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Abstract: The asymptotic stability of the null equilibrium of a linear population model with two
physiological structures formulated as a first-order hyperbolic PDE is determined by the spectrum of
its infinitesimal generator. In this paper, we propose a general numerical method to approximate this
spectrum. In particular, we first reformulate the problem in the space of absolutely continuous functions
in the sense of Carathéodory, so that the domain of the corresponding infinitesimal generator is defined
by trivial boundary conditions. Via bivariate collocation, we discretize the reformulated operator as a
finite-dimensional matrix, which can be used to approximate the spectrum of the original infinitesimal
generator. Finally, we provide test examples illustrating the converging behavior of the approximated
eigenvalues and eigenfunctions, and its dependence on the regularity of the model coefficients.
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1. Introduction

Mathematical models are often used to describe the evolution of populations in biology and epi-
demiology. An important class of models that has attracted increased attention is that of structured
population models, in which individuals are characterized by one or more variables that describe the
i-state (i.e., the individual state) and determine the individual processes, including for instance birth,
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growth and death. Examples of physiological structures are age, size, spatial position or time since
infection. We here focus on a class of structured population models where the structuring variables
are continuous and the models are formulated as first-order hyperbolic partial differential equations
(PDEs) (see, e.g., [1-5] and references therein). In particular, we consider the case where individuals
are characterized by two different traits [6, 7].

In applications to population dynamics, the interest is often focused on the long-term properties
of the systems, for instance the existence of equilibrium states and their stability. For linear models
with two structures, it has been proved that the stability of the null equilibrium is determined by the
spectrum of the infinitesimal generator (IG) of the semigroup of solution operators [8,9]. Since the IG
is an operator acting on an infinite-dimensional space of functions, numerical techniques are required
to obtain finite-dimensional approximations of the operator and, in turn, of its spectrum.

For the analysis of local stability of equilibria, pseudospectral methods have been widely used both
for delay equations [10-13] and for PDE population models with one structuring variable [14-16]. The
main advantage of pseudospectral methods is their typical spectral accuracy, by which the order of
convergence of the approximation error increases with the regularity of the approximated function. In
particular, the convergence is exponential for analytic functions [17]. In the case of delay equations,
this implies that the spectrum of the IG is approximated with exponential order of convergence, as
the corresponding eigenfunctions are exponentials (see, e.g., [18, Proposition 3.4]). In the case of
PDEs, the eigenfunctions are still exponential in time, but the order of regularity with respect to the
physiological variables depends on the regularity of the model parameters, which therefore affects the
order of convergence of the approximation [9, Theorem 3.2]. A similar behavior has been shown for
the approximation of R0 for structured epidemic models [19-21], and the approximation of the solution
operators [22-24].

For structured models with one single structuring variable, pseudospectral methods have already
been proposed to study the stability of the null equilibrium in [14]. In that paper the IG is approxi-
mated by combining pseudospectral differentiation with the inversion of a (linear) algebraic condition
characterizing the domain of the operator. However, implementing this technique becomes substan-
tially more involved in the presence of more structuring variables.

A different approach, which has been successfully employed in the context of nonlinear PDEs with
one physiological variable [16] and of renewal equations [25, 26], consists in first reformulating the
problem at hand via conjugation with an integral operator, and then approximating the resulting trans-
formed operator via pseudospectral techniques. The advantages of this approach are mainly twofold:
on the one hand, the transformed operator acts on a space of absolutely continuous functions (rather
than the original space L1), hence point evaluation, as well as polynomial interpolation and colloca-
tion, are well defined; on the other hand, the domain of the transformed operator is characterized by a
trivial condition (specifically, a zero boundary condition), which substantially simplifies the numerical
implementation. From a modeling point of view, the integrated state has a clear interpretation as it
represents the number of individuals whose i-state is less than a given value.

Goal of this work is to introduce a numerical method for the stability analysis of linear PDE popula-
tion models with two structuring variables based on this second approach. As far as we know, there is
currently no other numerical method available for this problem. We demonstrate the applicability and
computational efficiency of the new method with several numerical tests, illustrating the convergence
of the approximated eigenvalues to the exact ones and supporting the conjecture of spectral accuracy,
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and we apply the method to two interesting test problems from epidemiology and ecology.

The paper is organized as follows. In Section 2 we introduce the prototype model and the relevant
solution operators and IG. Section 3 describes the reformulation of the IG in terms of the integrated
state. The reformulated IG is discretized in Section 4 and the resulting numerical method is applied
to some test problems in Section 5. In Section 6 we discuss the extension to models with structuring
variables evolving with nontrivial velocities and show an example. In Section 7 we apply the method
to an epidemiological model structured by age and time since infection [6] and to a population model
structured by age and size [7]. Finally, we provide some concluding remarks in Section 8. In Ap-
pendix A, for completeness, we apply the method to the case of one structuring variable and illustrate
it with a test model.

A MATLAB implementation of the method is available at http://cdlab.uniud.it/software.

2. The prototype model

Let x0, x̄, y0, ȳ ∈ R such that x0 < x̄ and y0 < ȳ and let Ω B [x0, x̄] × [y0, ȳ]. We consider the scalar
first-order linear hyperbolic PDE

∂tu(t, x, y) + ∂xu(t, x, y) + ∂yu(t, x, y) = −µ(x, y)u(t, x, y), (2.1)

with boundary conditions

u(t, x, y0) =

"
Ω

α(x, ξ, σ)u(t, ξ, σ) dξ dσ C Kα(u(t, ·, ·))(x), (2.2)

u(t, x0, y) =

"
Ω

β(y, ξ, σ)u(t, ξ, σ) dξ dσ C Kβ(u(t, ·, ·))(y), (2.3)

where u(t, x, y) is the density of the given population at time t ≥ 0 depending on the two structuring
variables x ∈ [x0, x̄] and y ∈ [y0, ȳ]. Here, the rate µ(x, y) represents the per capita mortality rate of in-
dividuals in state (x, y), while α(x, ξ, σ) and β(y, ξ, σ) describe the per capita rates at which individuals
in state (ξ, σ) produce new individuals in state (x, y0) and (x0, y), respectively.

