n: Id — F called point and such that n o idp = idp o 7.
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The natural transformation next: Idgy(4) — » induces a Sh(A)-enriched functor
next: C — , C acting as the identity on objects and as the components of next
on hom-sheaves.

DEFINITION 2.11. A locally contractive functor is any Sh(A)-enriched functor
F: C — D that factors as a composition of functors enriched over Sh(«):

next

C—— ,C—D.

The later endofunctor is always locally contractive and so is any composite
F o » where F is enriched over Sh(A). In general, local contractiveness is
preserved by composition, dualisation, and products.

LEMMA 2.11. For A a complete Heyting algebra, the following statements are true.
1. The endofunctor »: Sh¢(A) — She(A) is locally contractive.

2. For F and G componible and Sh(A)-enriched, if F or G is locally contractive
then F o G is locally contractive.

3. For F and G locally contractive, F' x G is locally contractive.
4. For F locally contractive, F°P is locally contractive.

For locally contractive functors, (co)algebraic (co)completeness and algebraic
compactness coincide for these functors admit at most one invariant, up to
isomorphism. In particular, for F' locally contractive and X such that X =
F(X), the isomorphism identifies an initial F-algebra and a final F'-coalgebra.
Furthermore, X =Y whenever Y = F(Y).

LEMMA 2.12 ([26]). Let F be a locally contractive endofunctor over a category C. If
F has an invariant object, then it is unique up to isomorphism.

DEFINITION 2.12. A sheaf enriched category C is called contractively compact if it
is algebraically compact with respect to locally contractive functors.

In [26] Birkedal et al. identify conditions on the underlying category and on
the Heyting algebra that are sufficient for algebraic compactness: completeness
and well-foundedness.

PROPOSITION 2.13 ([26]). For A a complete Heyting algebra with a well-founded
base and C a category enriched over Sh(A), if (the externalisation of) C is complete
then it is contractively complete.

Examples of contractively compact categories are categories of sheaves on
Alexandrov topologies induced by ordinal numbers and that take values in a
complete category such as Set, Cpo, Cpo , Top, and Meas.
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REMARK 2.3. Results and constructions described in this section were presented
in [25, 26] in the more general setting of categories enriched over models of
guarded terms. A concrete instance of these model categories are sheaves over
well-founded complete Heyting algebras and we preferred to focus our exposition
to these models because they can be presented without formally introducing
models of guarded terms and because they provide a setting that is sufficiently
general for the aims of this work.






INFINITE TRACE SEMANTICS

Since the seminal paper [117], Kleisli categories have been recognised as the
context where to model the linear semantics of several types of transition systems
as shown by a plethora of works such as [43, 63, 64, 70, 80, 145, 146]. The key
idea behind this approach falls under the motto “change the category not the
definition” and can be traced back to Moggi’s modelling of side effects in Kleisli
categories of monads [23, 109-111]. Roughly speaking, systems are modelled
as T F-coalgebras where 7' is a monad describing the “branching type” (e.g.
partiality, non-determinism, probabilistic) and F' is an endofunctor describing
the “linear type” (e.g. labelled transitions). Coalgebras of this type form a
wide subcategory of coalgebras for certain endofunctors obtained as suitable
extensions of F’ to the Kleisli category of T and called Kleisli liftings. In this setting,
objects modelling systems are the same of T F-coalgebras whereas coalgebra
homomorphisms abstract from branching (the computational effect associated to
the monad 7') and hence capture the linear behaviour of systems under scrutiny.
In general, final semantics for coalgebras of Kleisli liftings may not coincide with
any established notion of trace semantics: there are instances where this results
in finite, possibly infinite, infinite only traces, or none at all (see e.g. [80]). In
[64] Hasuo, Jacobs and Sokolova presented general and sufficient conditions
that ensure finite trace semantics is captured by the final semantics of coalgebras
of certain Kleisli liftings. Although there are works recovering (possibly) infinite
trace semantics via canonical maps to weakly final coalgebras (see e.g. [43, 64,
70, 145]), a general account on par with those of finite trace semantics is still
missing. In this chapter we propose a general approach to infinite trace semantics
via final semantics.

Our proposal combines three main ingredients: Kleisli liftings, sheaves on
ordinals, and guarded (co)recursion. Although each of them is widely studied,
their combination is the key novelty that allows us to systematically capture
infinite traces by finality. Clearly, the role of Kleisli lifting is to abstract branching.
The réle of sheaves and guarded (co)recursion becomes clear when one notes that
an infinite object (e.g. a stream) is equivalently described by an infinite family of
coherent approximations (e.g. the countable family of its prefixes). This is exactly
how a global section is characterised from local sections via amalgamation. If we
replace infinite traces and finite traces for streams and words, respectively, then
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infinite traces are global observations, finite traces are partial or local observations,
and amalgamation is the mechanism for obtaining the former from coherent
families of the latter. From this perspective, observations are naturally organised
in sheaves over the Alexandrov topology of an ordinal number—uw, in the case of
the example of streams and words considered above.

We introduce the notion of guarded behavioural functor and guarded coal-
gebras as a way to capture local and global observations at once. Guarded
behavioural endofunctors are systematically derived from any behavioural en-
dofunctor while preserving the associated final semantics: there is an inclusion
functor that exhibits the category of coalgebras as a coreflective subcategory
of that of guarded coalgebras. We prove that the final semantics of guarded
coalgebras in Kleisli categories always capture infinite trace semantics of the
systems under scrutiny.

This result, together with existing accounts of finite trace semantics, allows
us to use trace semantics to drive the construction of self-referential endofunctors
hence to model self-referential behaviours from the trace semantics perspective.

The chapter is organised as follows. In Section 3.1 we shortly describe
the modelling of linear and trace semantics via Kleisli liftings and propose
a notion of morphisms for relating such models. In Section 3.2 we consider
category-valued sheaves over ordinals equipped with the Alexandrov topology
and study extensions of behavioural endofunctors and Kleisli liftings to this
setting while preserving the original semantics. In Section 3.3 we consider
locally contractive endofunctors over Kleisli categories of monads obtained by
pointwise extension as the technical foundation for guarded coalgebras in Kleisli
categories. In Section 3.4 we combine all these techniques into the notion of
guarded coalgebras and guarded Kleisli liftings and prove that this combination
is suitable for capturing infinite trace semantics. Concluding remarks are in
Section 3.5.

LINEAR AND TRACE SEMANTICS VIA KLEISLI LIFTINGS

In this section we recall the approach to modelling linear-time semantics (or linear
semantics, for short) introduced in [117] and its application to trace semantics [64,
70]. The section is organised as follows: in Section 3.1.1 we describe endofunctor
extensions to Kleisli categories known as Kleisli liftings; in Section 3.1.2 and
Section 3.1.3 we study coalgebras for Kleisli liftings and their associated notions
of final semantics and behavioural equivalences; in Section 3.1.4 we propose a
notion of morphism between models of linear semantics with the property that
they preserve linear bisimulations—hence trace equivalences.
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3.1.1 Kleisli liftings

Let (T, 1, ) be a monad over a category C and write (K - L): KI(T') — C for the
canonical adjunction presenting C as a subcategory of KI(7"). We are interested
in extending an endofunctor F' from C to KI(7') in a way that preserves its action
on (the image of) C. This intuition is formalised by the following definition:

DEFINITION 3.1 ([113]). Let (T, u,n) be a monad and F' an endofunctor, both over
some category C. A Kleisli lifting of F' to KI(T') is any endofunctor F over KI(T)
such that the diagram below commutes.

KI(T) . KI(T)

KJ J % (3.1)
C C

REMARK 3.1 (Kleisli extensions). A lifting of f: X — Y along an (epi)morphism
e: A — Y is a morphism h: X — A such that f = g o e. Dually, an extension
of f/: X — Y along a (mono)morphism m: X — B is a morphism h: B - Y
such that f = h o m. Therefore, Kleisli liftings are actually extensions along the
inclusion functor K: C — KI(T): F is an extension of K o F along K. For
historical reasons we will honour the terminology used in the literature and refer
to such extensions as Kleisli liftings.

As noted in [113], Kleisli liftings of an endofunctor F' along K : C — Kl(7')
are uniquely characterised by suitable natural transformations that distribute the
monad T over the endofunctor F. Formally:

DEFINITION 3.2. Let (T, u,n) be a monad and F an endofunctor, both over
some category C. A law distributing (T, u,n) over F' is a natural transformation
A: FT — TF compatible with the monad structure of T as stated by the commuting
diagrams below.

ToFoT

)\OidT/ X{TOA FOTLTOF
id id
FoToT ToToF ZFOn/ \nOZF

(3.3)
Idc Idco F

e T

FOT%TOF r

A precise notation would require to write distributive laws as triples such
s ((T, p,m), F, \) in order to keep the monad structure explicit; as common
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practice, we will often write A\: FT — TF or just \T>" akin to how we write T
for a monad and denote its multiplication and unit by x” and n”, respectively.

The following fact is stated in [113, Theorem 2.2]; see also [96, 97] for further
details and generalisations.

PROPOSITION 3.1. For (T, u,n) and F' a monad and an endofunctor both over a
category C, Kleisli liftings of F' to KI(T') are in bijective correspondence with laws
distributing (T, i, n) over F.

PROOF. Let \ be a distributive law of (7', u,n) over F. For X an object and
f: X — Y a morphism of KI(7"), the assignments

X—FX f—=AyoFf
define an endofunctor F over KI(T'). This functor is a Kleisli lifting since:
KFf=npyoFf=\AyoFnyoFf=TFKf

forany f: X — Y in C.

For the converse assume F Kleisli lifting of F' and let ¢ denote the counit
of (K 4 L). Since FK = KF, define \': FL. — LF as the transpose of
Fe: FKL — F. Then, X is (id; 7 o ¢) e (noidpr) where o and e denote
horizontal and vertical composition of natural transformations in Cat. Since
LK =Tand FK = KF, XK is a natural transformation of type FLK — LKF
as needed. Compatibility with (7, u, ) and F' follows by diagram chasing. [

Canonical liftings via tensorial strength Existence of distributive laws of (T, i, 1)
over I is not unusual. In fact, there are several classes of monads and functors
of interest, w.r.t. linear and trace semantics, for which Kleisli liftings can be
constructed in a canonical way. In particular we mention strong (commutative)
monads and polynomial functors [35, 43, 64, 113, 145, 146].

Assume (C,®, I) to be a monoidal category and let a, I, and r denote its
associator, left unitor, and right unitor. A monad (7', i, 7) on C is called strong if
it is equipped with a family of morphisms:

{St?"_;gy: XTY — T(X ® Y)}X7Y6C;

called (tensorial) strength, which is natural in both components and is coherent
with the structure of monads and monoidal categories, i.e.:

UX®Y © T(St’f}gy) o StTX’Ty = Strxyy o (idX X /Ly)
Nxey = strxy o (idx ®ny)  Arx =T(Ax)ostrrx

T((XX,y’Z) ostrxgy,z = Strxyez © idx ® stry,z oax,y,rz.
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Dually, a costrength for a monad is family:
{estrxy: TX®Y - T(X®Y)}xyec

which is natural in both X and Y and coherent with respect to the structure
of T and C. Every strong monad on a symmetric monoidal category has a
costrength given on each component as cstrxy = T'¢y,x o stry,x o rx,y where
»={oxy: X®Y =Y ® X}xyecc is the braiding natural isomorphism for
the symmetric monoidal category (C,®, ). A strong monad on a symmetric
monoidal category is called commutative whenever:

UX®Y © T(StT‘X7y> o CStT)(,TY = Uxgy © T(CSt?“;gy) o StTTX,y.

Every strong commutative monad is a symmetric monoidal monad (and vice
versa). In fact, its double strength:

{dStTXQ/Z TXRTY — T(X X Y)})ngc,
can be defined in terms of its (co)strength as follows:

dstrxy = pxgy o T(strxy)ocstrxry = puxgy © T(cstrxy) o strrxy.

Conversely, StTX’y = dSt?“X7y o (77X ®idTy) and CSIf7“X7y = dStT’X7y o (idTX ®77y).

Kleisli categories of (symmetric) monoidal monads have a canonical (sym-
metric) monoidal structure, induced by the monoidal structure of the monad and
such that the canonical adjunction is a monoidal adjunction with respect to this
structure. For (7', u,n, dstr) a strong commutative monad over (C, ®, I), define
(—®—): KI(T) x K(T) — KI(T') as (X ® X'), on each pair of objects X and
X',and as f ® f’ =dstryys o (f x f’), on each pair of morphisms f: X =Y
and f’: X’ — Y'. This functor is a lifting of (— ® —) along K : C — KI(T") and
forms, together with the unit / of ®, a monoidal structure on the Kleisli category
of T'. We refer the reader to [86, 88] for further details on strong and monoidal
monads.

EXAMPLE 3.2. The powerset functor P assigns to any set the set P X of all its subsets
and to any function f: X — Y the function P(f)(X') = {f(x) | x € X'}, it
admits a monad structure (P, u,n) whose multiplication and unit are given on each
component X as ux(Y) =Y and nx(x) = {z}. This monad is equipped with
strength, costrength and double strength given, on each component, as:

strxy (z,Y') = {z} x Y’

cstryy (X’,y) =X x{y}
dstryy (X', Y') = X' xY’

and hence is strong and commutative (see e.g. [64, 86, 88]).



36 3. INFINITE TRACE SEMANTICS

EXAMPLE 3.3. The probability distribution functor D assigns to any set X the
set DX = {¢: X = [0,1] | > cx ¢(x) = 1} of discrete measures and to any
function f: X —'Y the function Df(¢)(y) = 3 p(z)=, ¢(x); it admits a monad
structure (D, p, n) whose multiplication and unit are given on each component X as
px (@) (x) =32, ¢¥(z) - ¢(¥) and nx (z) = 6, where 6,: X — [0, 1] is the Dirac’s
delta function. This monad is equipped strength, costrength and double strength
given, on each component, as: (see e.g. [64]):

strxy (z,¥)(2',y) = 6,(z") - ()
cstrx y (o, y) (@', y") = ¢(2') - 6,(y')
dstrxy(¢,0)(2',y) = o(2) - ¥(y)

and hence is strong and commutative (see e.g. [35, 64]).

An endofunctor over a category with products and coproducts is called
polynomial whenever it is formed by constants, products, and coproducts. Assume
C has coproducts of cardinality x, a polynomial endofunctor over C is any
endofunctor F' generated by the grammar:

F:Z:Idc|A|Hi€IFi‘F0XF1

where A ranges over obj(C) and [ has cardinality at most x. Kleisli liftings for
polynomial functors can be constructed by structural recursion: all cases are
trivial except for products which require the additional assumption that 7" is a
symmetric monoidal monad with respect to the structure (C, x,1).

* If F = Idc or F = A then, define F as Idg ) and A, respectively.

* If F = [[,.; F; then, define its Kleisli lifting as the coproduct [[;.; F;
where each Fj is the lifting of F; obtained via this recursive procedure—this
yields a Kleisli lifting by construction of each F; and by K : C — KI(T)
preserving coproducts.

e If F = Fy x Fy, define F as F, X F; where X is the tensor product
induced by x and the monoidal structure of T', F, and F) are obtained
via this recursive procedure.

EXAMPLE 3.4. LTSs with labels in a given set A (see e.g [125]) can be viewed as
coalgebras for the endofunctor P(A x Id): Set — Set [121]. Since A x Id is
polynomial and P is strong and commutative, it is possible to apply the above
procedure and construct A x Id canonical Kleisli lifting of A x Id; this endofunctor
over KI(P) acts as A x Id on objects and as dstr(na x Id) on morphisms. In
particular, for any object X we have:

(AxId)X =AxX
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and for any morphism f: X — Y in K1(P) we have:
(AxId)X =AxX and (AxId)(f)(a,z)={(a,y)|y€ f(x)}. O

EXAMPLE 3.5. Fully-probabilistic systems [56] are modelled as coalgebras for the
endofunctor D(A x Id) on Set [136]. Since A x Id is polynomial and D is strong
and commutative, it is possible to construct A x Id canonical Kleisli lifting of A x Id;
this endofunctor over K1(D) acts as A x Id on objects and as dstr(na x Id) on
morphisms. Since the probability distribution monad D is strong and commutative,
the endofunctor (A x Id) has a canonical Kleisli lifting A x Id to KI(D) acting as
A x Id on objects and as dstr(ns x Id) on morphisms. In particular, for any object
X we have:

(AxId)X =AxX

and for any morphism f: X — Y in KI(D) we have:
(A x Id)(f)(a,2)(b,y) = a(b) - f(z)(y). O

Kleisli coinduction, linear and trace semantics

For I a Kleisli lifting of F along K : C — KI(T), the category Coalg(T'F) is a
wide subcategory of Coalg(F'): the inclusion functor K lifts along the forgetful
functors for Coalg(TF) and Coalg(F), as shown in the diagram below, to a
functor that acts as the identity on coalgebras and as K on morphisms:

Coalg(TF) — Coalg(F)

J J (3.4

C KI(T)

Although T F-coalgebras are precisely F -coalgebras, their morphisms capture a
different kind of relations between the systems under scrutiny: 7 F'-coalgebra
homomorphisms are functional bisimulations [121, Theorem 2.5] whereas F'-
coalgebra homomorphisms are functional linear bisimulations [117, Proposi-
tion 2.8]. Here the term linear is intended in a broad sense generalising from
non-determinism ([117] considers LTSs only) to effects modelled by an arbitrary
monad T.

This difference becomes clear when the definition of F'-coalgebra homo-
morphisms is expressed as a diagram in C, the category underlying KI(T"). To
this end, let f: (X, h) — (Y, k) be a coalgebra homomorphism with underlying
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morphisms f: X — Y and consider its associated diagram in K1(7'):

This diagram corresponds to the following diagram in C:

f
X TY
|
h TTFY

JNFY

TFTY —— TTFY —— TFY
TEf Thy %

TFX

For instance, consider non-deterministic transition systems by taking 7" and F' to
be P and A x Id, respectively. The diagram above commutes if, and only if, for
any label a € A and states z, 2’ € X it holds that:

(a,2") € h(z) <= Yy € f(a")3y € f(x)((a,9) € k(y)).

Intuitively, A\: TF — F'T distributes the “branching” part of the behaviour (i.e.
the computational effects modelled by 7T") over the observable “linear” part of it
(characterised by the endofunctor F') while p collects and combines effects thus
forgetting when and how branching occurred.

From this perspective, final T F'-coalgebras, and their associated coinduction
principle, capture branching semantics whereas final F'-coalgebras, and their
coinduction principle, capture linear semantics.

DEFINITION 3.3. Assume F Kleisli lifting of F to KI(T). For h: X — TFX, its
linear semantics is the unique morphisms lbehy,:

In general, the linear semantics described by final F'-coalgebra homomorph-
isms may not capture a known notion of trace semantics for systems modelled as
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T F-coalgebras. For instance, if T is powerset monad P and F is the labelling
functor A x Id then the final A x Id-coalgebra coincides with the initial one and
hence has the emptyset as its carrier [64, 117]. Even when final F -coalgebras
capture some notion of trace semantics, this is not unique across the range of
choices for 7" and F'. In fact, there are several examples in the literature where
finality characterises finite, possibly infinite, infinite only traces or none at all. For
instance, in [80], Kerstan and Konig investigate trace semantics for continuous
probabilistic transition systems. To this end they consider different combinations
of monads and endofunctors over Meas, the category of continuous functions
between measurable spaces. In particular, they take 7" to be either the probability
measure monad G (a.k.a. Giry monad [44, 46, 115]) or the sub-probability meas-
ure monad G<, and F as either A x Id + 1 or A x Id i.e. labelling endofunctors
with or without explicit termination. For each combination they compute the
final F'-coalgebra and determine whether it captures some established notion of
trace semantics. The results are summarised by the table below.

T F v F  trace semantics
< Ax Id KuF none

G< AxId+1 KupF finite

g A x Id KvF infinite

G AxId+1 KvF possibly infinite

In the wake of the examples above, finite and (possibly) infinite trace se-
mantics are abstractly defined by lifting initial F’-algebras and final F'-coalgebras.

DEFINITION 3.4. The final F-coalgebra, whenever it exists, is said to capture:

e finite trace semantics if v F = K(u F)~Y,

* (possibly) infinite trace semantics if v F = K v F.

In [64] Hasuo, Jacobs and Sokolova present general and sufficient condi-
tions for capturing finite traces via Kleisli coinduction based on suitable order-

enrichment. Below we propose a modest generalisation of this seminal result by
rephrasing it in terms of algebraic compactness.

PROPOSITION 3.2. Let F be a Kleisli lifting of an endofunctor F to KI(T'). Assume
F algebraically complete and K1(T") algebraically compact with respect to E such that
F € E. The initial F-algebra lifts (along the inclusion K) to the final F -coalgebra:

vF 2 K(uF)

PROOF. Recall from [66, Theorem. 2.14] that a law distributing (7', i, ) over F'
induces a lifting (along the obvious forgetful functors) of the canonical adjunction
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(K 4 L): KI(T) — C to an adjunction between the categories of algebras for F’
and F, receptively, as shown in the following diagram:

Alg(F) - Alg(F)

ey

¢ wm
L

In particular, the lifting of K maps an F-algebra g: FX — X to the F-algebra
(nFx 0g): FX — X and an F-algebra homomorphism f: (X, g) — (Y,h) to
(my o f): (X,nrx og) — (Y,nry o h). Because of the above adjoint situation,
K F' = n), pjopF is an initial F-algebra. By algebraic compactness any initial
'F-algebra is canonically isomorphic to a final F'-coalgebra hence K (u F)~! =
(K pu F)~!is (up to isomorphism) the required final F'-coalgebra. O

The result presented in [64] is readily recovered as an instance of the above:
assume an initial F-algebra can be computed via an initial sequence indexed by
w, that both KI(T) and F are enriched over the category of continuous maps
between w-CPOs with bottom elements Cppo (i.e. the full image of the inclusion
Cpo, — Cpo), and that composition in KI(T) is left-strict. In fact, under
these assumptions, F is algebraically compact and hence Proposition 3.2 applies.
These hypothesis are met by polynomial functors and monads modelling several
computational effects of interests and encompassing non-deterministic transition
systems, weighted transition systems, discrete and continuous probabilistic
transition systems among others (cf. [35, 64] and Section 3.1.1).