Following [8, Assumption 2.1], we assume that the model coefficients µ : Ω→ R, α : [x0, x̄]×Ω→
R and β : [y0, ȳ] ×Ω→ R are nonnegative functions, with µ an L1

loc function∗ on [x0, x̄) × [y0, ȳ), α and
β L1 functions, α(x, ·, ·) and β(y, ·, ·) dominated by L1 functions in x and y, respectively, and µ bounded
away from 0 (for a similar but more general approach, see [27, Section 4]). Observe that the operators
Kα and Kβ map L1(Ω) to L1([x0, x̄]) and L1([y0, ȳ]), respectively, and are bounded.

Under these assumptions, for every u0 ∈ L1(Ω) the initial–boundary value problem defined by (2.1)–
(2.3) and u(0, ·, ·) = u0 admits a unique solution u(t, ·, ·) ∈ L1(Ω) for t ≥ 0. Moreover, the family of
solution operators {T (t)}t≥0, defined by T (t)u0 = u(t, ·, ·), forms a strongly continuous semigroup of
bounded linear operators in the Banach space L1(Ω), see [9, Theorem 3.1] or [8, Theorem 2.3].

With the further assumption that µ, α and β are Lipschitz continuous on the interior of their domains,
Kang et al. prove in [8, Sections 4 and 5.2] that {T (t)}t≥0 is eventually compact and has asynchronous
exponential growth.

∗In [8] µ is required to be L1 on its domain; here we make a different choice to allow for unbounded mortality (see Section 2.1) [28,29].
Accordingly, in order to have a well-posed IG we added a condition on µφ in its domain in (2.6).
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The IG of the semigroup {T (t)}t≥0 is the operator A : D(A)→ L1(Ω) defined by

Aφ = lim
t→0+

1
t
(T (t)φ − φ), (2.4)

where D(A) ⊂ L1(Ω) consists of the functions for which the limit exists. Kang et al. [8, Remark 2.3]
prove that the operator A satisfies

Aφ(x, y) = −∂x

[
φ(x, y) + ∂y

∫ x

x0

φ(a, y) da
]
− µ(x, y)φ(x, y)

= −∂y

[
φ(x, y) + ∂x

∫ y

y0

φ(x, a) da
]
− µ(x, y)φ(x, y),

(2.5)

for a.e. x ∈ [x0, x̄], a.e. y ∈ [y0, ȳ], and every φ ∈ D(A), and that D(A) satisfies the inclusion

D(A) ⊂
{
φ ∈ L1(Ω)

∣∣∣∣∣ µφ ∈ L1(Ω),

(x, y) 7→
∫ x

x0

φ(s, y) ds is absolutely continuous in y, for a.e. x ∈ [x0, x̄],

(x, y) 7→
[
φ(x, y) + ∂y

∫ x

x0

φ(s, y) ds
]

is absolutely continuous in x, for a.e. y ∈ [y0, ȳ],

lim
x→x+

0

[
φ(x, y) + ∂y

∫ x

x0

φ(s, y) ds
]

= Kβ(φ)(y) for a.e. y ∈ [y0, ȳ],

(x, y) 7→
∫ y

y0

φ(x, s) ds is absolutely continuous in x, for a.e. y ∈ [y0, ȳ],

(x, y) 7→
[
φ(x, y) + ∂x

∫ y

y0

φ(x, s) ds
]

is absolutely continuous in y, for a.e. x ∈ [x0, x̄],

lim
y→y+

0

[
φ(x, y) + ∂x

∫ y

y0

φ(x, s) ds
]

= Kα(φ)(x) for a.e. x ∈ [x0, x̄],

∂x

[
φ(x, y) + ∂y

∫ x

x0

φ(s, y) ds
]
∈ L1(Ω),

∂y

[
φ(x, y) + ∂x

∫ y

y0

φ(x, s) ds
]
∈ L1(Ω)

}
,

(2.6)

while [9, Remark 6.1] claims that equality holds. If φ ∈ D(A) is sufficiently smooth, the action (2.5) of
the operator A simplifies and can be expressed as

Aφ = −(∂xφ + ∂yφ + µφ).

The spectrum of the IG determines the stability of the null equilibrium.† More precisely, the latter
is asymptotically stable if and only if the spectral abscissa of A is negative and it is unstable if the
spectral abscissa is positive (see [30, Theorem 9.5] and [31, Theorem VI.1.15]).

†Note that since A is an operator on a real Banach space, in order to define and compute its spectrum the space and the operator need
to be complexified. For details see, e.g., [32, Section III.7].
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Observe that in the model defined by (2.1)–(2.3) the structuring variables evolve with the same
velocity as time. In Sections 3 and 4 we present the integral reformulation and the discretization
restricting to this special case, as in [8]. However, they can be applied to the case of nontrivial velocities
as described in Section 6.

2.1. About unbounded mortality

When dealing with structuring variables with finite spans, it is common to require that the mortality
becomes unbounded when approaching the maximum values of the structuring variables. As for the
case of models with two physiological structures, by defining

U(x, y) B
∫ min{x−x0,y−y0}

0
µ(x − s, y − s) ds

it is reasonable to require for example that

lim
x→x̄

U(x, y) = lim
y→ȳ

U(x, y) = +∞.