A general account of infinite trace semantics on par with the finite case is
currently missing. Several works investigated this issue, see e.g. [43, 64, 70, 145,
146], but in all of them liftings of final F-coalgebras are not final F'-coalgebras.
They are weakly final ones. Although these characterisations are weakly universal
in Coalg(F), they can be uniquely defined by means of some other properties:
[64, 145, 146] assume an order-enriched setting and identify infinite trace
semantics as the maximal F -coalgebras morphism to K (v F'). Likewise, [43]
define infinite trace semantics as the maximal among the mediating maps to
K (v F) arising from a suitable weak limit in KI(7"). Finally, we remark that all
these works assume F' admits a final coalgebra computable via the final sequence
construction and in w steps. It follows that infinite traces are implicitly defined
as w-indexed sequences in contrast to more general definitions such as transfinite
traces [45, Chapter 11]. Nonetheless, these constructions capture (countably)
infinite traces for labelled non-deterministic systems, discrete and continuous
labelled probabilistic systems.
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3.1.3 Linear bisimulations and trace equivalences

Notions of strong bisimulations have been captured coalgebraically [2, 121,
139]. Previous works studied behavioural equivalences for coalgebras in Kleisli
categories and identified the notion of kernel bisimulation as the more suitable
for the role especially because the resulting notion of bisimilarity agrees with
final semantics.

Intuitively, a kernel bisimulation is “a relation which is the kernel of a common
compatible refinement of the two systems” [139]. To be more precise, a relation
R, i.e. ajointly monic span in C, is a kernel bisimulation between two F'-coalgebras
(h, X) and (h’, X') if there are a third one, say (Y, k), and a cospan of coalgebra
homomorphisms 4 — k <+ k' for which R is the pullback in C of the cospan
X =Y < X' underlying h — k < h’ as illustrated by the following diagram:

/\
‘\/J

X k
FJC\/AFY/F/

From this perspective, final coalgebras can be thought as “maximal” compat-
ible refinement systems and hence (kernels of) final semantics arrows capture
bisimilarity.

In Section 3.1.2 we discussed how Kleisli liftings and their coalgebra homo-
morphisms capture linear and trace semantics; these results lead us to define
coalgebraic linear bisimulations in terms of F'-coalgebra homomorphisms. How-
ever, coalgebraic notions of bisimulations for F'-coalgebras, like Aczel and
Mendler’s bisimulation or kernel bisimulation, consider relations as spans in the
Kleisli category of T' as opposed to their counterparts for T'F'-coalgebras which
are spans in the underlying category C. Consider for instance the case of C being
Set, (jointly monoic) spans in Kleisli categories are subsets of TX x TY: if T
is the powerset monad P or the probability distribution monad D then spans
in their Kleisli category are relations between subsets like R C PX x PY and
relations between probability distributions like R C DX x DY, respectively. In
[117], Power and Turi argue that spans in Kleisli categories are the right notion
of relation to use since they extend the effect of the branching type 7' to carriers
(consider e.g. KI(P)) akin to automata determinisation [74, 131] or transition
systems linearisation [117].

Finally, note that the notion of kernel bisimulation as described above assumes
relations to be jointly monic spans that are pullbacks for the given cospan. These
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spans can be thought as compact representations of relations: being pullbacks
means being the final span in the category of spans for a given cospan (span
homomorphisms are morphisms between their cusps making the obvious triangles
commute). We maintained this restriction while describing kernel bisimulations
to adhere to the main definitions found in the literature (cf. [90, 138, 139]) but
the definition can be safely relaxed to accommodate arbitrary spans. In the
setting of Kleisli categories this is a necessity since Kleisli categories usually lack
pullbacks regardless of their underlying category having such limits.

DEFINITION 3.5. A linear (kernel) bisimulation for F-coalgebras (X,h) and
(X',1)isaspan (p: R — X,p': R — X') in KI(T') such that there exists a cospan
of F'-coalgebra homomorphisms making the diagram below commute in K1(T):

Y

J

Like in the case of linear semantics, Definition 3.5 may not capture any known
notion of trace equivalence for systems modelled as T F-coalgebras. Again,
coalgebras for the functor P(A x Id) provide us an example of this situation:
final A x Id-coalgebras are carried by the empty-set which is final in KI(P). The
criterium behind Definition 3.4 applies to this situation as well.

/

y 7\

\
/ J (3.5)
/

Distributive law morphisms

Distributive laws can be organised into categories by means of several notions of
distributive law morphisms depending on the kind of structures being distributed
as discussed in [96, 97, 118, 147]. In [96], these notions are introduced as part
of different 2-categorical contexts where to analyse distributive laws arising in
operational and denotational semantics. This effort, and especially works such
as [83, 1471, resulted in the proposal of (suitable formulations of) distributive
law morphisms as the abstract understanding of translations between SOS
specifications. As a consequence, this result extends the theory of abstract GSOS
[82, 144] with morphisms able to relate models while preserving structures of
interest.

The study of Kleisli coinduction faces a situation similar to that of abstract
GSOS prior to the aforementioned works: this theory lacks morphisms between
models. To this end, we propose the use of following notion of distributive law
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morphisms because they induce functors between categories of coalgebras and
transformations between Kleisli liftings that are coherent with respect to linear
bisimulation and the relevant structures of Kleisli categories such as the canonical
inclusion of their underlying category.

DEFINITION 3.6. Let \: FT — TF and N': F'T' — T'F’ be distributive laws of
monads over endofunctors over C. A distributive law morphism from X to \' is a pair
(0, v) composed by a monad morphism 0: (T, u”,n") — (T, " ,n™") € Mnd(C)
and an endofunctor morphism v: F — F’' € End(C) subject to the following
coherence condition:

A
Fol ——ToF
’UOQJ J@ov (3.6)

F'OT’?T’OF’

Distributive laws of monads over endofunctors on C together with their
morphisms for the category MndEnd(C). Forgetting either component of dis-
tributive law morphisms gives rise to two functors from MndEnd(C) to Mnd(C)
and End(C), respectively. Both these forgetful functors have sections since any
monad distributes over the identity functor and the identity monad distributes
over any endofunctor.

An interesting property of distributive law morphisms (as defined above) is
that they induce functors between categories of coalgebras modelling branching
and linear semantics that are coherent with respect to the canonical inclusion
into Kleisli categories of their underlying category (cf. Proposition 3.3) and to
linear semantics (cf. Proposition 3.4). Let (f, v) be a distributive law morphism
from \: FT — TF to \N: F'T' — T'F’. Consider the assignments mapping
each T'F'-coalgebra (X, g) and homomorphism f: (X, g) — (Y, h) as follows:

(X,9) = (X,(0ov)xog) frf (3.7)

It follows from naturality of # and v that these assignments define the functor
Coalg(f o v): Coalg(TF) — Coalg(T'F"). For a F-coalgebrag: X — F X and
a F -coalgebra homomorphism f: (X, g) — (Y, h), consider the assignments

(X,9) = (X,(@ov)xog)  frOyof. (3.8)

These assignments map F -coalgebras to F’-coalgebras and homomorphisms
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accordingly as the following commuting diagram asserts:

f Oy
X TY TY
Tk Tk
. Orry
h @ TTFY T'TFY
HFY (iv) T’pr
TFf Ty pry
TFX%TFTY%TTFY%TFY T'FY
Orx Orry BHTFY (iii) \ /Y
T'Ff T'Ay
T'FX —— T'FTY — T'TFY Ll T'T'FY Y, TFY TTFY
/
T'ox T'vry (if) T'T'vy T/NY
TFX —TFTY — T'F'TY — TTFY TFY
/F/f T/FIGY />\/ ,LL/F'/Y

In order to check that the diagram above indeed commutes note that (i) is the
expansion in C of the diagram asserting that f is a F -coalgebra homomorphism,
that (ii) is a component of (3.6) under T, that (iii) and (iv) follow from the fact
that 6 is a monad morphism, and that all remaining sub-diagrams are naturality
squares. As a consequence of the fact that the above diagram commutes and the
assumption of (¢, v) that is a distributive law morphism, the assignments (3.8)
define a functor Coalg(f,v): Coalg(F') — Coalg(F ). Moreover, this functor is
a lifting of K1(0): K1(T") — KI(7") along the forgetful functors depicted in the
following diagram:

Coalg(F) Coalgl,v) Coalg(F")
| |
KI(T) KI0) KI(T")

From a more abstract perspective, this situation can be seen to follow from lifting
v: F — F’ to a natural transformation exchanging Kl(#) with Kleisli liftings as
depicted in the diagram below. In fact, any distributive law morphism (6, v)
determines a natural transformation T such that:

/\

M(\ﬂ/ )

T/
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The natural transformation T: KI(f) o F — F’ o Kl(theta) is given on each
object X as K’ ovx. To see that this is indeed a natural transformation it suffices
to note that, for any f: X — T'Y, the corresponding naturality square reduces
to the following diagram in the underlying category C:

UXx
. FX F'X —

Ff F'f

vrYy
FTY — F'TY

(KL(§) o F)f Ay F'oy | (F' oKI(9))f
TFY F'T'Y
Ory Ny

—— T'FY —— T'F'Y «—
vy
The diagram above commutes since (6, v) is a distributive law morphism. Note
that the diagram above lies in the lower part of the diagram unfolding (3.8).
Actually, the functor Coalg(f o v) is the restriction of Coalg(d, v) to the wide
subcategory determined by 7 F'-coalgebra homomorphisms.

PROPOSITION 3.3. For (A,v) a distributive law morphism from A\: FT — TF to
N: F'"T" — T'F’, the diagram below commutes:

_ Coalg(d,v) _
Coalg(F) Coalg(F")
/ ‘ Coalg(f o v) /
Coalg(TF) Coalg(T'F")
l K1(0)

KI(T) KI(T")

|
a JC/K,

PROOF. Left and right faces assert that the inclusions K and K’ lift along the
forgetful functors for the coalgebra categories involved and this holds true for
any Kleisli lifting as per (3.4). The front face of the diagram commutes by
definition of Coalg(f o v) since, as clear from (3.7), this functor acts as the
identity on coalgebra homomorphisms. The back face of the diagram commutes
by definition of Coalg(f,v) since, as clear from (3.8), this functor composes
coalgebra homomorphisms to the opportune components of 6 i.e. it acts as K1(0).
The bottom of the diagram commutes since #: T" — T" is a monad morphism and
by definition of the functor K1(6). To see that the top of the diagram commutes as

C
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well note that Coalg(T F) and Coalg(T’F') are wide subcategories of Coalg(F)
and Coalg(F"), respectively and that on coalgebras Coalg(6 o v) and Coalg(6, v)
act in the very same way, whereas on coalgebra homomorphisms the first acts
as the identity and the second as Kl(): KI(7') — KI(7"). Therefore, the top
diagram commutes since K1(6) o K = K’ (§ 1) = 1/’). Finally, the whole diagram
commutes since all of its faces are so. O

PROPOSITION 3.4. For (6,v): A\ — X a distributive law morphism, the following
statements are true.

e If (p,p') is a linear bisimulation for the F-coalgebras h and K, then
(p,p) is a linear bisimulation for the F’-coalgebras Coalg(f,v)(h) and
Coalg(0,v)(h).

* If 6 is componentwise monic, the functor Coalg(, v) reflects linear bisimula-
tions whose witness lies in the (essential) image of Coalg(0, v).

PROOF. Let (p,p’) be a linear bisimulation for the F'-coalgebras h and h'. In
order to check that (p,p’) is also a linear bisimulation for the F’-coalgebras
Coalg(6,v)(h) and Coalg(d,v)(h’) let (f, f') be the cospan of IF-coalgebra
homomorphisms rendering (p, p’) a linear bisimulation for 4 and /’. Then, the
claim follows from the commuting diagram below:

A

GX/TX \T ;0 f,/TX’\QX,

T'X () TTY uLpt TTY Gi)  7'X’ (vi)
T'f\, /QTY\ /QTY\ /T’f’

TTY 4 TV TTY

oy n

7Y Oy T'T'Y

T\ / T
Y Y

H Ty H

The diagram above indeed commutes since: (i) holds by assumption on (p, p’)
and (f, f'); (i) and (iii) are naturality squares for #; (iv) and (v) follow from
f being a monad morphism. Assume that § is componentwise monic and let
(p,p’) be a span in eimg(Coalg(f, v)), let (¢, q’) be any span taken (p,p’) up to
isomorphism, and let (f, f’) be a cospan of F'-coalgebra homomorphisms from h
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and h' to some common refinement coalgebra k such that its image shows (p, p’)
as a linear bisimulation for Coalg(f,v)(h) and Coalg(#,v)(h'). The diagram
associated to the later assumption can be decomposed in (vi) and, since 6y is
monic, the diagram (i) commutes. This proves that the span (g, ¢’) is a linear
bisimulation for the F'-coalgebras h and /. O

The situation described by Propositions 3.3 and 3.4 confirms Definition 3.6 as
a suitable notion of morphisms since these coherently induce functors between
categories of coalgebras capturing the linear and branching semantics of systems.

POINTWISE EXTENSIONS TO SHEAF CATEGORIES

In this section we consider C-valued sheaves over ordinal numbers equipped
with the Alexandrov topology and study the pointwise extension of endofunctors,
monads, and their distributive laws to this setting. Hereafter, let « be limit
ordinal and assume that the constant sheaf adjunction (A 4T'): Sh¢(a) — Ciis
defined (cf. Section 2.1).

The pointwise extension functor

For F' an endofunctor over C consider the endofunctor Fun(/d, F') over PSh¢(«)
defined on any presheaf X, morphism f, and stages 8 < 3 as follows:

Fun(/d, F')Xg = FXg Fun(ld, F)X =FX Fun(Id,F)fs = Ff3s

tg,p LB

Because this functor acts on values as F' we call Fun(/d, F') the pointwise extension
(to presheaves) of F.

This endofunctor need not to preserve sheaves since F' may not preserve
the necessary limits (which are pointwise in PSh¢(«)). Therefore, to obtain an
extension of F' to the category of sheaves we need to apply the associated sheaf
functor a that, together with its right adjoint i, yields the endofunctor:

aoFun(ld, F)oi: She(a) — She(a).

We call this functor the pointwise extension (to sheaves) of F' and denote it as F.
This functor takes any sheaf X and any morphism f: X — Y to:

LXp=FXp EXigpi1 =FXig 50 Efs=Ffs
EX, = lim FXy EFX,, =g Efy=py
<y ’

where 3 is a successor ordinal, -y a limit one, 7g: limg ., FF Xg — FXg is the
component at 3 of the limiting cone, and p: limg., F Xg — limg.., F'Yp is the
mediating map for the cone {f3 o 13} 5.
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The endofunctor F is an extension of F (actually of A o F) along the constant
sheaf functor A since it makes the diagram below commute.

C i) Shc(a)
Fj JE (3.9)

€ —— She(a)

Intuitively, this diagram abstractly describes the idea that £’ acts as F' on the
image of the subcategory C of Sh¢(«), especially on the final object 1. As a
consequence, the final sequence for the endofunctor F' extends along A to the
final sequence for F'. Formally, the constant sheaf functor A: C — Sh¢(«) lifts
along the forgetful functors for Coalg(F') and Coalg(F') as in the diagram below.

Coalg(F) — Coalg(F)

|, |

C ——— Sh¢(a)

The lifted functor is an inclusion functor and takes final F'-coalgebras to final
F-coalgebras.

PROPOSITION 3.5. For F' an endofunctor on C, the constant sheaf functor A takes
final F-coalgebras to final F -coalgebras.

PROOF. First note that A lifts along the forgetful functors for Coalg(F’) to
Coalg(F) to an inclusion functor from Coalg(F') to Coalg(F'). For (X,h) a
F-coalgebra, Ah has type Ah — AFX and AF = F A from which we conclude
that Ah is a F-coalgebra. Likewise, A maps F'-coalgebra homomorphisms
to F'-coalgebra homomorphisms. Assume v F' exists, we show its image final.
For (Y, k) a F-coalgebra and § a successor ordinal in «, the component kg
is a F-coalgebra and hence there is a unique F-coalgebra homomorphism
kst kg — v F. For any successor ordinal B’ such that 8 < @, the restriction
morphism Y, 55 Yp — Y carries a F-coalgebra homomorphism from kg to
ks such that !kﬁ, =gy 0 YLW,. Reworded, for 3 and 3’ successor ordinals, s
and !, satisfy naturality. Since successor ordinals form a base for A(a), the
family of F'-coalgebra homomorphisms {!x, } uniquely extends to a F'-coalgebra
homomorphism from & to A v F'. This homomorphism is necessarily unique by
assumption on v F' and hence exhibits A v F' as final in Coalg(F). O

REMARK 3.6. Assume that C is bicomplete with respect to a-sequences hence
that the constant sheaf functor A is both left and right adjoint; examples of
this situation are the categories Set and Meas. Since under these assumption C
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is a (co)reflective subcategory of Sh¢(«), Proposition 3.5 follows from a result
known as “Freyd’s Reflective Subcategory Lemma” [53]: final coalgebras for
endofunctors which restrict to reflective subcategories lie in such categories and
coincide with final coalgebras for their restrictions.

Symmetrically to the situation described in (3.9), the endofunctor F is the
right extension of I (actually of " o F') along the global section functor I since
there is a (unique) 2-cell p such that:

She(a) —— ¢

EJ 7 ‘F (3.10)

Sh(;(Oé) *>1_‘ C

In particular, (F, ) = Ranp(I'F). The natural transformation p is given on
each sheaf X as the mediating map ox: F'lim X — lim FX which is clearly
unique. This characterisation might appear backward since we obtained F' from
F—one might prefer to call F a lifting of F' along I". Nonetheless, the natural
transformation p and its sections are be of relevance for lifting the adjunction
(A - T) to categories of coalgebras as stated by Proposition 3.6 below.

PROPOSITION 3.6. If o: FT' — T'F from (3.10) is a retraction then the constant
sheaf adjunction (A - T'): Sh¢(a) — C lifts along the forgetful functors for
Coalg(F') and Coalg(F) as shown in the diagram below.

—

Coalg(F) L Coalg(F)

s
CCShC(a)
T

PROOF. Let 7 and ¢ denote the unit and counit of (A - I'), respectively. It
follows from [81, Theorem 2.5] that natural transformations ¥: AF — F A and
¢: I'F — FT define a lifting of (A 4 I") along the forgetful functors for Coalg(F")
and Coalg(F') whenever the diagrams below commute:

idpon coidp
FoloA F—— Aol'o F
noidp ® ]§OidA idﬂoéﬂ (i) [idAOC
ToAoF T'oFoA FoAoll' —— AoFol

idpr o ¥ ¥ oidr
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In this setting, the desired lifting for A is given, on each F-coalgebra (X, g) and
homomorphism f, by the assignments:

(X,9) — (AX,9x 0 Ag) [~ Af.

Its right adjoint, that is the desired lifting for I, is given on each F'-coalgebra
(Y, h) and homomorphism f, by the assignments:

(Y,h) — (TY,¢y oTh)  f s Tf.

We apply [81, Theorem 2.5] by choosing ¢ and ¢ as the identity and as any section
for o, respectively. This choice is justified by the fact that F' is the pointwise
extension of F' hence an extension along A as per (3.9) and o is a retraction by
hypothesis. The natural transformation g o ida o ' ¥ A — FTA is an identity
since for any object X of C we have that ' FAX = TTAFX by (3.9) and that
FAFX =1limAFX = FX. It follows that ¢ o id is an identity as well and that
diagram (i) is made from identities. Note that for X a sheaf, the component of
ex atany stage 3 is the restriction arrow X, , and that the sheaves AI' ' X and
AFTX take values limg «, F X3 and Flimg ., X at any stage, respectively.
Thus, for 5 a stage, the component at stage 3 of (ii) is the following square in C:

limp cq FXp — Flimg o Xg
EXLMJ JFXLM

For X a sheaf, the components at X of € o idr and (idp o ¢) e (J o idr) shown
in (ii) describe two cones for the a-sequence (‘E‘XL,B,B’ : FXg — FXg)g<p<a
(since F' X, frLgiel = FX,, 6) and such cones can be safely restricted to the
successors base for A(«a) (cf. Section 2.1.2). We conclude by noting that the first
of these cones is limiting, the associated mediating map is exactly the component
at X of o, and ¢xox = idx by hypothesis. O

Note that for ¢ to be a retraction entails for F' to weakly preserve limits of
a-sequences since any section of ¢ represents a coherent choice of weak mediating
morphisms. In particular, g is a natural isomorphism if and only if the endofunctor
F (strongly) preserves limits of a-sequences. This is a mild assumption in the
context of this chapter: Proposition 3.6 will be applied to choices of F' and «
such that the final sequence of F' is stable at « (cf. Section 3.4.2).

Taking an endofunctor to its pointwise extension is a functorial operation.
There is a functor:

(=): End(C) — End(Sh¢(«))
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defined as follows:
(=) £ aoFun(ld,—)oi.

We call the pointwise extension functor (to sheaves). In the remaining of this
section we show that this functor lifts to distributive laws and that it enriches
over the category of sheaves.

Pointwise extension of distributive laws

The pointwise extension functor preserves the identity functor over C up to
isomorphism: the unit of the reflection (a - i) defines the isomorphism

w:IdShc(a)g% Idshc(a)%aoi:%.

Likewise, (—) preserves endofunctor composition up to isomorphism: for F' and
G in End(C) there is an isomorphism

¢prg: FoG=Fod

natural in F' and G. For  and y a successor and a limit ordinal, the component
B of ¢r ¢ is defined as:

(FoG)Xg=F(GX)g=(FoG)Xp=(FoG)Xp

and the component -y as:

t
(E 0 G)X, = lim FG X = lim(F 0 G)X = (F 0 G)X,

where (I) easily follows by restriction to the successors base of A(a). As
any category of endofunctors, End(C) and End(Sh¢(«)) are (strict) monoidal
categories whose tensor product and unit are endofunctor composition and the
identity functor, respectively. The isomorphisms ) and ¢ from above render the
functor (—) a monoidal functor.

THEOREM 3.7. The following data defines a strong monoidal functor going from
(End(C), o, Idc) to (End(Shc(a)), o, IdShc(a)):

* the pointwise extension functor (—): End(C) — End(Sh¢(«)),
* the natural isomorphism ¢pg: F o G = F o G, and

* the isomorphism ¢: Idgp() = Idc.
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PROOF. The monoidal structure of an endofunctor category under composition
is strict since its associator, left unitor, and right unitor are all identities—in fact
(FoG)oH =Fo(GoH),Fold=F,and Ido F = F for any F, G, and
H. Therefore, the coherence diagrams stating the compatibility of (—), ¢, and
1 with respect to the associator, left and right unitor (cf. [100, Section X.2])
instantiate as follows:

Fo(GoH)=———=(FoG)oH
Zdﬂo(bGV ¢F7Goid£
Fo(GoH) (FoG)oH

¢F7Gk PFoG,H

FO(GOH):(FOG)OH
F o Idgp(a) F Tdghe(ay o F F

EOIdC%GOIdC IdCOE%IdCOG
T 9G,1de - P1de,c

Let 3 a successor ordinal. At stage 3 any component of the isomorphisms ¢
and ¢ is an identity and thus each corresponding component of the diagrams
above has only identities as arrows. Stages associated to limit ordinals follow by
universality and the coherent choice of limits inherent in fixing a. O

A defining property of monoidal functors is that they send monoids to
monoids. In the case of (—) this means that if 7" carries a monad structure, then
its extension 7' carries a monad structure derived from the extensions of u”
and n”. Note that " and n” have types ToT — T and Id¢ — T instead of
T ol — T and Idgp, ) — I (expected from any multiplication and unit for
T). The necessary gluing is provided by the isomorphisms ¢ and v which allows
us to derive a multiplication and unit for T from those of T as follows:

L2y eprr  nL =0 eorr. (3.11)

It follows from simple diagram chasing that 4L and nL satisfy the usual diagrams
of associativity and unit (¢f. Corollary 3.8 below) and hence define a monad
structure on 7. We call the monad (T, uL,nT) the pointwise extension of
(T, u*',nT). This structure is uniquely defined and hence by assigning to each
monad its extension we obtain a functor Mnd( — ) between monad categories that
is the restriction to monads of the pointwise extension functor — for endofunctors.
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COROLLARY 3.8. The pointwise extension functor restricts to a functor between the
categories of monads over C and over Sh¢(«) as illustrated by the diagram below.

End(C) 2 End(She(a))

| ]

Mnd(C) ST Mnd(She(a))

prOOF. Let (T, ", n") be a monad over C and consider the following diagram
asserting that L = u” e ¢ 1 is associative:

put oidp z'dzo,uZ

LTolol
or, TcV \TOTT

ToToT (i) ToTol

/ ¢T,T\ A,T \
T

Tol (i) ToToT (iv) To

idp o u” uT oidy ~
¢T\ / \ ‘/¢TT

ToT (6] ToT

The diagram above commutes since: (i) commutes by hypothesis on (T, , 1),
squares (ii-iv) follow from naturality of ¢ and x”, and all remaining diagrams
commute by definition of uL. Consider the following decomposition of the
diagram asserting that nZ is a right unit for uL:

uL
,—»1£1 prr ToT £ %
dl n- (i) 1idTon
idy onL Toldg — Tolde @)

¢T,Idc
idy o1 (ii) \

Lo Idshg(a) T
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This diagram commutes for: (i) asserts that 77T is a right unit of MT, (ii) is states
the compatibility of 1) with the right unitor and ¢, and (iii) is a naturality square
for ¢. The diagram describing nZL as a left unit for L can be shown to commute
by a similar decomposition:

IdcoT «—— IdcoT nL oidy

¢Idc,T
/ poidp

T IdShc(a)oZ —

Thus, I equipped with uL and nL as defined in (3.11) is a monad over Sh¢(a).

For §: T — T’ a monad morphism, the natural transformation §: 7" — 1"
is a morphism between the extensions for 7" and 7" as the following commuting
diagrams assert:

ﬁTOI%L’OL/ﬁ ﬁjdshc(a)ﬁ
o, o110 . ‘¢ ,
T
Ut n—
Ho0 Id ,
uZ ToT ——= T oT uZ gt i g
u ut / \
7 e L1

(55

We conclude by noting that the functorial assignments above act on monad
morphisms and on the functorial part of monads as the pointwise extension
functor (—): End(C) — End(Sh¢(«)). O

For notational convenience, we will often write just (— ) instead of Mnd(—).

REMARK 3.7 (Generalised writer monad). Let (7, u,n) be a monad over C.
The endofunctor Fun(/dp,T) over Fun(D, C) carries a monad structure whose

multiplication and unit are derived from y and 7 as follows:

(mo—=): (ToTo—)—= (To-) (no—): (Ido—) = (T o—)
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The usual coherence diagrams can be directly checked by simple diagram chasing.
This construction is an instance of the writer monad transformer [78] where
the monoid of writes is (7', 4, 7) and the transformed monad is the identity on
Fun(D, C). The pointwise extension of 7" is the “sheafified” version of the above.

Let (T, u*',n") be amonad, F' an endofunctor over C and A7*¥" be a distributive
law for them. The pointwise extension of the natural transformation \7*¥" is
not a distributive law of the extensions of (T, u”,n") over F, yet. In fact,
the type of A\l'f is FoT — T o F instead of F' o T — T o F required by
distributive laws of 7" over F'. Similarly to (3.11), the isomorphisms ¢ and v/ that
render (—) a monoidal functor, provide us with the required gluing: for A7
a distributive law, define its pointwise extension as the natural transformation
ML FoT = T o F defined as follows:

A1
Ao = oppe AT e .

Recall that by Corollary 3.9 the application of (—) to natural transformations
underlying monad morphisms yields monad morphisms for the extended monads.
Therefore, the component-wise application of (—) to a distributive law morphism
(0, v) yields the pair (¢, v) whose components are those of a distributive law
morphisms. It follows from simple diagram chasing that the pair (0, v) makes
the necessary diagram commute and hence is a distributive law morphism.
By assigning to each distributive law its extension and to each morphism the
pair formed by the extensions of its components we obtain a functor between
categories of distributive laws MndEnd(—): MndEnd(C) — MndEnd(Sh¢(«))
that projects on the categories of monads and endofunctors as Mnd(—) and (—).
COROLLARY 3.9. The pointwise extension of distributive laws is functorial and
commutes with the projections to the categories of monads and endofunctors as
shown by the diagram below.

End(C) =) End(Shc(a))

| |

MndEnd(C) ETRTT MndEnd (Shc(a))

Mnd(C) vind (] Mnd (She(a))

PROOF. First we prove that, for A\: FT — TF' a distributive law, the natural
transformation AL-£: T — T F is compatible with the pointwise extensions
of (T, u,m) and F'. Consider the following decomposition of the compatibility
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diagram for \L.E: FT - TF and pL: TT — T:

Fol

AL E

The diagram (i) is (3.2) and commutes since A\: T'F' — F'T is assumed compatible
with the structure of the monad 7'. Diagrams (ii—iv) and (v, vi) commute by
distributivity of horizontal and vertical composition of natural transformations
and by definition of \L.E: FT — TF and puL: TT — T, respectively.
Diagrams (vii) and (ix) are naturality squares for ¢. Diagrams (xi) and (xiii)
follow by coherence of ¢ with the monoidal associator. Thus the whole diagram
commutes and in particular the outer pentagon i.e. the compatibility diagram for

ALE and pL:
ToFol
)\Zrﬂoldy _ _\Z(ijlo)\lrﬂ
Folol ToTokl
idp o uL ,uloidE
Fol IokF
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Consider the following decomposition of the compatibility diagram for
ML FT — TF and nl: Idgpy o) — T

nzoidﬂ

N F o ldgpg(a) Idghe(ay 0o F ————

The pentagon (i) is (3.3) and commutes by hypothesis on A: F'T — TF. The
square (ii) follows by definition of AL-£: FT — T F. Triangles (iii) and
(iv) commute by vertical-horizontal composition of natural transformations and
by definition of L. Diagrams (v) and (v) are naturality squares of ¢ hence
commute. Squares (vii) and (viii) commute by Theorem 3.7 for they assert ¢
and v coherent with right and left suitors, respectively. By pasting, the outer
pentagon

commutes. Therefore, the natural transformation AL-£ is a distributive law of
the extensions of (7', i1, 7) over F.

For the second part of the proof assume that (0, v) is a distributive law
morphism from A7-¥ to AI"-¥”. The following diagram commutes by hypothesis
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on (0,v):

[~
o
(~
N
o
[~

vold vo@J J%v fouv
FolT! ———— T/ o F'
)\T’,F’
Awm ¢;}7F\
Fol” T o F'
A\ E

The outer part of this commuting diagram exhibits the pair (6, v ) as a distributive
law morphism from the extension of A"/ to that of \T"¥". Functoriality
conditions follow from (—) being a functor and by diagram chasing. Finally,
the show that the diagram in the claim commutes note that distributive law
morphisms are extended as pairs of extensions. O

3.2.3 Sheaf enrichment

The pointwise extension functor enriches over Sh(«) in the sense that endo-
functors in its essential image are Sh(«)-enriched (cf. Section 2.1.4) as stated by
Theorem 3.10 below. From this result it follows that Kleisli categories and Kleisli
liftings for pointwise extension of monads and endofunctors are sheaf enriched
and hence admit a notion of local contractiveness.

THEOREM 3.10. The essential image of (—) lies in the Sh(«)-End(Sh¢(«)).

PROOF. In order to prove the thesis it suffices to show that the pointwise
extension of any endofunctor F over C is Sh(«)-enriched i.e. that each assignment
F xy: She(a)(X,Y) — She(a) (£ X, FY) lies in Sh(a) when hom-objects of
Sh¢ () are seen as sheaves of sets. Recall from Section 2.1.4 that for sheaves
X,Y € Sh¢(a), the hom-sheaf She(a)(X,Y) takes each stage § to the value:

She(a)(X,Y)s = {(f, f3) | f € She(e)(X,Y)}

and each morphism 3 — /3’ to the restriction:

Shc(Oé)(X, Y)Lﬁﬁl(fv fﬁ) = (f7 f,@/)

Then, the component of F x y- at stage 3, for 3 a successor ordinal, is:
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and the component at stage -y, for -y a limit ordinal, is
Exy,(f, 1) =(Ef, £fy) = (LS, gg Ffs)

where limg., F'fg: limg, FF X3 — limg., 'Yy is the mediating map for the
cone { fg o m3}3<~. It follows from functoriality of £ that these components are
well-defined and satisfy the required naturality conditions as illustrated by the
diagrams below:

Exyy

Sh¢(a)(X,Y)y — She(a)(FX, FY), fy b= limge, Ff3
J JShc(a)(EX, EY).,, I ]
Fxyvg
Sh(a)(X,Y) g —— She(a)(£X, EY)g for —— Ffp
J JShC(axﬂx, EY),,, ] ]
She(a)(X,Y)s She(a)(EX, FY)g fo —— Ffs
Fxyvp
where ~ is a limit ordinal and 3 < 3’ are successor ordinals in . O

It follows from the above result that pointwise extensions of endofunctors
are sheaf enriched, especially if they carry a monad structure. Kleisli categories
of such monads share the same enrichment of their underlying category Sh¢(«)
as stated by the following corollary.

COROLLARY 3.11. For (T, u,n) a monad, the category KI(T) is enriched over Sh().

PROOF. Hom-objects of KI(1") are objects of Sh(«) since the underlying category
Sh¢(«) is enriched over Sh(«a). For X, Y, and Z, Kleisli composition is given as:

KI(T)(Y,Z) x KI(T)(X,Y) = Shc(a)(Y, IZ) x Shc(a)(X,TY)
Typy xid
She()(TY, TTZ) x She(a) (X, TY)
(—ox,v,z —) (—oxryrrz—)
She(a)(X, T T Z)

(— X, TTZTZ Hz)

KI(T)(X, Z) She(a)(X, I.2)

It follows from Theorem 3.10 and Lemma 2.7 that the morphism (— oxy z
—):K(T)(Y,Z) xKI(T)(X,Y) = KI(T)(X, Z) lies in Sh(«) for it is given as
the composition of morphisms in Sh(«). Finally, associativity and existence of
identities follow from definition of Kleisli category. O]
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A prerequisite of locally contractive endofunctors over Kl(T) is to share
its sheaf enrichment. This holds for Kleisli lifting of pointwise extensions (or,
equivalently, for pointwise extensions of Kleisli lifting).

COROLLARY 3.12. Any lifting F to KI(T) is enriched over Sh(a).

PROOF. Let \L.E: FT — T F be the distributive law induced by the Kleisli
lifting F as per Proposition 3.1. For objects X and Y, the functorial assignment
Fyy: K(T)(X,Y) = K(T)(EX, EY) is given as

KI(T)(X,Y) === Shc(a)(X, T'Y)
Fxry
Fxy She(a)(EX, ETY)
J (—oxrrvrey ')
KI(T)(EX, EY) == Shc(a)(EX, L EY)

and it is a morphism of sheaves in Sh(«) by Theorem 3.10 and Lemma 2.7. [

TOWARDS GUARDED KLEISLI (CO)RECURSION

In this section we consider locally contractive endofunctors over Kleisli categories
of monads obtained by pointwise extension. In particular, we are interested in
Kleisli liftings of its “guarded pointwise extension” F » and in the systematic
derivation of these liftings from liftings of F' since these will be required by
the constructions we introduce in Section 3.4 in order to capture infinite trace
semantics by finality. In Section 3.3.2 we show that there are settings of interest
for modelling infinite traces that support this systematic derivation. In particular,
we consider sheaves over A(w). In this setting, we identify a class of Kleisli
liftings of F' that always extend to liftings of £'» and we prove that this class
covers all Kleisli liftings if, and only if, the given monad is affine.

Locally contractive Kleisli liftings

For this section let D be a category enriched over Sh(«) and let (7', u,n) be
a monad over D such that its Kleisli category is enriched over Sh(a)—baring
in mind that our prototypical example are pointwise extensions of monads
to She(a). We are interested in locally contractive endofunctors over these
Kleisli categories, especially in those that are Kleisli liftings of locally contractive
endofunctors.
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Recall from Section 2.2.2 that a locally contractive endofunctor over KI(7') is
any functor F': KI(T") — KI(T) that factors as a composition of functors enriched
over Sh(a):

next¥(T)
e

KI(T") »KI(T) — KI(T)

where next¥(?) is the functor induced by the point neat: I dsh(a) — P Likewise,
an endofunctor over D is locally contractive if it factors as a composition of functors
enriched over Sh(«):

nextP

DX, D —D.

Local contractiveness is only inherited by Kleisli liftings, not vice versa.

PROPOSITION 3.13. For F' an endofunctor over D, if F' is locally contractive, then
any of its liftings to K1(T') is locally contractive but not vice versa.

PROOF. Let \ be the distributive law induced by the Kleisli lifting F' let F' factor
as F' o nextP as per hypothesis. It follows from definition of Kleisli category that
next®X!T) is given on each hom-sheaf KI(T)(X,Y) = D(X,TY), as the sheaf
morphism nexty 1y : D(X,TY) — »D(X,TY).

For any X and Y in K1(7"), the functorial assignment I’ x,y factors as follows:

K(T)(X,)Y) ———D(X,TY) ———=D(X,TY) ———=KI(T)(X,Y)
ne:ct)D(_’TY nextlgg)
Fx 1y »D(X,TY) »KI(T)(X,Y)
Fxy Fyy
D(FX,FTY) D(FX,FTY) Fxy
(— OX,FTY,TFY )\Y)

K(T)(FX,FY) == D(FX,TFY) D(FX,TFY) = KI(T)(F X, FY)

The factorisation F' = F' onextX(T) proves that the lifting F is locally contractive.
Finally, note that it is not possible to identify Fy ;- from only /' 'Xy. We conclude
that the derivation in the other direction is not be possible. O

If the category D comes equipped with its own instance of the modality
» (i.e. »D(X,Y) — D(»X,»Y)) then this endofunctor provides us with a
convenient way to turn any endofunctor over D into a locally contractive one:
simply compose it with ». In fact, any instance of » is locally contractive and
composition with locally contractive functors preserves this property. This is
indeed the case in our setting of interest: pointwise extensions to Sh¢(a).
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COROLLARY 3.14. For F' an endofunctor over C, any Kleisli lifting to K1(T") for F»
is locally contractive.

PROOF. It follows from Corollary 3.11 and Proposition 3.13 that KI(7') and F
are enriched over Sh(«) and hence from Corollary 3.12 that F» is locally
contractive. ]

Kleisli liftings for guarded pointwise extensions

For the remaining of the section we return to our original setting: Kleisli categories
of monads obtained by pointwise extension and Kleisli liftings of endofunctors
obtained by “guarding” pointwise extensions. We investigate the derivation of
liftings for £'» from liftings for F' and vice versa.

The opposite derivation is always possible: the desired distributive laws are
constructed from components in the image of A and stages associated to the
so called “double successor” ordinals (i.e. any § + 2). The derivation and its
correctness are stated in Lemma 3.15 below; we will refer to distributive laws
(resp. Kleisli lifting) obtained in this way as induced laws (resp. lifting).

LEMMA 3.15. Let o > 1 be an ordinal, (T, j1,m) a monad, F an endofunctor, and &
a distributive law of (T, uL,nL) over Fw» on She(a). There is a distributive law
Xof (T, p,m) over F such that A\x = éax groforany X e Cand B+ 1 < o

PROOF. Fix an ordinal 5 such that 541 < «. For any object X and any morphism
f: X — Y in C, the following equalities hold:

(ErLTAX)pio =FTX (E»LAf)py2 =FTf
(LEPAX)gi0 = TFX (LEwAf)s4s = TFf

It follows from these equalities that the naturality square for £ax, Ay, and

Af: AX — AY at stage § + 2 is exactly that for Ax, Ay, and f: X — Y.

Therefore, the family {\x } xec is a natural transformation of type FT' — TT.
For any object X and any morphism f: X — Y in C, the following hold:

(EPAX)gyo = FX (E»Af)sr2=Ff
(EWTTAX)s45 = FTTX (E»LTAf)s12 = FTTS
(LEWTAX)s10 = TFTX (LEWTAf)s12 = TFTS
(LLEwAX)gpo = TTFX (LLEwAf)geo = TTFS

((oidp)ax pra = (Aoidr)x (idp o §)ax p+2 = (idr o N)x
(idpop © pT)ax,pr2 = idF o px (ut o ZdFo )ax,p+2 = px o idp
(id pow 015 )Ax py2 = idp o nx (0T 0 id pop)ax,gra = nx 0 idp
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Consider the diagrams asserting that £ is compatible with the structure of
(T, £, nL) and, in particular, their components at stage /3 + 2: it follows from
the equalities above that these are exactly the compatibility diagrams for A and
the structure of (7', i, n).

It follows from definition of constant sheaves that the choice of the ordinal
(B made at the beginning of this proof is irrelevant: indeed any restriction map
AX is an identity. O

Lp+2,6/+2

In general, the converse of Lemma 3.15 does not hold: it is not true that
a distributive law of (T, u,n) over F extends to one of (T, uL,nL) and Fp.
In order to illustrate why this is not the case, assume a distributive law ¢ of
(T, uZ, nL) over F» and write \ for the distributive law induced by . Stages
for double successor ordinals contains the data used in the derivation of A and
stages for limit ordinals are covered by definition of Sh¢(«): as a consequence,
the issue at hand must arise from (first) successors of limits ordinals. In fact, for
7 a limit ordinal and X a sheaf, the component {x y1: F»T X, 11 — F»X,
is a morphism:

EX 41t Fgg TXg— FT [1313 X3.

It follows from the type of these components that their naturality, their com-
patibility with the structure of T, and even their existence are non-trivial and
can not be derived from \: F'T' — TF without any additional information. For
instance, when F' is the identity and A an automorphism for 7', the naturality
and compatibility conditions for the induced ¢ result to be even stronger than
imposing that 7" weakly preserve limits of y-chains.

Affiness and extension of Kleisli liftings

In this section we focus on pointwise extensions to sheaves over A(w). In this
setting, we identify a class of Kleisli liftings we call w-suitable and such that the
converse of Lemma 3.15 always holds. Remarkably, a monad has the property
that all liftings to its Kleisli category are w-suitable if and only if it has the affiness
property (cf. Theorem 3.18).

DEFINITION 3.7. A law )\ distributing a monad (T, i, ) over an endofunctor F' is
called w-suitable whenever the diagram below commutes for any object X in C:

Ax
FTX —— TFX
Flrx ‘ ‘TF!X (3.12)

F1l——TF1
nr
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Kleisli liftings are called w-suitable whenever their associated distributive laws are
w-suitable.

The w-suitability property provides us with the necessary information for
extending distributive laws of T" over F to distributive laws of T over F p.

THEOREM 3.16. Let (T, u,n) be a monad and F' an endofunctor, both over C. The
following statements, where pointwise extensions target She(w), are true.

e For&: Fw1 — T Fw adistributive law, the distributive law A: F'T' — TF
induced by € is w-suitable.