In this case, from a numerical point of view, it can be convenient to argue in terms of Π(x, y) B e−U(x,y).
It is easy in fact to see that Π(x, y) → 0 for x → x̄ or y → ȳ. Moreover, by letting v(t, x, y) B
Π(x, y)−1u(t, x, y), we can observe that if u is a solution of (2.1)–(2.3) with u(0, x, y) = u0(x, y), then
v(t, x, y) solves the PDE

∂tv(t, x, y) + ∂xv(t, x, y) + ∂yv(t, x, y) = 0

with boundary conditions

v(t, x, y0) =

"
Ω

α(x, ξ, σ)Π(ξ, σ)v(t, ξ, σ) dξ dσ,

v(t, x0, y) =

"
Ω

β(y, ξ, σ)Π(ξ, σ)v(t, ξ, σ) dξ dσ,

and v(0, x, y) = u0(x, y)Π(x, y)−1.

3. Equivalent formulation in a space of absolutely continuous functions

To conveniently handle the boundary conditions in D(A) from a numerical point of view, inspired by
the approach of [16] in the case of one structuring variable, we argue in terms of the integrated state. In
particular, we define an isomorphism between L1(Ω) and a suitable space of functions via integration.
We then use this isomorphism and the semigroup {T (t)}t≥0 to construct an appropriate semigroup acting
on a space of functions with higher regularity. With this goal in mind, we first recall the definition and
some properties of absolute continuity in the sense of Carathéodory. We refer the reader to [33] for
further details.

A function v defined on Ω is absolutely continuous in the sense of Carathéodory if and only if there
exist ev ∈ R, fv ∈ L1([x0, x̄]), gv ∈ L1([y0, ȳ]) and hv ∈ L1(Ω) such that

v(x, y) = ev +

∫ x

x0

fv(a) da +

∫ y

y0

gv(b) db +

∫ x

x0

∫ y

y0

hv(a, b) dbda.
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Observe that the iterated integral in the last term is equal to the double integral on [x0, x] × [y0, y] and
to the iterated integral on the variables a and b in the opposite order, thanks to Fubini’s theorem. The
space AC(Ω) of absolutely continuous functions on Ω in the sense of Carathéodory is a Banach space
when equipped with the norm ‖·‖AC(Ω) defined as

‖v‖AC(Ω) B |ev| + ‖ fv‖L1([x0,x̄]) + ‖gv‖L1([y0,ȳ]) + ‖hv‖L1(Ω).

We consider a particular subspace of AC(Ω), namely

AC0(Ω) :=
{
v : Ω→ R

∣∣∣∣∣ v(x, y) =

∫ x

x0

∫ y

y0

hv(a, b) dbda for some hv ∈ L1(Ω)
}
.

Observe that AC0(Ω) is a Banach space, being a closed subspace, and that v(x0, y) = v(x, y0) = 0 for
v ∈ AC0(Ω). The operator V : L1(Ω)→ AC0(Ω) defined by

Vφ(x, y) =

∫ x

x0

∫ y

y0

φ(a, b) dbda

defines an isomorphism between L1(Ω) and AC0(Ω), with V−1ψ = ∂x∂yψ for all ψ ∈ AC0(Ω). Observe
that both V and V−1 are bounded (‖V‖ = ‖V−1‖ = 1).

Note that, given a solution u of (2.1)–(2.3),
∫ x

x0

∫ y

y0
u(t, a, b) dbda represents the number of individuals

whose structuring variables belong to [x0, x] × [y0, y] at time t.
Returning now to (2.1)–(2.3), we define the family of operators {S (t)}t≥0 on AC0(Ω) as S (t) B

VT (t)V−1. Since V and V−1 are linear and bounded, the operators S (t) are in turn linear and bounded
and form a family with the same properties as {T (t)}t≥0, namely they form a strongly continuous semi-
group on AC0(Ω). Its IG is B : D(B)→ AC0(Ω), with B B VAV−1 and D(B) = VD(A).

With the aim of using B to study the stability properties of (2.1)–(2.3), it is important to understand
the relation between the spectra of A and B. First of all, from B = VAV−1 we can write B − λI =

V(A − λI)V−1 for any λ ∈ C. This implies that the resolvent sets of A and B, and consequently their
spectra, coincide. Moreover, φ ∈ L1(Ω) is an eigenvector of A if and only if Vφ ∈ AC0(Ω) is an
eigenvector of B corresponding to the same eigenvalue. Thus, given the invertibility of V , A and B also
share the same eigenvalues (with the same multiplicity). Eventually, from the statements (i) and (iv)
in [8, Proposition 5.6], as well as the proof of (v), we can conclude that the spectrum of A only consists
of eigenvalues, which implies that the same holds for B. From [8, Proposition 3.1], noting that in that
proof χ = Aφ + µφ, for ψ ∈ D(B) we can write

Bψ(x, y) = − ∂xψ(x, y) − ∂yψ(x, y)

+

∫ x

x0

Kα(∂y∂xψ)(a) da +

∫ y

y0

Kβ(∂y∂xψ)(b) db

−
∫ x

x0

∫ y

y0

µ(a, b)∂y∂xψ(a, b) dbda.

(3.1)

4. Pseudospectral discretization of the IG

In this Section, we use pseudospectral methods with a tensorial approach to obtain a finite-
dimensional approximation of the operator B, whose spectrum can be used to determine the stability
properties of the system.
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For n and m positive integers, let Π0
n,m be the space of bivariate polynomials on Ω of degree at most

n in the first variable and at most m in the second variable, taking value 0 at x = x0 and y = y0. These
conditions are motivated by the fact that we use polynomials in Π0

n,m as approximations of functions in
AC0(Ω). Let ΘX = {x1, . . . , xn} be a mesh of n points in (x0, x̄], with x0 < x1 < · · · < xn = x̄, and let
ΘY = {y1, . . . , ym} be a mesh of m points in (y0, ȳ], with y0 < y1 < · · · < ym = ȳ. We approximate a
function ψ ∈ AC0(Ω) by a vector Ψ ∈ Rnm according to

ψ(xi, y j) = Ψi, j, i = 1, . . . , n, j = 1, . . . ,m,

where the components of Ψ are ordered according to the lexicographic order of the double indices
(i, j).