* For A\: FT — TF an w-suitable distributive law, thereis &: F»T — T Fp
a distributive law of T over F » given on each sheaf Y as:

&y, = idy &yl = N1 §yint2 = Avpin §vw = Py
wheren € w and py is the mediating map for the cone {&y, o > TY,  }n<w-

PROOF. Let £: F»T — T Fw» be a distributive law and write X for the dis-
tributive law induced by ¢ as per Lemma 3.15. We proceed by showing that for
each X € C and finite n > 1, diagram (3.12) corresponds to the naturality square:

axon
FTX — TFX

th‘ JTF&

F1—— TF1
AX,1

It follows from definition of A and from compatibility of ¢ with the unit of T
that {ax 1 is mp1. In fact, for any sheaf Y, the component at stage 1 of the
compatibility diagram for £y and 773% corresponds to the diagram below:

Finally, {ax ., is Ax by definition of A and by assumption on n. Thus, A is
w-suitable.

For the converse assume A\: F'T" — T I an w-suitable distributive law and let
¢ be the family {{y5: E»TYs — T EW Y3}y cshew), e A(w) 8 defined above.
First we prove that the family ¢ is natural in both Y and /5 and then that it
is compatible with the structure of 7. For sheaves Y,Y’ € Sh¢(w) and finite
ordinals n,n’ > 1, the components {y,,, and &y~ ,,» of { are, by construction, \y;,
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and Ayé/, respectively, and satisfy the naturality condition for them because A
is a natural transformation. For all sheaves Y, Y’ € Sh¢(w) and any finite ordinal
n > 1, the components {y,, and &y of  are Ay, and 7, respectively, and
satisfy the naturality condition since the associated naturality square corresponds
to diagram (3.12) which commutes by w-suitability of A. All the remaining
components are at stage 0 or w and, by definition of morphisms in Sh¢(w), are
mediating maps. Therefore, £ is a natural transformation.

For Y a sheaf consider the compatibility diagrams associated with the com-
ponent £y . At stage 1 these instantiate to the diagrams in C:

NF1 T
Fl—TF1 ——TTF1

F1 TF1
NF1

Fh A
F1

which commute by basic properties of n and u. At stage n, for any finite n > 1,
the compatibility diagrams for £y are those for Ay, , and commute by hypothesis
on \. Finally, diagrams at stages 0 and w follow from definition of pointwise
extension and of morphisms in Sh¢(w). O

A monad (7, u,n) on a category with a final object 1 is called affine whenever
its unit exhibits the isomorphism 7'1 = 1 [69, 71, 72, 87, 98].1 Examples of affine
monads are the non-empty powerset monad P+, the probability distribution
monad D, or the Giry monad G.

LEMMA 3.17. Let X be distributive law of (T, u,n) over F. If T is affine, then \ is

w-suitable.

PROOF. It follows from finality of 1 in C and the affiness of 7" that the diagram
below commutes for any object X of C:

Tlx
TX — 11

Iy ‘Z i )

l1——7T1

Uit

'Tx

'Older formulations for strong commutative monads require that components of double
strengths are sections to (T'm1, T'm2) [69, 871.
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For X an object of C, consider the following decomposition of diagram (3.12):

Ax
FTX TFX
%!X
(iii)
Flpx g FT1 TF!yx
F A
y i) \
F1 TF1
m

Diagram (ii) commutes since it is the image of (i). Diagrams (iii) and (iv) follow
from naturality and compatibility of \ with 7, respectively. O

It follows from Theorem 3.16 and Lemma 3.17 that if (T, i, n) if affine, then
any distributive law of T over F' induces a distributive law of T over £’ » (where
pointwise extensions target Sh¢(w)). Remarkably, this property of distributive
laws and affiness of monads are equivalent:

THEOREM 3.18. For (T, i1, ) a monad on C, the following statements are equivalent:
* The monad (T, u,n) is affine.

* For any endofunctor F' and any distributive law \: FT — TF, there is
& »T — 1w such that it is compatible with the pointwise extension of
(T, p,m) to She(w) and it induces .

PROOF. Assume that (7', 1, 7) is an affine monad, then the implication follows
from Theorem 3.16 and Lemma 3.17. For the converse assume that for any
endofunctor F, all distributive laws of T over F' are induced by laws for T' and
E'». Note that laws for T" and » induce laws for 7" and Id and these are exactly
endomorphisms for the monad 7T'. Thus, by assumption there is a distributive
law &: »T — T'» such that its induced law for 7" and Id is the identity on
T. In particular, consider its component for final sheaf Al. By construction,
&a1,n = td7 for any finite successor ordinal n. It follows from naturality of £ that
£a1,1 is an isomorphism since naturality of components 1 and n > 1 corresponds
to the following diagram:

T1
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It follows from compatibility of ¢ with nL that the component £a1 1 is 71 since
the associated diagram is the following:

IINEI
1l———T1
idl\ /771

1

Therefore, n; is an isomorphism and (7', i1, ) is affine. O

Recall from [69, 98] that the affine part of a monad (7', i1, ) over C is the
greatest affine submonad 7' of T and that, assuming C has enough finite limits,
T* is determined on each object X by pulling back n; along 71, :

T°X — T'X,
|
| | 7ix

1 T1

m

(cf. [69, Definition 4.5].) For instance, Id, P™, and D are the affine part of the
writer monad M x Id, the powerset monad P, and the generalised multiset
monad Mg ., respectively. As noted in [43, Proposition 3.2] any law distributing
a monad over an endofunctor restricts to a law distributing its affine part over
the same endofunctor.

On alternatives to the pointwise extension The pointwise extension is not the
only way to extend an endofunctor from C to Sh¢(«). We discuss two possible
alternatives detailing why they are unsatisfactory for the aims of this chapter. The
first approach relies on the constant sheaf adjunction (A 4T"): Sh¢(a) — C and
defines the extension of an endofunctor F' as the composite AFT': C — C. This
definition extends to a functor but not a monoidal functor since in this situation
a natural isomorphism Idgy (o) = AT exhibits an equivalence of categories for
Sh¢(a) and C (for a counterexample consider sheaves of sets). However, this
is not an issue: the fact that pointwise extension defines a monoidal functor
allows us to prove Corollaries 3.8 and 3.9 from general properties of monoidal
functors but these can also proven directly. In fact, the extension functor defined
from (A - TI') preserves monads and lifts to the category of distributive laws.
Moreover, its essential image is enriched similarly to the pointwise extension
functor (—). Then, why is the pointwise extension preferable to this alternative
notion? It turns out that this kind of extensions pose very stringent constraints on
Kleisli liftings of locally contractive endofunctors to the point of impacting their
suitability with respect to the aims of this chapter. To understand the severity



3.4

68 3. INFINITE TRACE SEMANTICS

of this limitation consider a natural transformation &: »ATT — ATT» (the
type of £ is exactly that of transformations associated to Kleisli liftings for »).
Naturality requires each component at any stage above 1 to factor through the
morphism to the final object of C as illustrated by the naturality square below.

id
TX, —2 . TX,
!TXQ l lTian
| — L TX,
gX,ﬁ

Compatibility with the monad structure imposes similar constraints also on the
unit and multiplication of the monad. The second approach we discuss is usually
known as right extension and (assuming enough limits exists) associates F' to
(the functorial part of) the right Kan extension along A of AF i.e. Rana(AF).
Assume, for the sake of the argument, that A has also a left adjoint (e.g. when C is
Set), then right Kan extensions are preserved by A and Rana (AF) = AoRanaF.
In particular, the right extension of Idc is A o Ranaldc = AT and at this point
the argument detailed above applies.

INFINITE TRACE SEMANTICS VIA GUARDED KLEISLI (CO)RE-
CURSION

In this section we introduce a construction for capturing infinite trace semantics
of systems modelled as T F-coalgebras via finality in a suitable category of
coalgebras.

The key observation supporting our construction is that infinite traces can be
characterised by amalgamation of certain families of coherent approximations
akin to how a stream is described by the infinite family of its prefixes. In general,
these approximations can be thought of as observations obtained from monitoring
executions for a given number of steps (the prefix length) and such observations
are associated to intermediate steps of final sequences [3, 17, 18].

In Section 3.4.1 we present the final sequence for an endofunctor F' as the
unique invariant object of its guarded pointwise extension F ». In Section 3.4.2
we study coalgebras of type £ » and show that associated notion of bisimulation
generalises known behavioural pseudo-ultrametrics induced by final sequences
[3, 18]. Finally, in Section 3.4 we consider the categories of coalgebras for Kleisli
liftings of F' », we characterise their final objects, and provide embeddings from
the category of T'F'-coalgebras.
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3.4.1 Final sequences as invariant objects

Final sequences were introduced by [17] in order to compute final coalgebras and,
together with their dual structures (i.e. initial sequences and initial algebras),
can be thought as generalisations of Kleene’s chains. These constructions have
been successfully used to provide sufficient conditions for a functor to admit final
(resp. initial) invariant objects (see for example Barr [18], Smyth and Plotkin
[133], Adamek [4—7], Worrell [148-150], Bacci [12, 13]). In this section we
characterise final sequences for endofunctors as unique invariants for suitable
endofunctors over categories of sheaves. These objects are proxy to all the
information usually found in final coalgebras together with the sequences of
observations approximating them. For instance, if final coalgebras for the given
endofunctor describe infinite streams, then we obtain a sheaf that represents
them by means of their prefixes.

Recall from [17] that the final sequence for an endofunctor F' over C is the
ordinal-indexed sequence of objects (F*)scorq and arrows ( fg /) s<p'cord Such
that:

FAL=F(FY) F = lm PP o =Fr fl=mg
where ~ is a limit ordinal (note that 0 is considered a limit ordinal as well) and
the projection mg: FY — F¥ is the 3-component of the limiting cone. The final
sequence for F' corresponds to a C-valued sheaf over the category of ordinals
Ord.

DEFINITION 3.8. For F' an endofunctor over C, the final sequence of F' is any
limit-preserving functor fin(F'): Ord — C such that, for all ordinals 8 < f3':

* fin(F)(8+ 1) = F(fin(F)(B);

* fin(F)(ep41,641) = F(Hn(F)(s,8)).

In particular, the functor fin(F’) is given on any ordinal § and on any inclusion
tgp: — [ as follows:

fin(F)s = F* fin(F),, , = f}.

In the following we will be interested in the first « steps of the final sequence
(e.g. when the sequence is stable after « steps) and hence will restrict fin(F') to
A(a)®. Formally, this restriction yields an object in Sh¢(«) and corresponds to
the action on fin(F") of the inverse image *, where i is given by the inclusion of
A(«) into Ord. The final sequence is said to be stable at some ordinal « provided
that f*1 is an isomorphism. For notational convenience, we will write fin(F)
instead of i*(fin(F")) when i is clear from the context.
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EXAMPLE 3.8. Consider the endofunctor A x Id where A is a (non-empty) set of
labels and let o« be w—the final sequence for A x Id is stable after w. The sheaf
fin(A x Id) on A(w) is given as follows:

fin(A x Id)o = 1 fin(A x Id),,, = 'an
fin(A x Id), = A" fin(A x Id),,,, = A™ gm—n
fin(A x Id),, = lim A" = A fin(A x Id),, , = A" 40 = 7,

Finite words over the alphabet A are the observations characterising streams i.e.
the abstract behaviours for A x Id-coalgebras.

By considering final sequences as sheaves we are able to “internalise” their
information about how final coalgebras are identified via sequences of approxim-
ations. Besides the above direct construction, these sheaves are characterised as
unique invariants (i.e. final coalgebras) of guarded pointwise extensions.

LEMMA 3.19. There is a unique EF'w-invariant given (up to isomorphism by) the
identity on fin(F).

PROOF. Let o be an ordinal. It follows from Theorem 3.10 and Lemma 2.11
that F is enriched over Sh(«) and that F'» is locally contractive. The category
Shc(«) has limits of a-sequences since, by hypothesis, we have (A 4 I') and
limits of a-sequences in C. It follows from Proposition 2.13 that the endofunctor
L » has a unique (up to isomorphism) invariant. Therefore, to prove the claim it
suffices to show that idg,r) is an F'»-(co)algebra. On successors ordinals we
have that:
fin(F)gay = P = FF® = (Ew fin(F))g11

and on limit ones that:

fin(F), = lm fin(F)s £ lim fin(F)s.1 = lm (£ fin(F)); = (E» fin(F),

where (1) follows by restriction to a family of successor ordinals covering v. [J

Guarded coalgebras

For an endofunctor F, we refer to coalgebras of type F' » as guarded. Intuitively,
the modality » guarding F forces transitions at any successor stage  + 1 to
have targets at their predecessor stage 3:

h
Xp1 25 FXg

whereas transitions at stages that are limit ordinals have targets at the same
stage and are obtained as mediating maps.
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For instance, take F' as the endofunctor A x Id and « as w since, as discussed
in Example 3.8, the final sequence for A x Id is stable at w. Then, F» is the
endofunctor AA x » over Sh(w). Let h: X — AA x » X be a guarded coalgebra.
The component at stage 0 of i is determined by the structure of sheaves and is
the identity on the singleton 1; hence the only element inhabiting this stage can
be seen as a sink state L. This interpretation for hg and L is fostered by looking
at the other components of h. At stage 1, » X takes value Xy = 1 and hence all
transitions described by h;: X1 — A x X necessarily end in the sink 1 which
essentially means they terminate producing a label (A x Xg = A). In general,
transitions described by h,,42: X192 — A X X,,11 start at stage n + 2 and end
at stage n + 1, those described by h,11: Xpy1 — A X X, go from n + 1 to n,
and so on until | is reached after n + 2 steps. At stage w, X and h are defined
by amalgamation from the underlying stages:

ho(x) = (a,2) <= Yn <w(hnir0 X, 4, )(@) = (0, X, (27)).

Computations described by this component of h never leave stage w and each of
their countably many steps projects, coherently with restriction maps, to a step
at stage n for any n < w. It follows that h outputs streams and words forming
their prefixes.

This example fosters the intuition of stages as describing the “number of avail-
able steps” or the “observations length”. Form this perspective, the component
at stage (3 of the final semantics map describes behaviours distinguishable by
means of observations at stage [ that is, baring with the above intuition, “by
considering executions up to S-many? transition steps”. This perspective general-
ises ideas from [3, 18] where Barr and Adamek observed how final sequences
for w-continuous endofunctors over Set determine a pseudo-ultrametric on their
final coalgebra carrier (and hence on each coalgebra carrier). In particular, for
(X, h) an (A x Id)-coalgebra, the distance of two states x and «’ in X is defined
as 27" where n is the length of the longest prefix shared by the streams generated
from x and x’:

(@i € X)icn, (2 € X)icn, (a; € A)icn
d(z,2’) =inf< 27" | suchthatzg =z, 2 =2/, Vi<n —1 (3.13)
h(zi) = (ai, v;11) and h(z}) = (a;, v341)

Thus, d(z,2’) = 0 if and only if 2 and 2’ are behaviourally equivalent.
Coalgebras of type £ » and their bisimulations rephrase the above situation
in the language of sheaves: these structures localise the information contained in

* In general § is the index of a step in the final sequence and not an actual length, however
the two coincide for sequences stable at w like those arising from the examples considered in this
section.
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the pseudo-ultrametric (3.13) by restriction to the values associated to each n or,
equivalently, to each step of the final sequence for FF = A x Id. In this setting,
a bisimulation is a span X < R — X' of sheaves making the usual diagram
commute and can be understood (without loss of generality) as a decreasing
w-indexed sequence of relations Ry 2 R; O ... such that:

r Ry, = d(z,2') <27

From this perspective, a bisimulation at stage /3 captures observational equival-
ence where observations are restricted to those described by the 3-step of the
final sequence. Therefore, guarded coalgebras and their bisimulations are a
(conservative) generalisation of Barr’s ideas to arbitrary endofunctors (albeit a
metric cannot be defined in general, e.g. when A(«) is not metrizable).

To conclude this section, we show that all coalgebras are guarded in the sense
that F'-coalgebras form a subcategory of Coalg( F'»). Recall from Section 2.2.2
that » is a well-pointed endofunctor and its point is next: Id — ». This natural
transformation induces the functor between coalgebra categories:

Coalg(id y o next): Coalg(F) — Coalg(EF»)
given, on each coalgebra (X, h) and homomorphism f by the assignments:
(X,h) — (X, F(nextx)oh) f=f.

Intuitively, this functor uses restriction morphisms to “guard transition targets”
as clear from unfolding the definition of (£ (nextx) o h)gy1:

h FX,
Xpi1 25 FXg —22 0 FXG.

We remark that Coalg(idr o next) is a lifting of the identity on Sh¢(«) along
the forgetful functors for Coalg( F') and Coalg( £ ») since it acts as the identity
coalgebra homomorphisms. We write (—)* for Coalg(id r o next).

Recall from Section 3.2 that the constant sheaf functor A lifts to categories of
coalgebras and hence, by composition with (—)”, we have a functor A> turning
every F'-coalgebra into a guarded coalgebra while acting as A on their carrier.

A>
Coalg(F') — Coalg(LF'»)

J J (3.14)

C T Shc(a)

Moreover, this functor is an inclusion whenever « is greater than 1 since A X, 550
is idx for any 3’ > 3 > 0. It follows from Proposition 3.5 and Lemma 3.19 that
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AP takes final coalgebras to final (guarded) coalgebras. The functor A* exhibits
Coalg(F') as a subcategory of Coalg(F ») and, under mild assumptions akin to
Proposition 3.6, as a coreflective subcategory.

PROPOSITION 3.20. For « an infinite limit ordinal, if o: FT' — I' F’ from (3.10) isa
retraction then the constant sheaf adjunction (A 4T"): Sh¢(«) — C lifts along the
forgetful functors for Coalg(F') and Coalg(F »). Moreover, the lifted adjunction is
a coreflection.

AP

—

Coalg(F) L Coalg(F»)

s
¢ L She(a)

\_/
r

PROOF. Assume ¢: FT' — ' F is a retraction and let ¢: '’ — FT be any of its
sections. Akin to Proposition 3.6, the statement can be shown to follow from [81,
Theorem 2.5] by providing ¥*: AF — Fw»A and ¢*: T F» — FT such that
the necessary diagrams commute.

Note that the natural transformation I' F'next: I' ' — I' F'» has an inverse
for it is given, on each sheaf X, by the equality

FEFw»X =FpX,= lim FrXg = lim FXg=FX,=TFX
B+1<a B+1<a

where the limits are restricted to the base of successor ordinals. Define the
natural transformations 9> : AF — FeAand¢>: T F» — FT as

Fnexrta (T Enext)!
—_—

AF Y FA F»A and TFE» TEF % FT

where #: AF — FAand¢: ' — FT are the equality (3.9) and a section for
o0 as per (3.10). In order to prove the necessary diagrams commute decompose
them as follows:

idpon
F FoloA
goida
(6]
noidp ToFoA (iii) <” oida
tdr o ¥ (ii)
idp, p o next oida

F'oAoF F'oFopoA
idroﬂ>
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coidpop
Fop — Aol'o Fop
idp onext idporo F Oy
(C:O'LdF
— Aol'o F
idEL»os idF oe] (iv) {idAog ida o™
FOAOIW—AOFQI‘ (vi)
Y oid T
)
idp onext oidaor

FopoAol AoFoTl
9 o idp
Both diagrams commute: (i) and (iv) are shown to commute in the proof of
Proposition 3.6; (ii) and (v) define 9% ; (iii) and (vi) define ¢*; the remaining
squares follow by naturality of ¢ e next. It follows from [81, Theorem 2.5] that the
desired lifting exists. In particular, the lifting of I, is given on each F’-coalgebra
(X, h) and homomorphism f, by the assignments

(X,h) = (TX,cx oTh)  f>Tf

and the lifting of A given on each F-coalgebra (Y, k) and homomorphism g, by
the assignments
(Y, k) — (AY, 9% o Ak) g — Ag.

The latter is exactly the inclusion functor A* = Coalg(id i o next) since ¥* is
defined as (id p o next) ) and ¥ as the equality AF = FA. O

3.4.3 Infinite trace semantics

In this section we combine guarded coalgebras with extensions to Kleisli categor-
ies in order to capture infinite trace semantics via final semantics. Intuitively, the
former provides us with the tools for collecting observations into coherent families
whereas the latter offers us the setting where to abstract the effects modelled
by the branching type i.e. ensure observations come from the linear semantics of
systems under scrutiny. In practice, for systems modelled as T F'-coalgebras, we
consider coalgebras for Kleisli liftings of F'» where the pointwise extension tar-
gets sheaves on an ordinal « large enough for the final sequence of F' to stabilise.

Before we discuss F »-coalgebras in general let us illustrate the construction
in the case of non-deterministic labelled transition systems. To this end, take 7",
F, )\, and « as follows:

* the affine and commutative monad P* (the double strength of P readily
restricts to its affine part);
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¢ the polynomial functor A x Id (for A non-empty);

* the distributive law A: A x P™ — PT(A x Id) associated to the canonical
Kleisli lifting of A x Id to KI(P1);

* the first infinite ordinal w (the final sequence for A x Id stabilises at w).