Given Ψ ∈ Rnm, let ψn,m ∈ Π0
n,m be the polynomial interpolating Ψ on ΘX × ΘY :

ψn,m(xi, y j) = Ψi, j, i = 1, . . . , n, j = 1, . . . ,m.

The finite-dimensional approximation of the operator B is then Bn,m : Rnm → Rnm defined as

[Bn,mΨ]i, j B (Bψn,m)(xi, y j), i = 1, . . . , n, j = 1, . . . ,m. (4.1)

We can write more explicitly the entries of the matrix Bn,m by using the bivariate Lagrange repre-
sentation of ψn,m, together with the explicit action of the operator B defined in (3.1). Let {`X,i}i=0,...,n and
{`Y, j} j=0,...,m be the Lagrange bases of polynomials relevant to {x0} ∪ ΘX and {y0} ∪ ΘY , i.e.,

`X,i(x) =

n∏
k=0
k,i

x − xk

xi − xk
, `Y, j(y) =

m∏
k=0
k, j

y − yk

y j − yk
.

The polynomial ψn,m can be written as

ψn,m(x, y) =

n∑
i=1

m∑
j=1

`X,i(x)`Y, j(y)Ψi, j, (x, y) ∈ Ω.

Note that indeed ψn,m(x, y) = 0 for x = x0 or y = y0. Using (3.1) and (4.1), we get

[Bn,mΨ]k,l = −
n∑

i=1

`′X,i(xk)Ψi,l −
m∑

j=1

`′Y, j(yl)Ψk, j

+

∫ yl

y0

Kβ

( n∑
i=1

m∑
j=1

`′X,i`
′
Y, jΨi, j

)
(b) db

+

∫ xk

x0

Kα

( n∑
i=1

m∑
j=1

`′X,i`
′
Y, jΨi, j

)
(a) da

−
∫ xk

x0

∫ yl

y0

µ(a, b)
n∑

i=1

m∑
j=1

`′X,i(a)`′Y, j(b)Ψi, j dbda.

Using the linearity of Kα and Kβ, it is easy to characterize the entries of the matrix Bn,m. Let DX ∈ Rn×n

and DY ∈ Rm×m be defined as

[DX]i, j = `′X, j(xi), i, j = 1, . . . , n

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4493–4515.
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[DY]i, j = `′Y, j(yi), i, j = 1, . . . ,m.

In other words, DX and DY are the part of the differentiation matrices associated with {x0} ∪ ΘX and
{y0}∪ΘY , respectively, deleting the first row and the first column. The bivariate differentiation matrices
in x and y are

DX = DX ⊗ Im, DY = In ⊗ DY ,

where ⊗ denotes the Kronecker product. We can then write

Bn,m = −DX − DY + A + B −M,

where A,B,M ∈ Rnm×nm are defined by

A(k,l),(i, j) =

∫ xk

x0

Kα(`′X,i`
′
Y, j)(a) da, (4.2)

B(k,l),(i, j) =

∫ yl

y0

Kβ(`′X,i`
′
Y, j)(b) db, (4.3)

M(k,l),(i, j) =

∫ xk

x0

∫ yl

y0

µ(a, b)`′X,i(a)`′Y, j(b) dbda, (4.4)

for k, i = 1, . . . , n and l, j = 1, . . . ,m. Note that, if µ is constant, the matrix M is diagonal with diagonal
entries equal to µ.

We finally note that, although the matrix Bn,m is defined for any set of nodes, the choice of the latter
is critical to ensure the convergence of the interpolating polynomials and, in turn, of the elements of
the spectrum. In the following numerical experiments, we choose the Chebyshev extremal points in
each interval [x0, x̄] and [y0, ȳ].

In the univariate case, these nodes guarantee that the convergence rate of the interpolating polyno-
mial of degree n is O(n−k) if the interpolated function is Ck [17, Theorem 7.2], which implies that the
order of convergence is infinite if the function is smooth. Moreover, the convergence rate is O(cn) for
some 0 < c < 1 if the function is analytic [17, Theorem 8.2]. The two latter properties are often known
as spectral accuracy, see [34, chapter 4] and [35, chapter 2]. Furthermore, observe that the relevant
differentiation matrices can be computed explicitly [34].

The classic result on the interpolation error being bounded by means of the best uniform approxi-
mation error and the Lebesgue constant holds also in the bivariate case. A multidimensional version of
Jackson’s theorem on the best uniform approximation error holds as well [36, Theorem 4.8]. Moreover,
it is easy to verify that the Lebesgue constant for the tensor-product Chebyshev extremal nodes in Ω is
the product of the univariate Lebesgue constants in [x0, x̄] and [y0, ȳ], hence it is O(log n log m). The
tensor-product Chebyshev interpolation is thus near-optimal also in the bivariate case.

Although a proof of convergence for the method is out of the scope of this paper, we show that
the order of convergence observed numerically for the approximated eigenvalues and eigenvectors is
consistent with the well-established order of convergence of polynomial interpolation.

For implementation purposes, we observe that in general the integrals defining A, B and M in
(4.2)–(4.4) cannot be computed exactly. To approximate the integrals on Ω we use the Clenshaw–Curtis
cubature formula [37], which is based on Chebyshev extremal points and is spectrally accurate [34,38].
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To compute the entries of A and B, given a function f defined on [x0, x̄] and F ∈ Rn such that
Fi = f (xi), we consider the approximation∫ xk

x0

f (a) da ≈ [D−1
X F]k, k = 1, . . . , n,

and similarly for functions defined on [y0, ȳ] (see, e.g., [45]). This approximation can be extended to
the double integrals involved in the entries of the matrix M for nonconstant µ. More precisely, given a
function ψ ∈ AC0(Ω) and a vector Ψ ∈ Rnm such that Ψk,l = ψ(xk, yl), each integral

∫ xk

x0

∫ yl

y0
ψ(a, b) da db

can be approximated by the corresponding (k, l)-th entry of the vector D−1
X D−1

Y Ψ.

5. Numerical experiments

In this Section, we present several numerical experiments to investigate how the spectrum of the
finite-dimensional operator Bn,m approximates the spectrum of B, and in turn of A, of each problem at
hand. For this purpose, we select several parameter sets for which eigenvalues and eigenfunctions of
A can be expressed explictly, and we study the convergence of the approximated eigenvalues of Bn,m

to the analytic ones. As for the eigenfunctions, we stress that, since Bn,m represents an approximation
of the operator B, an eigenvector Ψ of Bn,m provides an approximation ψn,m of Vφ, where φ is an
eigenfunction of A; an approximation of φ is thus given by ∂x∂yψn,m.

For each example we study the behavior for increasing n = m of the absolute error ελ on the known
eigenvalue λ and of the absolute error εφ in L1 norm on the known eigenfunction φ, computed via
Clenshaw–Curtis cubature.

In all examples we choose

α(x, ξ, σ) = α1(x)γ(ξ, σ), β(y, ξ, σ) = β1(y)γ(ξ, σ)

in the boundary conditions (2.2)–(2.3), in order to simplify finding an explicit eigenfunction.
We remark that the parameters are chosen in order to have an analytically known eigenfunction with

certain smoothness properties, without regard to any specific biological interpretation.
To compute the spectrum of Bn,m we use standard methods (namely MATLAB’s eig function). Note

that the approximated spectrum may contain spurious eigenvalues (e.g., when B has fewer eigenvalues
than the dimension of Bn,m); however, in our examples we only examine specific eigenvalues, so that
the spurious ones do not affect our analysis.

5.1. Analytic eigenfunctions

We consider a first group of examples presenting an analytic eigenfunction. The choices of the
parameters and the resulting eigenvalue and eigenfunction are listed in Table 1. Starting from Example
1.1, where all parameters are constant, we gradually introduce nonconstant coefficients: α1 and β1 in
Example 1.2, γ in Example 1.3 and µ in Example 1.4.

Considering Example 1.1, Figure 1 shows that the errors reach the machine precision already for
n = m = 2. With n = m = 1 the errors are exactly equal to 0, which may be explained by the fact that
constant functions are interpolated exactly already by polynomials of degree 0. As n = m increases,
the errors increase, possibly due to numerical instability.
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Table 1. Parameters and resulting eigenvalue and eigenfunction in the analytic cases.

Ex. 1.1 Ex. 1.2 Ex. 1.3 Ex. 1.4

Ω [0, 1]2
[
π
6 ,

π
2

]
×

[
π
6 ,

π
4

]
[0, 2] × [−1, 1] [0, 2] × [0, 1]

α1(x) 1 cos(x − π
6 ) ex+1 e−x2

β1(y) 1 cos(π6 − y) e−y ey

γ(ξ, σ) 1
( √

2−√6+2
4

)−1 1
4e−ξ+σ

(!
Ω

e−a2+b db da
)−1

µ(x, y) 1 1 1 2x + 1

λ −1 −1 −1 −2

φ(x, y) 1 cos(x − y) ex−y e−x2+y

Figure 1. Errors ελ and εφ for Examples 1.1, 1.2, 1.3 and 1.4 defined in Table 1. Observe
that for Example 1.1 with n = m = 1 the errors are exactly 0, hence they are not represented
in the logarithmic scale.

1 10 20 30
10−16

10−7

102

n = m

Ex. 1.1

ϵλ
ϵϕ

1 10 20 30
10−16

10−7

102

n = m

Ex. 1.2

ϵλ
ϵϕ

1 10 20 30
10−16

10−7

102

n = m

Ex. 1.3

ϵλ
ϵϕ

1 10 20 30
10−16

10−7

102

n = m

Ex. 1.4

ϵλ
ϵϕ

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4493–4515.



4503

Considering now Examples 1.2, 1.3 and 1.4, Figure 1 shows that both ελ and εφ decay with infinite
order. Observe that in Example 1.4 more nodes are needed to reach the error barrier than in Examples
1.2 and 1.3, probably due to the approximation of the integrals involving the nonconstant µ.

5.2. Nonsmooth eigenfunctions

Table 2. Parameters and resulting eigenvalue and eigenfunction in the nonsmooth case. 1A is
the indicator function of A ⊂ R. The regularity of the eigenfunction is shown in parentheses
in the titles.

Ex. 2.1 (C2) Ex. 2.2 (C1) Ex. 2.3 (C0) Ex. 2.4 (discontinuous)

Ω [0, 1] × [0, 2] [0, 1] × [0, 2] [0, 1] × [0, 2] [0, 1] × [0, 2]

α1(x) x2|x| −x|x| |x| 1[0,+∞[(x)

β1(y) y2|y| y|y| |y| 1]−∞,0](y)

γ(ξ, σ) 5
8

6
7

3
4 2

µ(x, y) 1 1 1 1

λ −1 −1 −1 −1

φ(x, y) (x − y)2|x − y| (x − y)|x − y| |x − y| 1[0,+∞[(x − y)

For the second group of examples, we consider eigenfunctions which are not smooth. The choices
of the parameters and the resulting eigenvalue and eigenfunction are listed in Table 2. Observe that the
eigenfunctions have the same regularity as the coefficients α1 and β1, namely C2 for Example 2.1, C1

for Example 2.2 and C0 for Example 2.3. We consider also Example 2.4 with discontinuous coefficients
and eigenfunction.