Since P is affine, we can apply Theorems 3.16 and 3.18 to )\ obtaining the
distributive law of P' over Fp:

+ id 4y 7q 00 + A oidy +
AxIdowpoPT —— Ax IdoP o =——— P o0 Ax Idow. (3.15)

The fact that this distributive law factors through A x Id o P* o » corresponds
to its associated Kleisli lifting of £ » being the composition of Kleisli liftings
of F and » given by the extension of A\ and the distributive law ¢ constructed
in the proof of Theorem 3.18, respectively. We remark that this strategy is the
equivalent for Kleisli liftings of the constructions for distributive laws presented in
Section 3.3. The distributive law (3.15) acts essentially as \ since its component
for a sheaf X is the arrow given at stage 1 as the function

(AAx»PHX), = A
(id gxrqg ©0)x 1 ida
(AA X »PHX), = A

(Aoidy)x 1 nA

PrHAAx®»X) = PtA
and at stage n + 2 as the function
(AAXPPEX) o =—=AX Pt X, 14
(idﬂ 0 0)x nt2 idAxP+ X4,
(AA X » Pt X)pso == A x PT X,

(A © Z.db)X,n+2 )\Xn+1

PHAAX®X)ypo =— PH(A X Xpp1)

Coalgebras for endofunctors like these are guarded coalgebras: this means
that the executions they describe are intertwined with stages whose ordinal
number represents the number of steps available to the computation. Akin to
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Section 3.4.2, consider the components of a coalgebra h: X — P (AA x »X):
ho has type 1 — 1 but since P is affine this is an isomorphism which means
the computation it describes cannot evolve in any meaningful way; h; has
type X; — PTAA and the computations it describes non-deterministically
output a label before reaching the sink at stage 0; h, for n > 1 has type
X, — Pt(AA x X,,_1) and the computations it describes non-deterministically
output a label before reaching a state at stage n — 1. The fundamental difference
with respect to the situation discussed in Section 3.4.2 is that steps are now
concatenated by means of Kleisli composition hence abstracting from non-
deterministic branching. In order to illustrate this difference and elucidate
the key role played by the Kleisli category let us consider sequences of steps.
Sequences of two steps in the system modelled by & are described by the composite

WEAAX® (h)oh
i.e. the arrow h': X — Pt (AA x » (AA x »X)) in Sh(w) defined as:
W2, oPt (Araaxex)) © PT(AA X BOaaxx) 0 PT(AA x »h)oh.

At stage 1, h' equals to h:
a € hi(zr) < a€h(x)

since the outermost occurrence of » in the behavioural functor takes value 1 at
this stage. We encounter the first difference at stage 2:

(a,a’) € hiy(z) < J2’ € Xy s.t. (a,2') € ho(x) Nd' € hy(a').

At this stage the outermost occurrence of » takes the value of its argument at
stage 1 and hence the innermost occurrence takes value at stage 0 meaning that
sequences always end in the sink 1. Because of Kleisli composition, intermediate
states (z’ above) are stripped from the outcome. Components at greater stages
behave similarly except for the ending state not being the sink. In particular, at
any stage n + 3 we have that:

(a,d',2") € bl 4(x) <= 32’ € Xpq2((a,2') € hpgs(x) A (d,2") € hyia(2)).

The same considerations apply to sequences of arbitrary length: observations
at stage n are partial traces of length3 n and partial traces observed at different

3 In presence of explicit termination, as in the case for F' = A X id + 1, length of executions
at stage n is at most n.
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stages abide restriction maps as illustrated by the schema:

ay as Gp—1 anp Gp41
n+1F 1 T2 Tp Tn41
] ay ] a9 Ap—1 ] A, I :|7
nt x1|n x2|n xn|n 1 1

where vertical arrows are mappings induced by the restriction function X, .,
and horizontal arrows are transitions described by h at stages n and n + 1.

Stage w is defined by amalgamation and the associated observations are
w-sequences. It follows from definition of sheaves and their morphisms that
observations made at stage w restrict, for each finite ordinal n, to observations at
stage n. Symmetrically, a family with an observation for each stage n < w that is
coherent with respect to restriction maps induces an observation at stage w. We
conclude that since observations at stage n < w are (partial) trace of length n
observations at stage w are necessarily infinite traces.

Consider the diagram asserting that f: X — Y extends to some morphism of

AA x »-coalgebras f: (X,h) — (Y, k) and in particular its unfolding in Sh(w):

X h PH(AA X »X)

PE(AAX»f))
P+ (AA x pPTY)

P (AA X Oy)

PTY —— PP (AAx»Y)
Ptk Easaxwy

In order to show that the above diagram commutes, it suffices to show that it
commutes when restricted to successor ordinals in w and hence only two cases
need to be checked; the first corresponds to stage 1 and the second to all the
remaining 1 < n < w. The component at stage 1 commutes if, and only if, for
any label a € A and any state x € X; it holds that:

a € hi(zx) < Jy e fi(z)(a € ki(y)).
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A component at stage n > 1 commutes if, and only if, for any a € A, x € X,,,
and 2’ € X,,_1, it holds that:

(a,2') € hy(z) = VY € frno1(2)Fy € fu(@)((a,y) € kn(y)).

Therefore, E-coalgebra homomorphisms, like F »-coalgebra homomorphisms,
tie execution steps to stages and, like F'-coalgebra homomorphisms, they abstract
from branching.

The example above suggests that final AA x »-coalgebras capture infinite
trace semantics for labelled transition systems (without implicit termination).
Indeed, this is the case and the same result holds for arbitrary systems modelled
by T F-coalgebras—provided that the sequence for F’ stabilises and that £ »
has a Kleisli lifting. Under these assumptions, final F »-coalgebras are images
through the canonical inclusion K: C — KI(7T') of final F w»-coalgebras and
the latter characterise, by construction, final F'-coalgebras (c¢f. Lemma 3.19
and Proposition 3.20). Therefore, final semantics for F »-coalgebras captures
(possibly) infinite trace semantics (cf. Definition 3.4) for systems modelled by
T F-coalgebras. Formally:

THEOREM 3.21. Let (T, u,n) be a monad and F' an endofunctor, both over some
category C. Let « be an ordinal such that the adjunction (A 4T"): Sh¢(a) — Cis
defined and the final sequence for F' is stable at «. For F» Kleisli lifting of E'»,
there is a unique F w-invariant and it is the identity on fin(F).

PROOF. It follows from Lemma 3.19 that the identity on fin(F') € Sh¢(«) exhibits
the unique F »-invariant. Because the canonical inclusion K : Sh¢(a) — KI(T)
transports initial invariants to initial invariants of Kleisli liftings (see Proposi-
tion 3.2), K (idgy(r)) = Nan(r) is the initial invariant of F». We conclude by
noting that by Proposition 3.13 £ » is locally contractive and thus it follows from
Lemma 2.12 that £ » has a unique invariant i.e. idgn(ry € KI(L). O

COROLLARY 3.22. Let (T, i, 1) be a monad and F' an endofunctor, both over some
category C. Let a be an ordinal such that the adjunction (A 4T): Sh¢(a) — C

is defined and the final sequence for F is stable at o. The final F »-coalgebra
captures infinite trace semantics.

We conclude the section by noting that there is a functor associating 7' F-
coalgebras to F »-coalgebras while acting as the constant sheaf functor A on
carriers and as K on homomorphisms. In fact, there is a lifting of KA given by
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composition of (3.14) and (3.4) as the commuting diagram below illustrates.

Coalg(T'F) — Coalg(T F») — Coalg(F»)

| |

C T’ Shc(O()

KI(T)

If & > 1, then this functor is an inclusion for the category of T'F'-coalgebras into
that of F»-coalgebras. In particular, it acts on any F-coalgebra (X, h) as A>
and on any F'-coalgebra homomorphism f: (X, h) — (Y, k) as KA:

(X,h) = (AX, TF (nextax) o AR)  f > e,y 0 Af.

Thanks to this inclusion we are able to define the infinite trace semantics of a
T F-coalgebra (X, h) as the unique coalgebra homomorphism from (AX, A*h)
to the final F »-coalgebra. By definition unfolding, this morphism is the unique
arrow !a», that makes the following diagram in Sh¢(«) commute:

> T Fnext
AX ATh TFAX —— 2% T FpAX

TEw!Arp

(~

F» T fin(F)
T FOqnr)

N

M
[~y
M
v

fin(F)

T Ay in(r)

(N

T Ew fin(F)

L ppfin(r)

!
!
|
|
|
|
|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
!
!
!
|
|
|
|
|
|
|
v

T fin(F) — T Fp» fin(F)
1 vrew

Let T be an affine monad, F' an endofunctor whose final sequence is stable
at w, and A a distributive law for them. Given a T'F'-coalgebra (X, h), |a»}, is the
unique morphism of sheaves such that:

!AthZTF!)(Oh !A»hm:'u,pnoT)\Fn—1 oF!A’h,n—IOh

where 1 < n < w. With reference to our initial example on non-deterministic
labelled transition systems, when (X, h) is a P*(A x Id)-coalgebra, !a», is the
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unique morphism of sheaves such that:
avnt = PH(AxIx)oh  lashn = pan o P Aun-1 0P lamp 1 0h
where 1 < n < w. The first equation corresponds to the double implication
a€larpi(z) < ' € X s.t. (a,2) € h(z)
whereas the second to:

(a1,a2,...,an41) € apppi1(z) <= ' € X s.t. (a1,2") € h(z)

A (ag, .. ,an) S !A>h7n($l).

In other words, a state x is assigned by !a», ,, to the set of its (partial) traces of
length n. Restriction from stage n + 1 to n corresponds to the implication:

(a1,... an,0n41) € 'arhnt1(x) = (a1,...,a,) € larp ()
and amalgamation to the double implication:
(a1,a2,...) €larpw(z) <= Vn <w(ai,az,...,an) € arpn()

In other words, !a», ., captures infinite trace semantics.

CONCLUDING REMARKS

In this chapter we presented a general coalgebraic account of infinite trace
semantics covering several systems such as non-deterministic, discrete and
continuous probabilistic labelled transition systems. Many authors and works
have investigated infinite trace semantics under the lens the theory of coalgebras;
we mention [63, 64, 70, 80, 145, 146] and [43] which is perhaps the closest to
ours. The main improvements with respect to related works introduced in this
thesis are summarised below:

* infinite trace semantics coincides with final semantics in a suitable category
of coalgebras;

* monads modelling the branching type considered need not to induce
enriched Kleisli categories;

* the final sequence for the functor modelling linear behaviours can stabilise
after w.
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The first contribution is of relevance for the remaining of this thesis since the
definition of self-referential endofunctors is based on final coalgebras. Therefore,
the construction proposed in this chapter enables the modelling of self-referential
behaviours based on the notion of (infinite) trace semantics. In retrospective,
the main motivation behind this chapter is that related works capture infinite
trace semantics by means of certain maps into weakly final coalgebras [43, 64,
145, 146].

As a further contribution, we proved in Section 3.4.2 that final semantics for
guarded coalgebras provides a conservative generalisations of certain behavioural
pseudo-metrics due to Barr and Adamek [3, 18]. In comparison to the rich
theory of behavioural metrics [14, 15, 37-39] this result is preliminary, only
simple behavioural metrics were considered, nonetheless it calls for future
investigations.

The only non-trivial piece of information required in order to apply our
construction are Kleisli liftings for guarded pointwise extensions of behavioural
endofunctors. A strategy for obtaining this data is to extend Kleisli liftings for
“unguarded” behavioural functors (in practice, to start from A: F'T' — TF') and
then compose them with liftings for ». Although this path is not always available,
we identified mild assumptions that are sufficient for the strategy to succeed: if
the construction is done in the context of sheaves on .4(w), then existence of these
liftings is equivalent to affiness of T'. Affine monad where considered also in [43]
where Cirstea identified in this property a sufficient condition for her construction
of canonical maps to the weakly final coalgebra of infinite traces. We remark
that our is an equivalence result and holds whenever the final sequence for F
stabilises at w i.e. the same assumption made in loc. cit. Affiness and stabilisation
at w are met by monads and functors used in the modelling of several systems
of interest, especially those considered in [43, 64, 145, 146]: non-deterministic,
discrete and continuous probabilistic labelled transition systems.

There are other approaches to coalgebraic trace semantics besides the use
of Kleisli liftings. In particular we mention forgetful logics [84] and coalgebraic
determinisation [31, 33, 74, 131]. The main reason behind our choice to base this
work on Kleisli liftings is that these are compatible with the notion self-referential
behaviours and the constructions we introduce in the other chapters. Nonetheless,
the investigation of alternatives to our construction is of interest, especially in the
wake of the remarkable results achieved thanks to coalgebraic determinisation

[29, 30, 52].






4.1

SELF-REFERENTIAL
ENDOFUNCTORS

In this chapter we consider generic characterisations of behaviour types that are
parameterised by objects representing input and output values. Formally, these
are functors from the category of values into that of behavioural endofunctors
(e.g. functors of type C* x C — End(C)). We refer to these functors as
behavioural schemata. Examples of these parametrically defined behaviours are
stream systems, labelled transition systems, automata, and any other class of
computational devices with inputs or outputs. In the self-referential case, input
and output objects are equipped with dynamics of the same type and, to an
external observer, they are indistinguishable whenever they exhibit the same
behaviour. We are interested in the coalgebraic modelling of these systems. As
we discussed in Chapter 1, we achieve this result by means of self-referential
endofunctors i.e. behavioural endofunctors that are instances of behavioural
schemata determined by their final coalgebras. This circularity is the gist of
self-referential systems and renders the construction of these models non-trivial.

The chapter is organised as follows. In Section 4.1 we consider systems that
can only perform outputs and abstract behavioural endofunctors modelling them
by means of covariant behavioural schemata. This initial simplification allows
us to focus on the challenge of modelling self-referential behaviours without
the additional issues due to contravariant occurrences of systems as values i.e.
inputs. Systems with inputs are covered in Section 4.2 where we consider mixed-
variance behavioural schemata. Finally, in Section 4.3 we study conservative
generalisations of self-referential endofunctors that support situations where
values and systems need to be modelled in distinct categories.

COVARIANT BEHAVIOURAL SCHEMATA

In this section we consider covariant behavioural schemata i.e. functors of type:
C — End(C).

These functors provide an abstract definition of behaviours generic in their
outputs such as stream systems which we covered in Chapter 1. Self-referential
endofunctors for covariant behavioural schemata are instances defined by their
own final coalgebra. Formally:
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DEFINITION 4.1. For a covariant behavioural schema S: C — End(C), an endo-
functor F over C is called self-referential whenever:

F=Ss
i (4.1)
Z = |vF]

Self-referential endofunctors for a behavioural schema S on C form a sub-
category of End(C) where morphisms are natural transformations that are also
coherent with final coalgebras and the schema S. Formally, a natural transform-
ation ¢: F' — G is a morphism of solutions to (4.1) provided that there is an
isomorphism ¢ = S; in the arrow category End(C) ™~ where f denotes the final
semantics for the G-coalgebra ¢, p| o v I’ depicted below:

|[vF|----=--- e
vF
F|lvF| vG (4.2)
®lvF|
G|v F| G|vG]

This notion of morphisms between solutions is motivated by the fact that the
equation system (4.1) admits equivalent formulations that use either the unknown
Z or F. Reworded, self-referential endofunctors are identified by their final
coalgebra and vice versa.

Like all natural transformations, solution morphisms induce functors between
categories of coalgebras: for ¢: F — G a solution morphism, the functor
Coalg(¢): Coalg(F) — Coalg(G) assigns every F-coalgebra (X,h) to the G-
coalgebra (X, ¢x o h) and acts as the identity on homomorphisms:

(X,h)— (X,px 0h) =1

This functor is a lifting of the identity on the underlying C along the forgetful

functors:

Coatgr) S8

Coalg(Q)

C C

The functor, Coalg(¢) preserves behavioural equivalences and reflects them
whenever components of ¢ are monomorphisms in C. As a consequence,
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4.1.1

* any solution morphism ¢: F' — G exhibits F' as sound with respect to G
and, vice versa G as complete with respect to F’;

* any component-wise solution morphism ¢: F' — G exhibits F' as adequate
with respect to G.

These notions extend from solutions to their associated models of self-referential
systems: we say that models of type F' are sound with respect to models of type
G whenever there is a morphism of solutions ¢: F' — G and that are adequate
whenever ¢ is also componentwise monic. Complete models are defined likewise.
Solution morphisms characterise two distinguished kinds of solutions and their
associated models: final and initial ones.

* Final solutions identify model types that are complete with respect to any
other model type.

* Dually, initial solutions identify model types that are sound with respect to
any other model type.

We call solutions and models canonical whenever they are initial or final. Depend-
ing on the application, canonical solutions support reasoning about self-referential
systems (for the same schema) even if they are described by semantic models of
different type. Solution morphism into the final solution induce functors into a
shared category of coalgebras such that they preserve behavioural equivalences.
Dually, solution morphisms from the initial solution induce functors from a shared
category of coalgebras and such that they preserve behavioural equivalences.

Self-referential endofunctors as invariants

Solutions to recursive equations like those considered in this section can be
understood as fixed points of certain endofunctors derived from the equation
under scrutiny. In the case of (4.1) the first step to reformulate the system of
equations in one unknown and as one clause i.e. either as:

F=5,p (4.3)

or as:

Z = |v Syl (4.4)

Both formulations are very close to describing an endofunctor over End(C)
(taking F' to S|, p|) or one over C (taking Z to | v Sz|), except for two main
issues that prevent these to be actual endofunctors: the first is due to the
assumption that enough final coalgebras exist and the second is due to the
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presence of isomorphisms in (4.1). To this end, we need to be able to choose final
coalgebras for all endofunctors described by the given schema. We remark that all
choices are equivalent since final coalgebras are defined only up to isomorphism.

LEMMA 4.1. Let E be a subcategory of End(C) and assume that C is coalgebraically
cocomplete with respect to E. Any family of assignments {F' + | v F|} peg induces
a functor N : E — C coherent with the assignments.

PROOF. On objects, the functor is defined by the given assignments. Each
transformation ¢ € End(C)(F,G) defines a G-coalgebra on the carrier of the
final F'-coalgebra:

v F| 25 PluF| 225 Gl Fy

The associated coinductive extension into the final G-coalgebra (which exists
by coalgebraic cocompleteness) defines the action N (¢). It follows from basic
properties of natural transformations that the assignment is functorial. O

For the sake of exposition, let us assume to be given an assignment for final
coalgebras and thus fix N: E — C. We remark that this mild assumption can
be avoided by carrying out all constructions in the (more technically involved)
setting of anafunctors [103, 114, 119].

For a covariant behavioural schema S: C — End(C), assume C is coalgeb-
raically cocomplete with respect to the essential image eimg(.S), fix a choice
of coalgebras N: eimg(S) — C and replace S with its restriction to eimg(.S)
(i.e. the functor S’: C — eimg(S) such that composition with the inclusion
eimg(S) — End(C) yields S). For the sake of exposition, we will refer to S as a
functor into End(C) and hence regard N as if it were defined on End(C) while
baring in mind that we actually mean their restrictions to eimg(,S). The similarity
between the definition of N and that of solution morphisms is not by chance:
self-referential endofunctors for S are precisely fixed points of the endofunctor

End(C) % C 2 End(C).

In fact, under the mild assumption of having chosen final coalgebras, equation
(4.3), the reformulation of (4.1) in the unknown F, is precisely:

F =~ SN(F).

Solution morphisms are homomorphisms between S N-coalgebras that are also
S N-invariants i.e. solutions to (4.1). From this perspective, initial and final
solutions are initial and final S V-invariants, respectively i.e. initial S NV-algebras
and final NV S-coalgebras. Symmetrically, the endofunctor V.S over C corresponds
to (4.4), the reformulation of (4.1) in the unknown Z that represents the
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instantiation parameter of the schema S. The two formulations lead to the same
canonical solutions: initial (resp. final) S N-invariants induce initial (resp. final)
N S-invariants and vice versa. We formalise this correspondence in terms of
(co)algebraic (co)completeness.

LEMMA 4.2. For G: C — D and H: D — C, the following statements are true:
* the endofunctor G H, is coalgebraically cocomplete if and only if so is HG;
* the endofunctor GH, is algebraically complete if and only if so is HG.

PROOF. Assume H G admits a final coalgebra h: X — HGX. The image through
G of h provides us with an invariant for GH, namely G(h): GX - GHG(X).
First we prove that the GH-coalgebra G(h) is weakly final. Let g: Y — GH(Y)
be any G H-coalgebra and consider its image H(g): HY — HGH(Y'). Write
f: HY — X for the coinductive extension of H (g) into the final HG-coalgebra h.
The morphism G(f)og: ¥ — G(X) in D induces a G H-coalgebra homomorphism
from g into G(h). This proves the claim that G(h) is a weakly final G H-coalgebra.
Secondly, we prove that homomorphisms into G(h) are indeed unique hence final
semantics of their source coalgebras. It follows from finality of h: X — HG(X)
that the image through H of any G H-coalgebra homomorphism into G (h) factors
through h. In particular, for any f': Y — G(X) that induces a GH-coalgebra
homomorphism for g into G(h), we have that H(f') = ho f. As a consequence:

GH(f')=G(ho f)=G(HG(f)o H(g)) = G(f o H(g)).
Since f’ and G(f) o g are GH-coalgebra homomorphisms, the:
G(foh)og=GH(G(f)og)=GH(f)og=G(h)o [

We conclude that G(h) o G(f) o g is unique up to the isomorphism G(h) i.e. the
chosen final G H-coalgebra. The second statement follows by duality. O

Proving the existence of initial (resp. final) solutions corresponds to proving
algebraic completeness (resp. coalgebraic cocompleteness) of the endofunctors
SN: End(C) — End(C) and NS: C — C induced by (4.1). This task is not
trivial and can benefit from the ability to reduce the issue to checking certain
properties of S and NNV separately, especially since N is fixed. In the remaining
of this section, we assume C is either Cpo-(co)algebraically (co)complete or
contractively compact! and demonstrate that existence of initial and final solutions
follows from local continuity or local contractiveness of the behavioural schema S.

'Recall from Section 2.2.2 that coalgebraic cocompleteness, algebraic completeness, and
compactness are all equivalent for locally contractive endofunctors since, as stated in Lemma 2.12,
these endofunctors admit at most one invariant object (up to isomorphism).
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In order to present the system (4.1) as a suitably enriched endofunctors
akin to SN and NS above, we need to demonstrate that any choice for final
coalgebras induce enriched functors akin to Lemma 4.1.

PROPOSITION 4.3. Assume C that is Cpo-coalgebraically cocomplete. Any family of
assignments {F' — |V F'|} pecpo-gnd(c) €Xtends to a functor N: Cpo-End(C) — C
enriched over Cpo.

PROOF. It follows from Lemma 4.1 that the provided family of assignments
induce a functor N between the categories underlying Cpo-End(C) and C.
Therefore, to prove the thesis it suffices to show that N is locally monotonous
and continuous. Let ¢ > 1) be a 2-cell in Cpo-End(C)(F, G). The morphism
N(@): |vF| = |vG| carries a lax-homomorphism from (¢, g o v F) to the
(chosen) final GG-coalgebra:

|vF|-------- e
VFH
F|v F| = vG

Consider the continuous endomorphism €2 over C(| v F|, | v G|) defined as follows:

Qf)=wG) o G(f)od,povF.

The sequence (Q'+!(N(1))),__ is an w-chain and its supremum is the unique
G-coalgebra homomorphism from (¢, p| o v F) into v G since:

Lo @) = [ (6 o G (@ N @) o (61,51 0V F))

<w <w

=W o |G (Q(NW)) e (4),rovF)

<w

=G o G(| | X (NW)) o (¢, rovF).

<w

We conclude that the functor N is locally monotonous since:

N(g) = || (N (@) = N(3).

<w
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Let (¢;),.,, be an w-chain in Cpo-End(C)(F,G) and consider the w-chain
(N(9i));<,- The supremum of the latter is the unique G-coalgebra homo-
morphism from (| |;,_,, #;, p| o ¥ F) into v G since:

|| N@) = | | (#G@) " o GN(¢i) o (divr oV F))

=vG) o UGN(¢i)O (u Gi|vr oV F)
= (@) oG |_| N(¢:)) o (|_| i vr| oV F).

We conclude that the functor N is locally continuous since:

|_|N(¢i) ZN(|_|¢1‘)-

i<w i<w O
PROPOSITION 4.4. Assume C that is contractively complete and enriched over sheaves
of sets on a complete Heyting algebra A. Let E be a Sh(A)-enriched category of
locally contractive endofunctors over C. Any family of assignments {F' — |v F|} peE
extends to a functor N : E — C enriched over Sh(A).

PROOF. For F an object of E, define N (F') as the object | v F'| associated to F' by
the provided assignments. For F' and G objects from E, define Np ¢ : E(F,G) —
C(|v F|,|v G|) as the unique fixed point of the morphism

Q:E(F,G)xC(|vF|,|vG|) = C(|v F|,|vG)
in Sh(A) defined on each ¢ € E(F,G) and f € C(|v F|,|v G]) as follows:

Q(¢7f) = (VG)_IOG|VF|,\VG|(f)O¢\VF| ovF.

In order to prove that Np ¢ : E(F,G) — C(|v F|, | v G|) is well-defined and that
it describes the desired action of N we need to prove that said fixed-point
uniquely exists and that it associates each G-coalgebra ¢: F' — G with the
coinductive extension of ¢, pj o v F. Recall from [26, 55] that a morphism
f: Y x X — X has a unique fixed point fix(f): Y — X provided it is contractive
in the component X i.e. it factors through (id x nextx). The morphism €2 is
contractive by construction since G|, p| |, g factors through nextc(, p| |, q)) by
hypothesis on E. Therefore Np is always defined and takes any ¢, p| o v I to
the coinductive extension of the G-coalgebra ¢, pjo v F:

Npg(¢) = (vG) o G(Npa(9) o (¢, pov F).

Functoriality conditions for N follow from basic properties of final coalgebras
and natural transformations. For each F, the morphism Ny r takes identities to
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identities since the coinductive extension of v F' is the identity. For F', G, and H
endofunctors over C, the associativity condition requires that:

Nrz = (=o\rvalva —)(Neu X Nrg)

and this is indeed true since the diagram below commutes for any ¢: F — G
and any ¢): G — H in E.

L5
\V‘F\ ,7}}?@)4 e 77]\@@@(}@7) |Z/\LH‘
vF
F|vF| G
?vF| .
v ) e
Vivm Yva
H|v F| H|v G| HlvH|

L HNpg(¢) HNp(y) J

HNp g (Yo ¢)
]

We are now able to state the main result of this section, namely that existence
of canonical self-referential endofunctors reduces to assessing local continuity or
local contractiveness of behavioural schemata.

THEOREM 4.5. Assume that the covariant behavioural schema S is Cpo-enriched.
The following statements are true:

* if G is Cpo-coalgebraically cocomplete, then there is a final solution to (4.1);

* if Cis Cpo-coalgebraically cocomplete and Cpo-algebraically complete, then
there is an initial solution to (4.1).

PROOF. It follows from Proposition 4.3 that there is a Cpo-enriched functor
N: Cpo-End(C) — C associating each endofunctor with the carrier of a chosen
final coalgebra for it. Composition with S yields a Cpo-enriched functor that
describes (4.1) under the choice of final coalgebras described by the functor N.
We conclude from Cpo-coalgebraic cocompleteness of C that SN and NS admit
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final invariants. These invariants identify final solutions to (4.1). Assume that
C is also Cpo-algebraically complete. It follows that SN and NS admit initial
invariants. These invariants identify initial solutions to (4.1). O

THEOREM 4.6. Let E be a sheaf enriched category of locally contractive endofunctors
on a contractively compact category C. If S is locally contractive, then there is a
unique (up to isomorphism) solution to (4.1).

PROOF. Recall from Section 2.2.2 that local contractiveness (as per Definition 2.11)
implies enrichment over sheaves of sets on a complete Heyting algebra. It
follows from Proposition 4.4 that there is a suitably enriched functor N: E — C
associating each endofunctor in E with the carrier of a chosen final coalgebra for
it. Composition with the locally contractive functor S yields a locally contractive
endofunctor by Lemma 2.11. We conclude from contractive completeness of C
that this functor admits an invariant and from Lemma 2.12 that the invariant is
unique up to isomorphism. This invariant is the requested solution. O

Final self-referential endofunctors via diagonalisation

Final solutions can be obtained from final coalgebras for endofunctors that are
“diagonalisations” of covariant behavioural schemata akin to Beki¢’s Lemma [21,
22]. For S a behavioural schema, define S: C — C as the composite of the
diagonal functor for C with the transpose of S: C — End(C). This functor is
given on each object V' and morphism f of C as:

S(V)=Sv(V)  S(f)=Ss(f)
where S¢(f): Sy (V) — Sy(U) is given by the naturality square:

Sy(f) = 85U) o Sy (f) = Su(f) o Sp(V).

Solutions to (4.1) and their morphisms are equivalent to coalgebras of type S and
their homomorphisms. If an endofunctor F solves (4.1), then its final coalgebra
is also a S-coalgebra since it holds that:

v F| =S, plvF|=S|lvF|

If a natural transformation ¢: F' — G is a solution morphism, then the cor-
responding morphism into the final G-coalgebra f: |v F| — |v G| is also an
homomorphism between v F and v G seen as S-coalgebras: the claim follows
from (4.2) and definition of S on morphisms.

THEOREM 4.7. For S a covariant behavioural schema, assume that S admits final
coalgebras. If S| V3| admits final coalgebras, then final S-coalgebras coincide with
final solutions to (4.1).
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PROOF. We restrict to endofunctors that are instance of S i.e. endofunctors of
the form Sy for V' € C. This restriction does not introduce any loss of generality:
Definition 4.1 already requires self-referential endofunctors to be isomorphic
to instances of S. Assume that there is a final §-coalgebra and write Z for its
carrier. Assume tAhatA ther(i 1As a final S5-coalgebra and writeA Z Afor its ca£rier.
We claim that v S: Z — SZ regarded as a Sy-coalgebra v S: Z — SZA(Z) is
final (Z = |vS3)). Asa consequence of our claim, S5 (or eqliivalently Z)isa
solution to (4.1). Regard v S as a coalgebra for SZ and let f: Z — AZ denote its
coinductive extension. This morphism induce a homomorphisms of S-coalgebras
from v S into S 7,z ov Sz as illustrated by the diagram below.

N f
Z——— 4
vSy
1/§ SE(Z)
S~
7(f) 512

In particular, the upper part of the diagram commutes by assumption on f and
the lower part by definition of S. Let g: Z — Z be the coinductive extension
of Sy 7 ov Sz. It follows from finality of v S that g o f = idy as shown by the
commuting diagram below.

id
[ f g l
7 Z 7
u52
vS S3(Z) vS
Stz
S(Z) —— S(2) —— S(Z)
| S(f) S(g) ]
S(idy)

As a consequence, if v Sis regarded as a S-coalgebra, then the arrow g: Z — Z



4.1 COVARIANT BEHAVIOURAL SCHEMATA 93

induces a S;-coalgebra homomorphism into v S. Consider the following diagram:

The diagram commutes since its contour commutes by construction of ¢ and the
lower triangle commutes by definition of S and g o f:

S(g) © Stz = S5(9) © Sgor.z = S5(9) © Siaz = S5(9)-

Therefore, the arrows f and g extend to homomorphisms of S3-coalgebras that
split the identity on v S5:

idy

7
BVSE
(

)—>52Z)

L Syte) 2T S,

L g f 1
J

Sz(idz)

The pair of arrows f and ¢ exhibit Z and Z as isomorphic which proves our
initial claim i.e. that final §—coalgebras are solutions. Recall that solutions
and their morphisms can be equivalently regarded as §-coalgebras and their
homomorphisms. We conclude that final §—coalgebras are final among all
solutions. O

Note that coalgebras used to describe the dynamics associated to the para-
meter used for schema instantiation are always coalgebras for the diagonalised
endofunctor since S(V) = Sy (V). It follows from Theorem 4.7 that for any
concrete representation of value dynamics d: V' — Sy (V) there is a unique
structure preserving morphism into the dynamics associated to the final self-
referential endofunctor i.e. the S-coalgebra homomorphism into the final S-
coalgebra. This morphism induce a functor between categories of coalgebras
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Coalg(95),): Coalg(Sy) — Coalg(S|, s, |) that maps concrete representations
based on d into semantic models for the final self-referential endofunctor by
replacing values with their semantics.

COROLLARY 4.8. There is functorial assignment associating concrete representations
of self-referential systems with their canonical semantic models.

As a consequence of Theorem 4.7, the problem of obtaining final self-
referential endofunctors can be reduced to the existence and computation
of certain final coalgebras. This is of relevance because it allows the application
of several powerful results about final coalgebras. We mention Barr [18], Smyth
and Plotkin [133], Adamek [4—7], Worrell [148-150], and Bacci [12, 13].

EXAMPLES OF FINAL SOLUTIONS

Self-referential stream systems Recall from Section 1.3 that stream systems are
characterised by the behavioural schemata

S(A)=Ax Id

where A is the set of output symbols. Models of self-referential stream systems
are coalgebra whose behavioural endofunctor satisfies (1.3) and this equation is
precisely what we get by instantiating Definition 4.1 on the schema of stream
systems. In Chapter 1 we claimed that the initial and final solutions are identified
by the alphabets 0 and 1, these corresponds to the constant functor Sy = 0 and
the identity functor S7; = Idget. There is a unique morphism between these two
solutions rendering S final. As a sanity check, let us apply Theorem 4.7 to this
simple example. The first step is to check whether there is a final coalgebra for

S =1Idx Id.
The pair (1, id;) is said coalgebra. The second is to instantiate the schema on the
carrier of this coalgebra and check that the resulting behavioural endofunctor
admits a final coalgebra: the pair (1, id;) is a final coalgebra for S; = Id, trivially.
Then, it follows from Theorem 4.7 that S; = Id is final among all solutions.
Interestingly, the initial §-algebra coincides with the initial solution Sy. We
remark that this correspondence does not hold for general schemata.

REMARK 4.1. The approach behind Theorem 4.7 cannot be adapted to the
problem of finding initial solutions because of mixed occurrences of initial and
final invariants in the resulting definition. In fact, the dual of Theorem 4.7
characterises initial solutions to the equation system dual of (4.1), namely:

{F%SA
A= |pF|
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Self-referential partial stream systems As discussed in Section 1.2, self-referential
stream systems admit only degenerate canonical models. In order to apply
Theorem 4.7 to a more interesting example let us consider partial stream systems.
Recall from Section 1.3 that these systems are characterised by the behavioural
schema

S(A)=AxId+ A

where A is the set of output symbols. Consider the endofunctor

~

S=1I1dxId+Id

diagonalisation of S. This endofunctor admits a final coalgebra and its carrier is
the set T of all infinite trees whose nodes have either one or two children. Note
that the set 7" is exactly the alphabet described in the introduction as a solution to
(1.2). The functor St admits a final coalgebra since it is finitary [150]. It follows
from Theorem 4.7 that Sy is final among all types of models for self-referential
partial stream systems. Partial stream systems are another example of schemata
with the property that initial algebras for its diagonalisation determine initial
model types. In fact, the initial solution is Sy = 0 and the initial §-algebra is the
pair (0,idp). The cause of this fact is not the degeneracy of this solution but the
constant nature of Sy: any category is algebraically compact with respect to the
class of constant endofunctors, trivially.

Self-referential non-deterministic systems Non-deterministic labelled transition
systems are characterised by the behavioural schema

S(A) = Pf(A X Id)

where the parameter A is the set of labels. Final coalgebras for S4 determine
the set of all finitely-branching possibly infinite trees with labels in A modulo
children ordering. In the self-referential case, the set of labels carries its own
transition system. Intuitively, semantic models of self-referential LTSs use as
labels trees labelled with the same type of trees. In order to produce a concrete
instance of these set of recursive labels we apply Theorem 4.7 and construct the
final type of semantic models for these systems. The diagonalisation of S is

S =Ps(Id x 1d)

which admits final coalgebras since it is finitary. Up to isomorphism, these are
carried by the set T of all possibly infinite trees that alternate the following two
types of branching: nodes at even depth (the root has depth 0) have an arbitrary
but finite set of children whereas nodes at odd depth have exactly two children.
Since S admits final coalgebras, we conclude that Sy is the final self-referential
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endofunctor for the given schema. The final Sr-coalgebra is carried by 7" and
coincide with final §-coalgebras as per Theorem 4.7. In particular, arbitrary
and binary branches correspond to the non-deterministic and the output part of
the self-referential behaviour, respectively. The latter can be thought of as forks
and provide the characteristic covariant self-referentiality. Indeed, a tree whose
branches are labelled with trees of the same type is essentially a tree whose
branches end in two children: the label and the actual child.

Self-referential endofunctors via observations refinement

In the first part of this section we presented general results about existence
and computation of canonical self-referential endofunctors. In particular, we
proved that, under mild conditions, any concrete representation of self-referential
systems admits a canonical semantic model whose type is the final self-referential
endofunctor. It may be the case that one is interested in models whose type
is not final or that such type does not exist at all. To this end, we here
present an alternative approach based on observations and dynamics refinement.
Intuitively, the idea is to regard value dynamics as ordinary coalgebras and use the
associated semantics to derive new ones. This step produces values, dynamics,
and observations that are complete with respect to the original ones (when
regarded as ordinary coalgebras) and sound with respect to self-referential ones.
The procedure reaches a fixed point as soon as it encounters a solution to (4.1).

From the perspective of coalgebras, sequences of observations refinements
are certain functors from the category of ordinals into that of §-coalgebras.

DEFINITION 4.2. For S a covariant schema, the observations refinement sequence
for (V,d: V — 8(V)) is the functor ref(d): Ord — Coalg(S) such that:

* ref(d)(0) = (V,d);

¢ ref(@)(B+ 1) = (|70, 1, Sy, vpes © v Svs) where (Vi ds) = ref(d)(5);
o ref(d)(tg,5+1) = lag-

* ref (al)(hgl7 B) = ligq7 ref(d)(B) for any transfinite limit ordinal ~;

The observations refinement sequence for d is said to stabilise at some ordinal «
whenever ref(d)(tq,q+1) is an isomorphism.

PROPOSITION 4.9. If ref(d) stabilises at o, then S| ct(q)(a)| 1S @ self-referential
endofunctor.

PROOF. Write (V,,dy) for ref(d)(«) and (Vo41,da+1) for ref(d)(a + 1). Recall
from above that V,; carries a final Sy, -coalgebra by construction. We con-
clude that the morphism in C that carries the isomorphism of S-coalgebras
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ref(d)(ta,a+1): da = da+1 is an isomorphisms V,, = | Sy, | and exhibits Sy, as a
self-referential endofunctor. O

Observations refinement sequences induce functors assigning concrete rep-
resentations of self-referential systems to models. Assume the observations
refinement sequence for ref(d) stabilises at some ordinal o and write Z for the
carrier of ref(d)(«). Note that once the representation of value dynamics (V, d)
is fixed, concrete representations of self-referential systems operating on (V, d)
coincide with Sy -coalgebras. Then, semantic models for these systems are Sz-
coalgebras. The morphism underlying ref(d)(.0.o): d — d, identifies the functor

Coalg(Sref(d)(Loya)) : Coalg(SV) — Coalg(SZ)

that associates concrete representations with semantic models such that final
semantics capture self-referential semantics.

The value taken by ref(d) at some ordinal « is uniquely defined from values
at ordinals smaller than «. As a consequence, observations refinement sequences
can be constructed by transfinite induction. For every object of values V'
equipped with dynamics d: V' — S (V), define the ordinal-indexed sequence
of S-coalgebras (Vs, ds: Vs — §(V5))B€0rd
(ty: (Va,dy) = (V, dg))y <3 by transfinite induction on a as described below.

together with homomorphisms

First step. Let a be 0. Define (Vp, dp) as (V,d) and t{ as idy .

Isolated step. Let a be 3+ 1 and assume Sy, admits a final coalgebra. Define the
carrier V, as the carrier of the final Sy, -coalgebra regarded as a S-coalgebra
and the structure do: Vo, — S(V,) as the Sy, -coalgebra

stﬂ tg,Va
Va ? SVB (VOL) SVa(Va)

regarded as a S. -coalgebra. Define tg : Vg — V, as the coinductive extension
of ds and note that this morphism carries a S-coalgebra homomorphism
from dg to d,, as illustrated by the commuting diagram below.

ta
Vg - > Vi
VSVﬁ
dg SV;; (Va)
SVB (tg)
/ Si v
§(VB) §(Va)
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Define t& as the identity on V, and, for any v < 3, define t/ as the
composite o tg.

Limit step. Let « be a transfinite limit ordinal. Define the carrier V,, as the
colimit lim Vj for the diagram (tg: Vy — V3)y<p<a and the structure
do: Voo — S(V,) as the mediating morphism for the cocone (S(tg) o
dg: Vs — S(Va)) 4, on the a-indexed sequence (t3: Vy — V) _,_,-
Define t& as the identity on V,, and for every 8 < «, define t5 as the
injection of the component S into the colimit V,,. These morphisms carry
the required S-coalgebra homomorphisms as illustrated by the commuting
diagram below.

Va

t ‘

P

t} “ |

v, ’ Vs |

d, dg

R Sey(V3) Sv, (t3) 1
S(Vw) Ve \Vy > S(Vg) : do

Sy (V) Sy (V) |

S Sy (Vy) S |

Sv. (V) S () Sv. (Vs) |

Vo wg) 3
S(Va)

From the above inductive construction it is clear that observations refinement
sequences as per Definition 4.2 implement the intuitive procedure outlined in the
opening of this section.

Under the mild assumption of that a choice for final coalgebras can be made
(¢f. Lemma 4.1), the isolated step from the observations refinement construction
induces an endofunctor over the category of §-coalgebras. As a consequence,
the whole construction is functorial and observations refinement sequences are
initial sequences. Before we formalise and prove this claim let us introduce some
auxiliary results.

LEMMA 4.10. Assume a choice of final coalgebras N: eimg(S) — C. There is an
endofunctor R: Coalg(S) — Coalg(S) given on every S-coalgebra by the mapping:

. S .
VL8V e |wSy| L2 Sylv Sy = By Sy |
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and on every §-coalgebra homomorphism by the mapping:
s
dha = sy Y8,
The family of morphisms {l;: V — |VSV|}d€Coalg(§) from C defines a natural

transformation p: IdCOalg(§) — R.

PROOF. For the first part of the proof it suffices to prove that for every homo-
morphism f: d — d’, NSy carries a S-homomorphism from R(d) to R(d’). Then,
preservation of identities and associativity would follow by simple diagram chas-
ing. To this end consider the following decomposition of the diagram asserting
that the morphism NSy: |v Sy| — | v Sy/| carries the desired homomorphism:

v Sy S!d,lusv\ ~
|v Sy| Sv|vSy| ———— S|vSy|
| Stlvsvl (iid) Sns,|v Sy
| S, |v Syl .
NSy ) Svi|v Sy | ———— Sjus,. |V SV (@iv)
| Sy NSy (if) Siv s, NSy
|v Syi| ————— Sv/|v Sy S|lv Sy
v Sy Si, v Sy

Diagram (i) commutes by definition since NS is the unique homomorphism
from (Sy,, 5, o v Sv) into the final Sy-coalgebra. Diagram (ii) is a naturality
square for Sy, : Sy» — S|, s,,| and commutes by hypothesis on S. This leaves
only (iii) to be checked. To this end consider the following diagram:

Sy!
SyV vd Sy |v Sy
d (V) VSV
! Stlvsvl
V" |I/SV‘
St (vi) fh (i%) ‘NSf i) Sy/|v Sy
1% , |v Syl
d SV/NSf
p (viif) (v )L
S /V/ S / VS /
v Sl vi v Syl

We claim that this diagram commutes. Diagrams (v) and (viii) are homomorph-
isms into final coalgebras and commute by construction. Diagram (vi) commutes
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since f carries an homomorphism for the §-coalgebras d and d’ by hypothesis.
Diagram (vii) is (i) except for the inverse of the isomorphism v Sy /. We conclude
that (ix) commutes. Note that (iii) is the component at | v Sy/| of the square of
natural transformations of (ix) under S and hence commutes. We conclude that
(iv) commutes and R is indeed a functor.

For the second part of the proof, note that (ix) is the naturality square for
the components at d and d’ of p. As a consequence, to prove that the family
{la: V= |vSyl|} deCoalg(3) defines a natural transformation it suffices to prove
that each morphism !4: V — | v Sy/| carries an homomorphism from d to R(d).
To this end consider the commuting diagram below.