Figure 2 suggests that the errors decay with finite order and these orders increase with the regu-
larity of the eigenfunction. In particular, we can observe that for both errors a loss of one order of
differentiability, or the loss of continuity, of the eigenfunction seems to correspond to a loss of about
one order of convergence (cfr. the dashed reference lines in Figure 2). The convergence of ελ seems
to be almost two orders faster than that of εφ. To possibly explain this difference, recall that we are
actually collocating the eigenvalue problem for B, which means that the eigenvalues are the same as A,
but the eigenfunctions correspond to integrals of the eigenfunctions of A, so the comparison between
the eigenfunctions involves differentiating the computed ones.

6. Structuring variables with nontrivial velocity

We have illustrated the method for systems in which both physiological variables evolve at the same
velocity as time. This should not be seen as too restrictive, as systems with more general velocity terms
[1-5] can in some cases be reduced to (2.1)–(2.3) after a suitable scaling of variables, so that similar
theoretical results on the stability of the null solution hold [9]. In practice, however, the computation
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Ex. 2.3
Ex. 2.4
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Ex. 2.2
Ex. 2.3
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Figure 2. Errors ελ (left) and εφ (right) for Examples 2.1, 2.2, 2.3 and 2.4 defined in Table 2.
The slopes of the dashed gray lines are −2.5, −3.5, −4.5, −5.5 (left) and −0.7, −1.7, −2.7,
−3.7 (right), included to ease the interpretation of the plots.

of the change of variables, which in general is defined by the solution of an ODE system, may be
expensive, although necessary when the individual parameters (e.g., birth and mortality rates) depend
on the original (unscaled) variables. In this case, directly approximating the original problem with
nontrivial velocities may be convenient from a computational point of view, as observed in [16].

In fact, the transformation via integration can be easily carried out for problems of the form

∂tu(t, x, y) + ∂x(gX(x)u(t, x, y)) + ∂y(gY(y)u(t, x, y)) = −µ(x, y)u(t, x, y),

gY(y0)u(t, x, y0) = Kα(u(t, ·, ·))(x),
gX(x0)u(t, x0, y) = Kβ(u(t, ·, ·))(y),

where the positive functions gX(x) and gY(y) describe the rates of change of x and y in time. In this case,
it is straightforward to verify that, given the IG A, the operator B = VAV−1 admits the representation

Bψ(x, y) = − gX(x)∂xψ(x, y) − gY(y)∂yψ(x, y)

+

∫ x

x0

Kα(∂y∂xψ)(a) da +

∫ y

y0

Kβ(∂y∂xψ)(b) db

−
∫ x

x0

∫ y

y0

µ(a, b)∂y∂xψ(a, b) dbda,

which is approximated by a matrix of the form

Bn,m = −GXDX −GYDY + A + B −M,

where A, B and M are the matrices defined in Section 4 and GX = GX ⊗ Im, GY = In ⊗GY , with GX and
GY diagonal matrices defined by [GX]i,i = gX(xi), i = 1, . . . , n, and [GY] j, j = gY(y j), j = 1, . . . ,m.

As an example let us consider

Ω B

[
1
2
,

3
2

]
×

[
1
2
, 2

]
, gX(x) B x, gY(y) B

y2

2
,

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4493–4515.



4505

µ(x, y) B y3 − 2x2 − y + 4,

α(x, ξ, σ) B
ex2− 1

4

8c
, β(y, ξ, σ) B

e−y2+ 1
4

2c
, c =

1
4
π

"
Ω

ea2−b2
da db,

for which λ = −5 is an eigenvalue of the corresponding IG with eigenfunction φ(x, y) = ex2−y2
. We can

observe in Figure 3 that the errors decay with infinite order even in this case.

1 10 20 30
10−16

10−7

102

n = m

ϵλ
ϵϕ

Figure 3. Errors ελ and εφ for the example of Section 6.

7. Applications

7.1. An epidemiological model structured by age and time since infection

We now consider an epidemic reinfection model proposed in [6] with individuals structured by
demographic (or chronological) age a ∈ [0, a†] and time since infection τ ∈ [0, τ†]. All individuals are
assumed to experience a natural mortality µ(a), and we define the corresponding survival probability

`(a) B exp
(
−

∫ a

0
µ(σ) dσ

)
and the average life expectancy of individuals

e0 B

∫ a†

0
`(a) da.

Susceptible individuals can become infected upon contact with an infectious individual at a rate given
by β(τ). Infected individuals recover at a rate γ(τ). After linearization around the disease-free steady
state, the linear equation for the infected individuals reads

∂tζ(t, τ, a) + ∂τζ(t, τ, a) + ∂aζ(t, τ, a) = −(µ(a) + γ(τ))ζ(t, τ, a), τ ∈ [0, τ†], a ∈ [0, a†],

ζ(t, 0, a) = w∗(a)
∫ τ†

0

∫ a

0
β(τ)ζ(t, τ, σ) dσ dτ,

ζ(t, τ, 0) = 0,

where ζ(t, τ, a) is the density of the infected individuals in the linearization around the disease-free
steady state and w∗(a) = `(a)/e0 is the age profile of the host population in the demographic steady
state.

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4493–4515.



4506

Following [6, Section 4.2], the reproduction number is given by

R0 =

∫ a†

0
Ψ(a)w∗(a) da,

with

Ψ(a) B
∫ min{a†−a,τ†}

0
β(τ)Γ(τ)

`(a + τ)
`(a)

dτ, Γ(τ) := exp
(
−

∫ τ

0
γ(σ) dσ

)
.

Observe that Γ(τ) is the probability of an individual not being removed before time since infection τ.
Hence we expect the disease-free equilibrium to undergo a bifurcation at R0 = 1 and specifically we
expect a real eigenvalue crossing the imaginary axis from left to right.

Table 3. Parameters for the analysis of the epidemic model of Section 7.1. In the computa-
tions we approximate 1 year as 52 weeks.