Vi-mmmmmeo - » |v Sy
vSy
d Sv|l/Sv|
Sv(la)
Siy v Sy
S(v) S|v Sy

Initial sequences for endofunctors are dual to final sequences and are usually
(and historically) presented by transfinite induction as the iterative application
of endofunctors (see [17]). The following is an equivalent but more compact
formulation.

DEFINITION 4.3. For F' an endofunctor over C, the initial sequence of F' is any
colimit-preserving functor ini(F'): Ord — C such that, for all ordinals 5 < «:

* ini(F)(a+1) = F(ini(F)(a);

* mi(F)(eg41,041) = F(Ini(F)(¢g,0))-

Note that initial sequences take by definition the ordinal 0 (i.e. the initial object of
Ord) to the initial object of the underlying category C whereas the observations
refining sequence for d takes 0 to coalgebra d. In order to recover ref(d) as an
initial sequence we need to change the underlying category and move to the

~

coslice category (d | Coalg(S)): there d is initial per definitionem. For every
coalgebra d, the pointed functor (R, p) induces an endofunctor R, over the under

~

category (d | Coalg(.5)) given on objects by the mapping:

R(f)

dLd — d2% R R(d)
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and on morphisms by the mapping:

R(f")opa

@hay s @alsay = @22 gy B9 g R(d")).

Preservation of identities and associativity readily follow once we observe that

~

R, factors through the fibre (R(d) | Coalg(S)) as:

(d | Coalg(5)) 5 (R(d) | Coalg(8)) L™, (4| Coalg(S))
The first component is the lifting of R to the arrow category (Coalg(S)) ™ (i.e.
the comma category (Coalg(S) | Coalg(S))) and is given on objects by the
mapping:

it d = R R

and on morphisms by the mapping:

@hay sl ay = R L RW@) D @ 2 gany).

The second component is the functor over p;: d — R(d) going from the fibre
(R(d) | Coalg(S)) to (d | Coalg(S)) in the domain fibration for Coalg(S) i.e.
dom: (Coalg(S))ﬁ — Coalg(S). This functor precomposes p, to object arrows

and acts as the identity on morphisms
Rd)Ld — d2%Rd)Ld

(R(d) Ls &) % (R(d) L5 a") (@ L22% @y % (a L2202 gy,

-~

Like any coslice category, (d | Coalg(S)) comes equipped with a projection
cod: (d | Coalg(S)) — Coalg(S) that takes object arrows to their codomain and
morphisms accordingly. This last piece of information allows us to formalise the

claim that observations refinement sequences are initial sequences.

THEOREM 4.11. Assume that C is coalgebraically cocomplete with respect to the
essential image of the schema S. For d a S-coalgebra, the diagram below commutes.

ini(Rd)/ord\ref(d)

(d | Coalg(5)) e Coalg(S)

PROOF. To prove the thesis it suffices to show that ini(Ry)(tg,) = ref(d)(¢s,q) for
all ordinals « > . From this property it follows that ini(Rg)(a) = ref(d)(0,a)
and cod(ini(Ry)(a)) = ref(d)(«) for any ordinal . The proof proceeds by
transfinite induction on o € Ord.
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First step. Let « = 0. The observations refinement sequence and initial se-
quences begin with (V,d) and id(y 4, respectively. We conclude that
ref (d)(20,0) and cod(ini(Ry)(t0,0)) are both equal to ) = id(y,g).

Isolated step. Let v = 3+1 and assume by inductive hypothesis that ini(R)(¢,3)
is equal to ref(d) (1) = tg for any ordinal v < . It follows that
o OFN () 5 pyy (1) v
ini(Ra)(ty+1.0) =Ra(ini(Ra)(1y,5)) = R(tz) = N(t5)

(iv), (v)

= 'Stgvlusv.y\ ovSy, = ref(d)(L7+1’a)

where (i) holds by definition of initial sequence, (ii) by inductive hypothesis,
(iii) by definition of R, (iv) by definition of N, and (v) by definition of
observations refinement sequence on successor ordinals. This proves that
ini(Rg)(ty+1,o) is equal to ref(d)(ty+1,o) for any ordinal v < . From this
fact, functoriality, and inductive hypothesis we conclude that:

ini(Rg)(t0,o) =ini(Ryq)(to1) o ini(Rg)(t1,q)
=ref(d)(10,1) o ref(d)(¢1,0) = ref(d)(o,)

Finally, ini(Rg)(ta,a) = id = ref(d)(ta,o) holds by functoriality.

Limit step. Let a be a transfinite limit ordinal and assume that ini(Rgq)(t4,3) is
equal to ref(d)(t,,5) = tg for any ordinal v < 3 < a. The thesis follows
by noting that the diagrams for the two colimits coincide since ini(Ry)(5)
and ini(R;)(e0 ) are the same coalgebra homomorphism for any ordinal
3, especially 0. O

4.2 MIXED-VARIANCE BEHAVIOURAL SCHEMATA

In this section we consider mixed-variance behavioural schemata i.e. functors of
type

C” x C — End(C).
These functors provide an abstract definition of behaviours generic in their inputs
and outputs. Self-referential endofunctors for behavioural schemata are instances
defined by their own final coalgebra. As a consequence, objects representing
inputs and output are always isomorphic. Formally:

DEFINITION 4.4. For a mixed-variance behavioural schema S: C? x C — End(C),
an endofunctor F over C is called self-referential whenever it solves:

{F = Szz

(4.5)
Z=|vEF|
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Like the covariant case discussed in Section 4.1, solutions are organised in a
category. Because of mixed variance, morphisms are given by pairs of opposing
natural transformations that are coherent with the behavioural schema and with
final coalgebras. For F' and G solutions to (4.5), a solution morphisms from the
former to the latter is formally defined as a pair (¢, 1)) where ¢ and v are natural
transformations of type F' — G and G — F), respectively, with the property that
there are isomorphisms ¢ = S,  and ) = S, where f and g are the unique
coalgebra homomorphisms depicted in the commuting diagrams below:

r e PR va
vF vG
FlvF| vG vF G|lv G|

v F| (el

GlvF| —— G|v (] FlvF| Flva

G(f)

Every solution morphism (¢,%): F' — G defines by symmetry a morphism
(¢,¢): G — F in the opposite direction (note that this is not necessarily an
inverse). As a consequence, the category of solutions is self-dual with the
swapping and dualising functors providing an involution. We observe that initial
solutions identify final ones by symmetry and vice versa. From this observation
we conclude that either they both exist or they both do not exist and that they are
necessarily isomorphic. This isomorphism is expected because of the symmetry
between inputs and outputs for self-referential behaviours.

Self-referential endofunctors as invariants

Along the lines of Section 4.1.1, in this section we characterise self-referential
endofunctors as fixed points of certain endofunctors derived from the equation
system (4.5) and provide results concerning existence and construction of canon-
ical solutions. Before we present the endofunctor modelling (4.5) let us recall
some auxiliary definitions.

Recall from [1, 40, 49, 92] that a category with involution, or dagger category,
(C,(—)) is a category C equipped with an involution? (—)': C — C% i.e. a
functor that is its own inverse (—)’ = Id. An object in an involutive category is
called symmetric whenever it is equal to its involution (X = X ). A morphism

*We adopt the definition from [49] for it offers a cleaner definition of universal involutive
categories.
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from an involutive category (C, (—)') into (D, (—)), is any functor F': C — D
that respects involutions as formalised by the diagram below.

C——D

(—)Th |(—)3F

op op
C TD

Functors that are also morphisms of involutive categories are often called symmet-
ric functors. A category C induces an involutive category (Inv(C), (—)%) where
the category Inv(C) is defined as C? x C and the involution (—)%: Inv(C) —
Inv(C)® is given by the isomorphism of categories

(—)¥: CP x C=Cx CP.

This structure is called universal involutive category of C. Universal involutive
categories are self-dual via their involution and are universal in the sense that
there is the following bijective correspondence

ctp

€. () T (mv(), (-)9)

(4.6)

In particular, the symmetric functor F:C—D?xDis universally defined as
follows:
F = ((F7), F).

In the sequel, we will omit the involution (—)! when clear from the context
and thus write just ((F), F'). The mapping C — (Inv(C), (—)%) associating
a category with its universal involutive categories extends to a functor Inv(—)
from Cat into InvCat the category of involutive categories. This functor takes
each functor F': C — D into Inv(F'): Inv(C) — Inv(D) defined as the product
FP x F. It follows from basic properties of products that the functor Inv(—) left
and right distributes over (<) in the sense that for any F': B — C, G: Inv(C) —
D, H: A — B, and (A, (—)") involutive, in InvCat there are the following
isomorphisms:

AN

Golnv(F) 2 GoInv(F) TFoH =Inv(F)o H. (4.7)

Universal involutive categories offer us the language necessary to formalise the
idea of “symmetric solutions” discussed in the opening of this section and tools
for turning mixed-variance functors into covariant symmetric functors.
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As in the case of Section 4.1.1, the first step towards characterising self-
referential endofunctors as invariant objects is to put (4.5) in a form that uses
unknowns ranging either over object of values (i.e. C) or over behavioural functors
(i.e. End(C)). A first attempt could be to consider the following formulations of
(4.5):

Z=2\vS(Z,7) F=S(|vF|,|vF|)

In both cases, the unknown occurs in covariant and contravariant position and
this prevents us from characterising solutions in terms of fixed points. To this
end, we need to replace Z and F' with pairs of unknowns: one for occurrences
in covariant positions and one for its occurrences in contravariant position. In
the first case we obtain the following system of equations:

Z=\v8(Z,7)
7' = |y 8P(Z, 7)) (4.8)
YAR=//

where Z and Z’ range over C and C?%, respectively. The last clause is required
to ensure symmetry for solutions i.e. (Z, Z') = (Z, Z')%. In the second case, we
obtain the following system of equations:

F=S(lvF||vF)
F' > SP(|vF|,|vEF|) (4.9)
F'2F

where F' and F' range over End(C) and End(C)?, respectively.

As discussed in Section 4.1.1, we assume that every endofunctor described
by the given schema S comes equipped with a chosen final coalgebras. In other
words, we assume to be given functor N: eimg(S) — C taking endofunctors to
their chosen final coalgebra. For the sake of exposition, we will refer to S as
a functor into End(C) and regard N as if it is defined over the entire category
End(C).

Let us ignore for a few lines the equations concerning solution symmetry.
Under the mild assumption of chosen final coalgebras, the first equation of (4.8)
corresponds to the functor:

Inv(C) ER End(C) RN
and the second equation to its opposite:

mnv(C)” 22 End(C)? X2 co».
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From this observation we conclude that the first two equations of (4.8) correspond
to the symmetric endofunctor over the universal involutive category for C:

NS = (((NS)P)5, NS).
Then, by (4.7), we have the following correspondence:

Inv(C) 25 End(C) 5 C

Inv(C) LN Inv(End(C)) ), Inv(C)

The very same reasoning applies to the system (4.9). The first equation of the
system corresponds to the functor

Inv(N)
R

Inv(End(C)) Inv(C) 2, End(C) (4.10)

and the second to its opposite. From (4.10) and the correspondence (4.6)
we obtain a symmetric endofunctor over the universal involutive category for
End(C):

Inv(End(C)) ™, mv(c) 5 End(C)

nv(End(C)) ™ tv(c) 2 mv(End(C))

Algebras for symmetric endofunctors like Inv(N) o 'S and S o Inv(IN) from
above are suitable pairs of algebras and coalgebras called dialgebras [57].
Whenever they exists, initial algebras of symmetric endofunctor determine final
coalgebras via the involution (—)% and vice versa. For instance, consider a functor
F: Inv(C) — C and the corresponding symmetric endofunctor = ((F)$, F)
over Inv(C). An algebra for T is a pair

(g,h): (FP(Y,X),F(X,Y)) = (X,Y)

where (X, g) is a coalgebra for F'(Y, —) and (Y, h) is an algebra for F'(X, —). It
follows that the pair (h, g) is a coalgebra for 7 and that the involution (—)?
lifts to a functor from Alg(F’) to Mg(fw) ~ Coalg(F") as illustrated in the
commuting diagram below.

~0p

Alg(F) — Alg(F

|

C———C?®

(-)?

)

In particular, the involution (—)? takes the inductive extension of an T-algebra
(g, h) to the coinductive extension of (h, g). Reworded, (—) takes initial algebras
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to final coalgebras. However, these are not guaranteed to be symmetric. For
an example of non-symmetric initial invariants consider as F' the projection
mr: C? x C — C. The symmetric endofunctor 7, : Inv(C) — Inv(C) is the
identity since ((7,)?)} is the projection m;: C® x C — C®. It follows that the
initial algebra is the identity on (1,0) and that the final coalgebra is the identity
on (0, 1)—provided that C has initial and final objects.

We observe that symmetry of initial or final invariants of symmetric endo-
functors corresponds to algebraic compactness.

PROPOSITION 4.12. Let F' be an endomorphism over an involutive category (C, (—)T).
The following statements are equivalent:

* there is an initial F-algebra and its carrier is symmetric;
* the endofunctor F is algebraically compact.

PROOF. Assume an initial F-algebra u F'. It follows that (; F')' is an initial F-
algebra i.e. a final F-coalgebra. Symmetry imposes |y F| = |(u F)T| = |(v F)|.
The converse follows likewise. O

As a consequence, when it comes to canonical self-referential endofunctors, the
conditions Z = 7’ and F' = F’ imposing symmetry on solutions to systems (4.8)
and (4.9) coincide with algebraic compactness of the associated endofunctors
Inv(N) o Sand 5o Inv(NV) over Inv(C) and Inv(End(C)), respectively.

In this work we consider the two main classes of algebraically compact
functors: locally continuous and locally compact ones. Recall from Section 2.2 that
if C is Cpo-algebraically compact or contractively compact, then so is its universal
involutive category C? x C. However, it is not known whether the category of
Cpo-algebraically compact categories is closed under exponentiation [48]; it
remains an open question even if we restrict to the case of “self-exponentials”
such as End(C). We remark that algebraic compactness is preserved when the
exponential base is Cpo, or, in general, any algebraically super-compact category
and refer the interested reader to [48] for further details. Likewise, it is not
known whether the class of contractively compact categories are closed under
exponentiation or self-exponentiation [26].

Although we cannot state that if C is Cpo-algebraically compact (resp. con-
tractively compact), so is the category of all locally continuous (resp. locally
contractive) endofunctors on it, a weaker result will suffice for our aims. In fact,
unlike arbitrary endofunctors over Inv(End(C)), we are interested in endofunc-
tors that factor through Inv(C), by construction. Furthermore, it is reasonable to
assume that C is algebraically compact with respect to the class of functors of
interest e.g. locally continuous or locally contractive functors.
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LEMMA 4.13. For G: C — D and H: D — C, the endofunctor GH, is algebraically
compact if and only if so is HG.

PROOF. Assume G H is algebraically compact. It follows from Lemma 4.2 that
HG admits an initial algebra and a final coalgebra: H(xGH) and H(v GH).
We conclude that the image through H of the canonical isomorphism between
uGH and v GH is an isomorphism for H(4 GH) and H(v GH) and hence HG
is algebraically compact. O

We are now able to state the main result of this section: existence of
canonical self-referential endofunctors reduces to assessing local continuity or
local contractiveness of behavioural schemata.

THEOREM 4.14. Assume the covariant behavioural schema S is Cpo-enriched. If C
is Cpo-algebraically compact, then there is a canonical solution to (4.5).

PROOF. It follows from Proposition 4.3 and hypothesis on C that there is a Cpo-
enriched functor N: Cpo-End(C) — C associating each endofunctor with the
carrier of a chosen final coalgebra for it. Both functors Inv(N) 0’9 and ?oan(N )
are locally continuous since Cpo-Cat has products. It follows from Corollary 2.10
and hypothesis on C that Inv(C) is Cpo-algebraically compact. We conclude
from Lemma 4.13 that Inv(N) o S and S o Inv(NN) are algebraically compact
endofunctors. Initial and final invariants for these endofunctors are canonically
isomorphic hence symmetric objects. These invariants identify canonical solutions
to (4.8) and (4.9), respectively. Thus, there is a canonical solution to (4.5). [

COROLLARY 4.15. Assume the covariant behavioural schema S is Cpo-enriched. If C
is Cpo-algebraically compact, canonical self-referential endofunctors are both sound
and complete with respect to any other self-referential endofunctor.

PROOF. It follows from algebraic compactness that any non-canonical solution
factors the isomorphism between the initial and final solutions. In a Cpo-enriched
setting this situation defines a coreflection formed by an embedding from the
initial solution together with a projection into the final one. O

THEOREM 4.16. Let E be a sheaf enriched category of locally contractive endofunctors
on a contractively compact category C. If S is locally contractive, then there is a
unique (up to isomorphism) solution to (4.5).

PROOF. Recall from Section 2.2.2 that local contractiveness (as per Definition 2.11)
implies enrichment over sheaves of sets on a complete Heyting algebra. By
Proposition 4.4 there is a suitably enriched functor N: E — C associating each
endofunctor in E with the carrier of a chosen final coalgebra for it. By Lemma 2.11
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and hypothesis on S, the endofunctors Inv(N) o 5 and 5 o Inv(IV) are locally
contractive. It follows from Proposition 2.13 and hypothesis on C, that the
category Inv(C) is Cpo-algebraically compact and from Lemma 4.13 that the
endofunctors Inv(N) oS and 5 oInv(IN) are algebraically compact. We conclude
that initial and final invariants for these endofunctors are canonically isomorphic
hence symmetric objects. These invariants identify canonical solutions to (4.8)
and (4.9), respectively. Therefore, there is a canonical solution to (4.5). O

Examples of canonical self-referential endofunctors

Deterministic self-referential behaviours Consider the mixed-variance schema:
Sy =1d" +U

where the underlying category is Set. Instances of this schema describe beha-
viours of systems that can deterministically input a value from V' or terminate
producing a value from U. This behaviours schema does not admit self-referential
functors. In fact, the cardinality of the set carrying the final Sy ;/-coalgebra
always exceeds that of V' and of U. Behaviours characterised by this functor
are closely related to the domain equation D = (D — D) + D: this equation
cannot be solved in Set but admits a unique dominating solution in Cpo,. This
observation prompted us to study Id" + U as a schema on Cpo 1P

Let (X —, Y) denote the space of continuous bottom-strict functions
equipped with the pointwise ordering and consider the behavioural schema:

S{/7U=<V—>J_Id)+U.

For any V' and U, the final Sy /-coalgebra exists and describes all trees whose
leaves are in U and whose branches are indexed by continuous bottom-strict
functions from V. Strictness renders bottom elements sink states which can be
interpreted as modelling divergent behaviours. From this perspective, the function
space (V' —, Id) characterises eager deterministic inputs since divergent
inputs results in divergence. Strictness of coproducts (which equate bottom
elements) means that divergence on inputs or outputs coincide and all diverging
computations are assigned the same abstract behaviour. In other words, the
schema S models eager deterministic computations. The behavioural schema §
is Cpo-enriched and the category Cpo, is Cpo-algebraically compact. It follows
from Theorem 4.14 that there exists a canonical self-referential endofunctor for
the behavioural schemata S. This solution can be obtained as an initial/final
sequence for Inv(NV) o 'S'. The sequence stabilises after the first iteration since
1= |v Sy1]. Indeed, 1 is solution to the domain equation D = (D —; D)+ D
in Cpo, .
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Inspired by the intuitive correlation with domain equations, consider the
behavioural schema:

SV’UI(V—U_Id)—l-U—i-A.

Computations are strict as before but can now terminate returning an atom
from A. Theorem 4.14 applies to this schema and the sequence leading to
the canonical solution stabilises at w (provided |A| > 1). Intuitively, abstract
behaviours modelled by the canonical self-referential endofunctor for S are
infinite trees with atoms from A as leaves and branching indexed by abstract
behaviours (subject to continuity and strictness).

Behavioural schemata considered above are examples of polynomial functors
parameterised in (V,U). These are generated by the following grammar:

SV7U75(/7U n= (A — Id) ’ A ’ (V — Id) ’ U ’ SV7U+S</,U ‘ SV,U X S(/,U

All functors generated from this grammar meet the hypotheses of Theorem 4.14
and hence admit canonical self-referential endofunctors.

Self-referential non-deterministic behaviours Bounded non-determinism is mod-
elled in the context of Set by means of the finite powerset P (and variations
thereof). Mixed-variance behavioural schemata based on P rarely admit self-
referential endofunctors. For instance, consider the schema Sy,;; = Pr(U x Id)V.
Although all instances of the schema admit final coalgebras, the cardinality of
their carrier always exceed that of the parameters U and V. Likewise determ-
inistic computations, we model self-referential non-deterministic ones in the
context of Cpo,.

Let B be the boolean lattice. Functions in Cpo(X,B) are predicates that
describe all upward closed subsets of X: for ¢: X — B a continuous (non
necessarily strict) function, it follows from monotonicity that ¢~*(T) is upward
closed. There is an endofunctor ¢/ over Cpo given on each object X and on each
continuous map f: X — Y as follows:

UX)=Cpo(X,B) U=\ o

zef~y)

(Note that the join is always defined since it takes place in the boolean lattice.)
The functor U restricts along the inclusion Cpo, — Cpo to an endofunctor over
Cpo,. Recall that if the order on X € Cpo is the anti-chain ordering, then
any subset of X is trivially upward closed. As a consequence, the endofunctor
U over Cpo yields the powerset P by composition with the insertion functor
I: Set — Cpo (which equips each set with the anti-chain ordering) and with the
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forgetful functor U : Cpo — Set, its adjoint. These observations suggest that the
endofunctor ! is a good candidate for modelling non-determinism in Cpo and
Cpo, . The endofunctor I/ has a “strict” version defined on objects as Cpo, (—, B),
instead of Cpo(—,B), and on morphisms as /:

UL (X)=Cpoy(X,B)  UNBw) =\ o)

zef~y)

The additional constraint imposed by bottom-strictness means that subsets
described by ¢/, (X') cannot contain | x. The composite of &/, with the insertion I
and the forgetful U, yields the non-empty powerset functor P*. As a consequence,
adding strictness models computation steps that either diverge or progress non-
deterministically. Like U, the endofunctor I/, restricts to an endofunctor over
Cpo, along the inclusion Cpo; — Cpo.