Symbol Value Description

a† 100 years Maximal age

τ† 2 weeks Maximal infectious period

β(τ) varying β0 > 0 Infectivity profile

µ(a) 1
a†−a Natural mortality

γ(τ) 1
τ†−τ Removal rate of infected individuals

For the numerical simulations we use parameters as in Table 3, which are simplified parameters but
broadly consistent with a short infection like COVID-19. For this choice of parameters, R0 = β0/k with

k B
81120000
40549601

≈ 2.0005. (7.1)

Since discretizing a large interval causes slower convergence of interpolation methods, for the pur-
pose of the numerical experiments we rescale the variables to the interval [0, 1] considering new vari-
ables x B τ/τ† and y B a/a† and u(t, x, y) B ζ(t, τ, a). The resulting model reads

∂tu(t, x, y) +
1
τ†
∂xu(t, x, y) +

1
a†
∂yu(t, x, y) = −(µ(a†y) + γ(τ†x))u(t, x, y), x, y ∈ [0, 1],

u(t, 0, y) = w∗(a†y)
∫ 1

0

∫ y

0
β(τ†x)u(t, x, σ)τ†a† dx dσ,

u(t, x, 0) = 0.

We further apply to this model the reformulation described in 2.1 to avoid issues with the unbounded-
ness of µ and γ.

Figure 4 shows the rightmost part of the spectrum of the IG for values of R0 around the bifurcation
at R0 = 1: as anticipated, the rightmost eigenvalue is real and crosses the imaginary axis. The figure
shows the eigenvalues of the IG discretized with two different values of n = m: the comparison suggests
that some of the eigenvalues are spurious, more precisely the ones seemingly not lying on the emerging
exponential-like curves (excluding, of course, the spectral abscissa).
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100

R0 < 1

−10 −5 0

−100

0

100

R0 = 1

−10 −5 0

−100

0

100

R0 > 1

Figure 4. Eigenvalues of the IG with real part greater than −10 with β0 = k − 1, β0 = k and
β0 = k + 1, with k as in (7.1), corresponding respectively to R0 < 1, R0 = 1 and R0 > 1,
computed with n = m = 30 (×) and with n = m = 50 (•).

7.2. A population model structured by age and size

To further illustrate the efficacy of the method on realistic models with nontrivial velocity, we con-
sider a model inspired from ecology, with individuals structured by their demographic age a and their
size z, which grows in time with velocity g(z) [7]. We will take parameters inspired by the Daphnia
population growth model [12, 39], but assuming that the algae resource is fixed at a certain value. We
consider a slight modification of parameters so that both the survival probability at the maximal age and
the growth rate at the maximal size are zero. We consider a ∈ [0, a†] and z ∈ [zb, zm] with parameters
as in Table 4.

We assume that individuals start reproducing after reaching the reproductive size zA. Their off-
spring’s size is distributed according to a density function w(z) with support in [zb, zA]. The model for
the population density n(t, a, z) reads

∂tn(t, a, z) + ∂an(t, a, z) + ∂z(g(z)n(t, a, z)) = −µ(a)n(t, a, z), a ∈ [0, a†], z ∈ [zb, zm],

n(t, 0, z) = w(z)
∫ a†

0

∫ zm

zb

β(σ)n(t, a, σ) dσ da,

n(t, a, 0) = 0.

For studying the model we can define Π(a) = exp(−
∫ a

0
(µ(ξ)−µ0) dξ) and q(t, a, z) B Π(a)−1n(t, a, z).

Then it is easy to see that q satisfies

∂tq(t, a, z) + ∂aq(t, a, z) + ∂z(g(z)q(t, a, z)) = −µ0q(t, a, z),

q(t, 0, z) = w(z)
∫ a†

0

∫ zm

zb

β(σ)Π(a)q(t, a, σ) dσ da,

q(t, a, 0) = 0.

Moreover, we rescale the age variable to the interval [0, 1] as in Section 7.1.
Figure 5 shows the stability chart for the null equilibrium in the parameters rm and γ, while Figure 6

shows the value of the spectral abscissa varying those two parameters separately.
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Table 4. Parameters for the analysis of the population model of Section 7.2.

Symbol Value Description

a† 70 Maximal age

zb 0.8 Minimal size

zA 2.5 Maturation size

zm 6.0 Maximal size

µ(a) µ0 + 1
a†−a Natural mortality

g(z) γ(zm − z) Growth rate in size

β(z) 1[zA,zm] · rm(z − zA)2 Fertility rate

w(z) 1[zb,zA] · (zA − z)/(zA − zb) Size distribution of offspring

µ0 0.7 Mortality constant

γ varying from 0.05 to 0.15 Growth rate constant

rm varying from 0.05 to 0.1 Fertility constant

0.05 0.06 0.07 0.08 0.09 0.10

0.06

0.08

0.10

0.12

0.14

rm

γ

Figure 5. Stability chart for the null equilibrium of the population model of Section 7.2 in
the parameters rm and γ, computed with n = m = 30. The black line is the boundary between
the stable (white) and unstable (gray) regions.
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Figure 6. Spectral abscissa of the IG of the population model of Section 7.2 as a function
of the parameters rm with γ = 0.1 (left) and γ with rm = 0.075 (right), computed with
n = m = 30.

8. Concluding remarks

In this paper we proposed a numerical technique to analyze the stability of the null solution of linear
population models with two structuring variables, of the type considered in [8, 9].

Extensive numerical tests illustrate the convergence of the eigenvalues of the finite-dimensional
approximation to the true eigenvalues of the IG. The numerical tests support the conjecture that the
order of convergence of the approximation depends on the regularity of the eigenfunction. A rigorous
theoretical proof of the convergence of the approximation is left to future work.

Stability analysis requires not only that the eigenvalues of the IG are approximated accurately,
but also that no spurious eigenvalues are to the right of the true spectral abscissa. In fact, in our
examples we observe that the approximation of the known eigenvalue is the numerical spectral abscissa,
suggesting that the method can be effectively used to study the stability.