Both U/ and U, are enriched over Cpo and hence their restrictions along
Cpo, — Cpo are algebraically compact. Final coalgebras (and initial algebras)
for Y and U, are carried by the ordinals 1 and w, respectively. This difference
reflects the shape of non-deterministic behaviours the two endofunctors models:
in the first case computation steps can non-deterministically progress or diverge
whereas in the second can either progress non-deterministically or diverge. To
draw a parallel between internal and external non-determinism, this situation
mirrors that of lazy and eager inputs discussed in the previous paragraph and
suggests U and U as the types of “lazy” and “eager” internal non-determinism.

Self-referential CCS The late semantics of the CCS with values [65] has been
shown in [51] to be captured by the endofunctor over Set:

output input T
—_——

O — ~
P(C x U x Id+C x Id” +1d)

where C is the set of channels and V' the set of exchanged values. Regard V' as
the only parameter and let S denote the resulting behaviours schema. Although
all instances of S are coalgebraically cocomplete, there is not choice for the set of
values V' that identifies a self-referential endofunctor for this schema. This fact
follows from the same argument discussed in the examples of mixed-variance
schemata over Set from above. Therefore, we characterise the behaviour of
self-referential systems with synchronous exchanges in the context of Cpo;
instead of Set.

Fix an object V representing exchanged values and an object C representing
communication channels. Deterministic outputs over channels are characterised
by the endofunctor C' x (V' x Id) where x denotes left-coalesced products3.

3The left-coalesced products identify all pairs whose left component is bottom.
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The use of left-coalesced products corresponds to the interpretation of |~ as an
“unspecified” communication channel whose use results in divergence. The use
of cartesian products, instead of coalesced ones, for V' x Id means that outputs
are regarded as lazy: systems can output and then diverge or output diverging
values and progress their computation. Deterministic inputs are modelled by the
endofunctor C' x (V' — Id). Inputs are assumed lazy for symmetry with outputs
hence the use of non-strict functions. The non-deterministic component of the
behaviour is provided by the endofunctor /. By combining these elements we
obtain the behavioural schemata:

output input T

Svu =UC X U x Id+C x (V — Id)+1d).

To obtain an eager version of this schema it suffices to replace ¢/ and (V' — Id)
with their strict equivalent. By construction, the schema S is Cpo-enriched and
by Theorem 4.14 there is a canonical self-referential endofunctor instance of S.

GENERALISED BEHAVIOURAL SCHEMATA

In the previous section, we proved that canonical self-referential endofunctors
instances of a mixed-variance schema S on C are canonical invariants for
the symmetric endofunctor S o Inv(N) over Inv(End(C)). As a consequence,
self-referential endofunctors can be computed via initial/final sequences for
S o Inv( N )—equivalently, sequences for Inv(N) o 'S. Assume a Cpo-enriched
setting and bi-chains as per Proposition 2.9, by unfolding the sequence leading to
the canonical solutions we obtain the diagram illustrated below.

1 1 1 SR |

1 — S1,1(1) Sil(l) e 7y 2511(Z41)

1 e——— Sz,,2,(1) —— 5%, 2,(1) «—— -+ Zy = 82,,2,(Z)
1l e—— SZ2,Z2(1) A S%Q,Zz(]‘) —— o Z3 287,72, (Z3)
1 e——— Sz,2(1) «—— S% (1) «—— -+ Z =522(2)

Horizontal arrows form final sequences for instances of the schema S and each
final coalgebra determines the instance of the successive layer. Vertical arrows
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form chains of embedding-projection pairs and characterise horizontal layers as
approximations that converge to the limiting final sequence depicted in the bottom
of the diagram. To draw a parallel with higher-order languages, behaviours of
type S1,1 can be thought of as first-order ones because since their parameters
represent static values (recall that the final object in a slice category (C | V) is
idy). Then, behaviours of type Sz, 7, are of second order since they operate on
first order behaviours and so on. In general, behaviours of type Sz, 7, exchange
behaviours of order n end hence belong to the order n + 1. This w-sequence is
limited by higher-order behaviours or, more precisely, w-order behaviours like
those exhibited by calculi with w-order abstractions e.g. the A-calculus, the HO
m-calculus, CHOCS.

We observe that bi-chains lie in the category of parameters and conclude
that algebraic compactness can be limited to this context. This suggests a
way to decouple the category of parameters used by behavioural schemata
from that where behavioural endofunctors act i.e. consider schemata of type
Inv(D) — End(C). This distinction allows us to relax the assumptions on C, the
category where systems are modelled, and require only that D, the category
where values are modelled, is algebraically compact. Although this result may
appear mainly technical, it enables the modelling of a wider range of self-
referential systems. For instance, behavioural endofunctors might be defined on
a (suitably enriched) category of spaces whereas parameters are restricted to
range over its subcategory of exponentiable ones. Likewise, one might consider
the Kleisli category for a monad and its underlying category—along the lines of
[132]. Modelling values and systems in different categories poses the additional
challenge of how to derive the former from the latter. In the self-referential
case, this situation means that although systems are defined on C their semantics
is modelled in D. In Sections 4.3.1 and 4.3.2, we formalise this scenario by
means of behavioural endofunctors equipped with extensions/liftings that are
well-behaved with respect to the respective final coalgebras. The constructions we
introduce in Sections 4.3.1 and 4.3.2 require some basic 2-categorical machinery.
As a consequence, we are able to instantiate them on locally continuous functors
but not on locally contractive ones.

Behavioural schemata of extensions
In this section we consider behavioural schemata of type:
Inv(D) — End(C)

and assume that their instances are extensions along some fixed functor R: D — C
of endofunctors over D. The idea is to have R act as a mediator between
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behavioural endofunctors and parameters.
We organise extensions along R into a category Ext(R). An endofunctor F’
over C is an extension along R of some endofunctor G whenever there exists an

isomorphism#*:
F
C———C
R] = R
D D
G

in Fun(D, C). In order to generalise this condition beyond objects in End(C) and
End (D) consider the following 2-pullback:

p— 2 . End(C)

p1 J =} J (—oR)
End(D) ——— Fun(D, C
(D) (= Fun(D.Q
Then, the projection of P into End(C) identifies all extensions along R. Formally,
we define Ext(R) as the replete image® of pa:

Ext(R) = rimg(p2).

This definition extends to the order enriched setting as it is. Let V stand for either
Cpo or Cpo, . For R a V-functor, Ext(R) is (isomorphic to) the sub-V-category of
V-End(C) with the following properties:

* an endofunctor F' over C is an object of Ext(R) provided that there are G
in End(D) and Ro G = F o R in Fun(D, C);

* a natural transformation f: F — F’ is a morphism of Ext(R) provided
there are g: G — G’ in End(D) and Rg = fR in Fun(D,C) (i.e. there
are isomorphisms ¢: RoG = Fo Rand ¢: Ro G’ = F’ o R such that
PoRgoo=fR);

* it holds that f < f’ whenever there are g < ¢’ in End(D) and Rg = fR
and R¢’ % f'R in Fun(D, C).

4This is the non-evil definition of extensions; the evil one replaces isomorphisms with equalities.
In Chapter 3 we restricted to the evil formulation for adherence with the literature on Kleisli
liftings.

5A subcategory D of C is replete provided that for any f € D if f = g in the arrow category C™,
then g € D. Equivalently, a subcategory D of C is replete if the inclusion D < C is an isofibration.
The replete image of a functor F': C — D is the repletion the image of F' i.e. the smallest replete
category of C that has img(F') as a subcategory.
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Functors of type Inv(D) — Ext(R) are precisely behavioural schemata whose
instances are extensions along R. A first attempt at generalising (4.5) to this sort
of schemata is given by the following equation system:

F=Syz
Z = |v(| (4.11)
RoG=FoR

As in the setting of Section 4.2, we are interested in the unknowns F' and Z.
The new unknown G ranges over functors that admit /' as an extension along
R and only serves to the purpose of correlating the instantiation parameter
Z and behaviours of type F. In order to asses whether this is condition is
met, assume G admits a final coalgebra and consider its image through R. Let
¢: RoG = F o R be the natural isomorphism that exhibits the extension. The

composite @), ¢ o (v G) is a coalgebra of type F' but not necessarily the final
one:

R|v G| ———Ji—w |v F|
R(vG)
RG|v G| vF

Plva

FR|vG| —— F|v F|
Ff

To this end, we need to impose the further constraint that the F-coalgebra
®|v | © R(v G) is final. In this setting this translates to the requirement that in
C there is an isomorphism R|v G| = |v F'|. We call this condition “extension of
final invariants”. As usual, we assume enough chosen final coalgebras.

DEFINITION 4.5. Let N and N’ chose final coalgebras. For a functor R: D — C, we
say that final invariants extend along R whenever the diagram below commutes.

o~
N
IR
g
c
2
o
\z}
IR
5
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We remark that the extension of final invariants is a mild assumption since it
is met by all inclusions with a reflector as stated by Freyd’s “reflective subcategory
lemma” [53]. Below we provide a reformulation.

LEMMA 4.17. Final invariants extend along right adjoints.

The notion of final invariant extension formalises the intuitive requirement
that R translates abstract behaviours into parameters for the schema S: Inv(D) —
Ext(R). Then, we generalise Definition 4.4 to this setting as follows:

DEFINITION 4.6. For a behavioural schema S': Inv(D) — Ext(R), an endofunctor
F over Cis called self-referential whenever:

F=5z7,
Z=|vG]|
RoG=FoR
RZ = |v F|

(4.12)

Note that the system (4.12) coincides with (4.11) under the assumption that final
invariants extend along R. This observation is crucial for characterising canonical
self-referential endofunctors as invariants of suitable endofunctors along the lines
of Sections 4.1 and 4.2. Henceforth, we assume that final invariants lifts along R.

Assume, for the sake of the argument, that there exists a rule F associating
each endofunctor from Ext(R) to one of its extensions. Under the assumption of
chosen extensions, the system (4.12) is equivalent to the following one:

F=Sz7
72| vE(F)

Additionally, if this rule induces a functor going from Ext(R) to End(D), then
assuming chosen extensions effectively turns the behavioural schema:

S: Inv(D) — Ext(R)
into a the mixed-variance schema over D:
E o S: Inv(D) — End(D)

and these are covered in Section 4.2. In general, there are no guarantees
about existence and uniqueness of functors choosing extensions. Concerning
uniqueness, we observe that when there are multiple options as F, these are
always equivalent if final invariants extend along the mediating functor R. In
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fact, the following implication holds true:

Ext(R) End(C) Ext(R) —— ¢
EJ = j (—oR) = EJ = R
End(D) (RT)—) Fun(C, D) End(D) T D

A functor F': C — D is 2-monic® provided that for every pair of parallel functors
G and H with codomain D, the following implication holds true:

FoG=2FoH — G=H.

Extensions along 2-monic functors are isomorphic whenever they come from
isomorphic functors. In other words, if R is 2-monic, then F is universally defined
by the construction of Ext(R).

LEMMA 4.18. For R 2-monic, there exists I/ and such that:

Ext(R) End(C)

Ei = (—oR)

En(i(D)(? Fun(D, C)

°-)

PROOF. The functor (R o —) is 2-monic since, by hypothesis, R is so. By
construction, the projection ps: P — End(C) is 2-monic and thus P coincides
with Ext(R) the replete image of p,. The projection p; provides the desired
choice. O

The following result is a direct consequence of Lemma 4.18 and Theorem 4.14.

COROLLARY 4.19. Assume that the behavioural schemata S: Inv(C) — Ext(R) is
enriched over Cpo, that R: D — C is 2-monic in Cpo-Cat, and that final invariants
extend along R. If D is Cpo-algebraically compact, then there exists a canonical
solution to (4.12).

Behavioural schemata of liftings

In this section we consider behavioural schemata of type:

Inv(D) — End(C)

®A morphism f in a 2-category is said to be 2-monic provided that fog = foh => g = h.
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and assume that their instances are liftings along some fixed mediating functor
R: C — D. This setting is similar to that of Section 4.3.1 except for the direction
of R. As a consequence, we have to replace liftings for extensions and in general
“symmetrise” all constructions described in Section 4.3.1.

We organise liftings along R into the category Lift(R). An endofunctor F’
over C is a lifting along R for some endofunctor G if there is an isomorphism:

F

C
Rh”
D

G

0

R

D

in Fun(C, D). In order to generalise this condition beyond objects in End(C) and
End(D) consider the following 2-pullback:

p— 2 . End(D)

_
Pm

End(C) T Fun(C,D)

°-)

I

(~oR)

Then, the projection of P into End(C) identifies all liftings along R. Formally, we
define Lift(R) as the replete image of p;:

Lift(R) = rimg(p1).

This definition extends to the order enriched setting as it is. Let V stand for either
Cpo or Cpo, . For R a V-functor, Lift(R) is (isomorphic to) the sub-V-category of
V-End(C) with the following properties:

* an endofunctor I’ over C is an object of Lift(R) provided that there are G
in End(D) and Ro F' = G o R in Fun(C,D);

* a natural transformation f: F' — F” is a morphism of Lift(R) provided
there are g: G — G’ in End(D) and Rf = gR in Fun(C,D) (i.e. there
are isomorphisms ¢: Ro FF =2 Go Rand ¢: Ro F' = G’ o R such that
YoRfo¢=gr);

* it holds that f < f’ whenever there are g < ¢’ in End(D), Rf = ¢gR and
Rf"~ ¢'R in Fun(C, D).

The lifting condition alone does not capture the idea that the functor R
translates abstract behaviours between liftings and their underlying functors.
More precisely, we need to further assume that final invariants lift along R.
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DEFINITION 4.7. Let N and N’ chose final coalgebras. For a functor R: C — D,
we say that final invariants lift along R whenever the diagram below commutes.

Lift(R) C

la~)
A\
IR
i
[=1
2
o0
S
IR
=

End(D) = D

For instance, let F" be a lifting of G and write ¢ for the isomorphism Ro F' = Go F.

Definition 4.7 requires the G-coalgebra ¢, p| o v F' to be final. We remark that
this is a mild assumption since it is met by all right adjoints.

LEMMA 4.20. Final invariants lift along right adjoints.
We are now able to generalise Definition 4.4 to this setting.

DEFINITION 4.8. For a behavioural schema S: Inv(D) — Lift(R), an endofunctor
F over Cis called self-referential whenever:

F=S5y,

Z > |vG]|
RoF=~2GoR
Z = R|vF|

(4.13)

The assumption that final invariants lift along R renders the auxiliary unknown G
of the system (4.13) unnecessary. Under the aforementioned assumption, (4.13)
admits the equivalent formulation below:

{F =857z

(4.14)
Z>=R|VF|

Following the same procedure described in Section 4.2, we derive symmetric
endofunctors whose invariants are solutions to this equation. To this end, assume
chosen final coalgebras for behavioural endofunctors in the essential image of S.
Canonical solutions with respect to the unknown Z are captured by:

mv(D) 2 Lift(R) 25 ¢ & D

Inv(D) > Iv(Lift(R)) ™ mnv(c) ™, mv(D)

and canonical solutions with respect to the unknown F’ are captured by:

v(R)

Inv(N) ), 1av(D) 25 Lift(R)

Inv(Lift(R)) — Inv(C)

v(N), ), my(D) 2 Inv(Lift(R))

Inv(Lift(R)) Inv(C)
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Existence of canonical self-referential endofunctors follows from local continuity
of S and R.

THEOREM 4.21. Assume that the behavioural schema S is Cpo-enriched and that
final invariants lift along R. If D is Cpo-algebraically compact, then there is a
canonical solution to (4.14).

PROOF. We observe that both Inv(R) oInv(N) o Sand S o Inv(R) oInv(NN) are
locally continuous by construction. It follows from Corollary 2.10 and hypothesis
on D that Inv(D) is Cpo-algebraically compact. We conclude from Lemma 4.13
that both endofunctors are algebraically compact. Initial and final invariants for
these endofunctors are canonically isomorphic hence symmetric objects. These
invariants identify canonical solutions to (4.14). O

CONCLUDING REMARKS AND FUTURE WORK

In this chapter we presented a general coalgebraic account of self-referential
systems: we introduced the notion of self-referential endofunctor and showed
that coalgebras for these behavioural endofunctors capture the semantics of
self-referential systems. In order to formalise this notion, we considered beha-
vioural schemata and defined self-referential endofunctors as those instances
identified by their final coalgebras. We observed that a behavioural schema may
admit several self-referential endofunctors and organised them into a category
by finding an appropriate notion of morphism. In particular, morphisms of
self-referential endofunctors are natural transformations but also morphisms
between objects of values with the additional requirement that they are coherent
with respect to final semantics. This definition reflects the characteristic inter-
pretation of self-referential systems and offers a notion of soundness: morphisms
induce functors between categories of self-referential systems with the property
of preserving behavioural equivalence. Initial and final objects of this category
describe canonical semantic models of self-referential systems in the sense that:

* initial self-referential endofunctors correspond to semantic models of self-
referential systems that are sound with respect to all other models;

* dually, final self-referential endofunctors correspond to semantic models
that are complete with respect to all other models.

These canonical characterisations support reasoning about self-referential sys-
tems (for the same schema) even if they have semantic models of different type.
Morphism into the final self-referential endofunctor induce functors into a shared
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category of coalgebras such that they preserve bisimulations and carriers. Dually,
for morphism from the initial self-referential endofunctor.

We provided general results for determining canonical self-referential endo-
functors. In Section 4.1 we considered covariant behavioural schemata which
abstract systems that can only perform outputs. This initial simplification allowed
us to focus on the challenge of modelling self-referential behaviours without
the additional issues due to contravariant occurrences of values i.e. inputs. We
proposed three main methodologies for determining canonical self-referential
endofunctors in this setting:

* the first is a characterisation of initial (resp. final) self-referential endofunc-
tors as initial (resp. final) invariants for certain endofunctors synthesised
from behavioural schemata;

¢ the second considers determines final self-referential endofunctors from
final coalgebras for diagonalisations of behavioural schemata;

* the third relies on the iterative refinement of values and their dynamics
to construct sequences that stabilise once a self-referential endofunctor is
encountered.

Each of these methodologies has its advantages and peculiarities: the first
requires chosen final coalgebras for all instances of a schema but characterises
all self-referential endofunctor as invariants, not only canonical ones; the second
does not assume chosen final coalgebras but covers only final self-referential
endofunctors; the third can be used to obtain self-referential endofunctors starting
from concrete representations of self-referential systems. As an application, we
modelled self-referential (partial) streams and labelled transition systems.

In Section 4.2 we considered mixed-variance behavioural schemata which
abstract systems that can perform inputs and outputs and illustrated how to obtain
canonical self-referential endofunctors as invariants of certain endofunctors.
Compared to Section 4.1, mixed-variance schemata presented us with two
additional challenges: the first is, of course, mixed-variance occurrences of
values and the second is symmetry between inputs and outputs. We addressed
the first using symmetric functors on universal involutory categories and the
second using algebraic compactness—two established tools from domain theory.
Then, we proved that existence of canonical self-referential endofunctors reduces
to assessing local continuity or local contractiveness of behavioural schemata.
As an application, we modelled self-referential non-deterministic systems with
synchronous exchanges a la CCS with values. Of the three methodologies we
presented in Section 4.1, only the first extends to mixed-variance schemata:
diagonalisation and observations refinement methodologies cannot be applied to
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this setting. We identified the cause of this fact in the symmetry of inputs and
outputs assumed by self-referential systems. We remark that once this condition
is dropped, all constructions discussed in Section 4.1 extend to the mixed-
variance setting—with minor technicalities. The only modification required is
to perform all constructions in the context of dialgebras instead of coalgebras.
Finally, in Section 4.3 we explored conservative generalisations of self-referential
endofunctors that support situations where values and systems need to be
modelled in distinct categories.

We focussed on the definition and construction of self-referential endofunctors:
defining behavioural endofunctors is the crucial step of the coalgebraic method, as
it corresponds to specify the observable dynamics of systems under scrutiny. Once
a behavioural endofunctor is defined, many important properties and general
results can be instantiated. Nonetheless, we consider the notion of self-referential
endofunctor more as a founding reference for the study of self-referential systems.
From a more applicative point of view, working with behavioural endofunctors
defined in terms of their own final coalgebras can be challenging. This calls for
the development of models and efficient proof techniques that avoid any prior
knowledge about the final coalgebra. We consider this line of research as the
most pressing continuation of this work.

This is the first work to propose a general coalgebraic model of self-referential
systems. Related works can be found in the vast literature about higher-order
languages. Perhaps, the closest works to this thesis are [68, 95] where Honsell and
Lenisa studied the final semantics of the untyped A-calculus and of a simple while
language with higher-order assignments. We remark that these works take terms
as values—not abstract behaviours. For instance, [68] considers coalgebras of type
Id™ + 1, and variations thereof, where A is the set of closed A-terms. In general,
coalgebras for behavioural functors like 7d™° + 1 need not to respect the semantics
of terms. Indeed this information is not present in the definition of the functor
and this forced Honsell and Lenisa to restrict to certain well-behaved coalgebras.
These facts are among the motivations that prompted us to consider abstract
behaviours as values while modelling the semantics self-referential systems.

One of the most recent developments regarding bisimulations for higher-order
languages is the notion of environmental bisimulation proposed by Sangiorgi,
Kobayashi and Sumii [127]. As discussed in the opening of Chapter 1, environ-
mental bisimulation et similia focus on capturing contextual equivalence and to
this end test systems with challenges devised on the guise of contexts. In particular,
environmental bisimulation require processes to behave likewise only on inputs
that are indistinguishable with respect to contexts forged starting from the current
knowledge, not necessarily bisimilar. Thus, the notion of bisimulation obtained
from this work does not always coincide with of environmental bisimulation.
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