Structured population models can also be formulated as renewal equations for the population birth
rate (or “recruitment function”) [40-42]. The renewal equation formulation is particularly convenient
from the theoretical point of view as one can exploit the principle of linearized stability for nonlinear
equations, which can not be proved in general for the PDE formulation [40]. Results on the asymptotic
behavior of solutions have also been recently proved, under special assumptions, for renewal equations
defined on a space of measures, which makes it possible to consider a wider set of solutions compared
to PDEs [43, 44].

It would be interesting to apply pseudospectral methods in the framework of renewal equations
(admitting a state space of multivalued functions or even measures), by extending the techniques de-
veloped for scalar renewal equations [11,22,25]. However, when the structuring variables evolve with
nontrivial velocity, the renewal equation formulation requires to explicitly invert the age-structure rela-
tion defined implicitly by an ODE system, which suffers from the computational challenges highlighted
in Section 6. Hence, as explained therein, directly tackling the PDE formulation may be computation-
ally convenient, as it bypasses the solution of the ODE system.

In this paper we restricted to structuring variables in bounded intervals, as this allows to exploit the
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highly desirable convergence properties of polynomial interpolation on Chebyshev nodes. However,
unbounded domains are common in the modeling literature (e.g., [1, 2, 27, 29]), for instance when it
is not easy to determine a suitable upper bound for a physiological variable a priori, or when the pro-
cesses are naturally described by probability distributions with unbounded support (e.g., exponential
or Gamma distributions).

In order to numerically treat these problems, truncating the domain can be feasible sometimes,
but the accuracy of the approximation would depend on both the size of the truncated domain and
the number of nodes in the domain. The latter usually becomes very large because the choice of
Chebyshev nodes does not exploit the specific characteristics of the solutions, which usually belong to
exponentially weighted spaces [40]. For this reason, using exponentially weighted interpolation and
Laguerre-type nodes has proved successful and more efficient than domain truncation in the case of
delay equations [26,46]. It would be interesting to apply similar techniques [35] to structured models in
the PDE formulation with one or even two structuring variables, although the latter brings in additional
complications due to the necessity to rely on multivariate interpolation.

A. Models with one structuring variable

As recalled in the introduction, [14] already provides a pseudospectral method, based on a differ-
ent approach, to approximate the IG of models with one structuring variable. In this appendix, for
completeness, we adapt our approach to this case, providing also an example.

We consider the scalar first-order linear hyperbolic PDE

∂tu(t, x) + ∂xu(t, x) = −µ(x)u(t, x), (A.1)

with boundary condition

u(t, x0) =

∫ x̄

x0

β(σ)u(t, σ) dσ C Kβ(u(t, ·)). (A.2)

As references on single structure models, see [28, 29, 47]; in particular, see [29, Section 1.2] for what
concerns this appendix.

If µ, β : [x0, x̄] → R are nonnegative functions with µ ∈ L1
loc([x0, x̄)) and β ∈ L∞([x0, x̄]), for every

u0 ∈ L1([x0, x̄]) the initial–boundary value problem defined by (A.1)–(A.2) and u(0, ·) = u0 admits
a unique solution u(t, ·) ∈ L1([x0, x̄]) for t ≥ 0. Moreover, the family of solution operators {T (t)}t≥0,
defined by T (t)u0 = u(t, ·), forms a strongly continuous and eventually compact semigroup of bounded
linear operators in the Banach space L1([x0, x̄]). Its IG A : D(A) → L1([x0, x̄]), defined as in (2.4), can
be expressed as

Aφ = −φ′ − µφ,
and its domain D(A) can be characterized as

D(A) = {φ ∈ AC([x0, x̄]) | µφ ∈ L1([x0, x̄]), φ(x0) = Kβ(φ)}.

Let us equip AC([x0, x̄]) with the norm ‖·‖AC([x0,x̄]) defined as ‖ f ‖AC([x0,x̄]) B | f (x0)|+ ‖ f ′‖L1([x0,x̄]). Let
AC0([x0, x̄]) be the subspace of AC([x0, x̄]) of functions that are null at x0, which is a Banach space,
being a closed subspace. The operator V : L1([x0, x̄]) → AC0([x0, x̄]) defined by Vφ(x) =

∫ x

x0
φ(σ) dσ
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defines an isomorphism between L1([x0, x̄]) and AC0([x0, x̄]), with V−1ψ = ψ′ for all ψ ∈ AC0([x0, x̄]).
Observe that both V and V−1 are bounded (‖V‖ = ‖V−1‖ = 1).

We define the family of operators {S (t)}t≥0 on AC0([x0, x̄]) as S (t) B VT (t)V−1. As in Section 3, we
observe that they form a strongly continuous and eventually compact semigroup on AC0([x0, x̄]) with
IG B : D(B) → AC0([x0, x̄]), with B B VAV−1 and D(B) = VD(A). We can also derive the following
expression for B, given ψ ∈ D(B):

Bψ = −ψ′ + Kβ(ψ′) − V(µψ′).

As in Section 3, we can conclude that A and B have the same spectrum, at most countable and consisting
only of eigenvalues (of finite algebraic multiplicity).

As an example, let us choose [x0, x̄] = [0, 2], µ(x) ≡ 1 and β(x) B e−x. It can be shown that the only
real eigenvalue of the corresponding IG is the unique real solution of the equation

1 − e−2λ−4

λ + 2
= 1,

which can be approximated to the machine precision with standard methods (e.g., with MATLAB’s
fzero we obtain λ = −1.203187869979980). The relevant eigenfuction is

φ(x) = e−
∫ x

0 µ(s) ds−λx = e−(1+λ)x.

We can observe in Figure 7 that the errors computed by our method decay with infinite order.

1 10 20 30
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10−7

102

n

ϵλ
ϵϕ

Figure 7. Errors ελ and εφ for the example of Appendix A.
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