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ABSTRACT
Quantum Computing has become a more and more prominent

research field in the last few decades. This growth in interest is

mainly related to the so-called quantum speed up that some quantum

procedure exhibits. The two main examples are Shor and Grover

algorithms. The latter will be a key ingredient of this paper. In partic-

ular, we propose an attempt to speed up Answer Set Programming

(ASP) exploiting Quantum Computing. We rely on two proposals

in the literature that use quantum computation for: finding stable

models of ASP programs; counting solutions of propositional for-

mulae. For combining such proposals we embed in the quantum

framework a third proposal from the literature, namely a purely

classical approach for navigating the solution space of ASP models.

We end up with a quantum method for counting stable models of

ASP programs. After providing the details of our method, we briefly

describe a Proof of Concept implementation of these techniques.

CCS CONCEPTS
• Theory of computation→ Constraint and logic programming;
• Computer systems organization→ Quantum computing;
• Computing methodologies→ Logic programming and an-
swer set programming.
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INTRODUCTION
Quantum Computation has gained more and more relevance over

the last few years. This great success is mainly due to the speed ups

obtained by Shor and Grover in their two famous papers [9, 21].

With the goal of reproducing such speed ups in other algorithms,

researchers have started their journey into Quantum Computation.

They soon found out that such increment in speed are not easy to

reproduce. Nevertheless, Quantum Computation has become a very

fervent research area. The expressiveness of quantum computers

has been investigated through the lens of Quantum Automata in

[12, 16]. Problems related to graphs, combined with Quantum Com-

putation, created a great interest in the researchers. On the one

hand, a field of study is how graphs are encoded in the quantum

circuit based model [5]. On the other hand, proposals have been

made on how to solve problems related to graphs in the quantum

annealing framework [10]. Moreover, string matching has been

tackled with the tools of quantum computation in [3] and [6].

Despite all these results, classical computation still plays a key

role when used alongside quantum algorithm. For example, the

methods of formal verification have been adopted in proposals like

[1, 2, 11] where the authors considered the problem of verifying

the correctness of quantum programs/circuits exploiting purely

classical computations. Other examples are [13, 17] where authors

adopted SAT and ASP based techniques to solve the purely quantum
problem of minimizing the number of CNOT gates in a circuit.

In this paper we propose a Quantum Algorithm for solving the

problem of counting stable models of an ASP program, thus obtain-

ing a quadratic speed up with respect to the classical counter part.

Our proposal is based on the union of different techniques coming

from [7, 14, 19].

In [7] the authors proposed a purely classical technique to navi-

gate through the solution space of an ASP program—with the goal

of finding stable models. Their algorithm is a classical visit of a

graph built by using the notion of facet. They proved the existence

of some particular quantities capable of speeding up the search,

which unfortunately are computationally hard to obtain. The ulti-

mate goal of such algorithm was to find a stable model for an ASP

program.

The same problem was tackled in [14] too. In this case the au-

thors defined a Quantum Algorithm to solve it. In particular, they

devised a Grover-based technique that exploits an oracle O which is

supposed to be able to identify stable models. Despite being almost
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a bruteforce approach, it is actually the first attempt for solving

ASP-related problems with quantum tools.

A different goal was pursued in [19], where given a propositional

logic formula 𝜙 the aim is that of counting how many solutions it

has. In particular, the problem is faced by introducing the notion of

Weighted Model Counting (WMC) in which each of the assignments

satisfying 𝜙 has a particular weight. WMC is the sum of the weights

of all the assignments that satisfy 𝜙 .

What we propose here is a Quantum Algorithm to compute one

of the quantities that can speed up the search process proposed in

[7]. We are able to achieve such result with a quadratic speed up

with respect to any classical approach by exploiting the algorithm

proposed in [19]. Being able to compute such a quantity with a fast

algorithm can open up the possibility of obtaining faster versions

of the algorithm proposed in [7]:

• Start by applying algorithm [7];

• Every time the algorithm needs to be guided during the visit,

call our quantum algorithm to speed up the computation of

the guiding function.

The paper is structured as follows. Section 1 is devoted to the

introduction of the basic concepts of both Quantum Computation

and Answer Set Programming. For sake of readability and due

to space limits, this section will not contain every single aspect

of the two aforementioned topics. In Section 2 we will describe

[7, 14, 19]. After that, we introduce the algorithm we devise to

speed up the computation of the guiding function for [7]. Almost all

the algorithms presented in this paper have been implemented and

tested to show their effectiveness. The implementation is publicly

available and it is briefly described in Section 3. Finally, in Section

4, we draw some conclusions, stressing the aim of this paper, while

giving some ideas on how to improve this work.

1 PRELIMINARIES
In this section we introduce all the notions about quantum computa-

tion that will be useful throughout the paper. Since we will restrict

ourselves just to what is necessary for this particular proposal, the

reader may refer to [15] for further details.

1.1 Quantum Computing
1.1.1 Qubits and Unitaries. A qubit is a mathematical object de-

fined as a normalized
1
2-dimensional vector in the complex field.

Usually, such vectors are represented with Dirac’s notation:

• |𝜓 ⟩ is called a ket and represents a column vector;

• ⟨𝜓 | B |𝜓 ⟩† is called a bra and represents a row vector, where

the dagger indicates an element-wise application of the con-

jugate operator, followed by a transposition.

A combined use of a bra and a ket allows to compactly represent

the scalar product of two vectors:

⟨𝜓1 |𝜓2⟩ B ⟨𝜓1 | · |𝜓2⟩ = |𝜓1⟩† · |𝜓2⟩ (1)

Being qubits 2-dimensional vectors, a basis of size 2 is required

to represent them. One of the most commonly used bases is the

1
In this context, a vector 𝑣 is said to be normalized if |𝑣 | = 1.

computational basis:

|0⟩ B
(
1

0

)
|1⟩ B

(
0

1

)
(2)

However, other useful bases do exist, such as the one composed by

the following 2 vectors:

|+⟩ B 1

√
2

(
1

1

)
|−⟩ B 1

√
2

(
1

−1

)
(3)

It is interesting to notice that any qubit state |𝜓 ⟩ given as a linear

combination of the states of some basis, e.g. the computational

basis:

|𝜓 ⟩ B 𝛼 |0⟩ + 𝛽 |1⟩ with 𝛼, 𝛽 ∈ C : |𝛼 |2 + |𝛽 |2 = 1 (4)

can be rewritten in the following form:

|𝜓 ⟩ B 𝑒𝚤𝛾
(
cos

𝜃

2

|0⟩ + 𝑒𝚤𝜙 sin

𝜃

2

|1⟩
)

(5)

where the term 𝑒𝚤𝜙 is called the relative phase of 𝑧, whereas 𝑒𝚤𝛾 repre-

sents its global phase. Due to their physical meaninglessness, global

phase terms are often factored out and ignored in calculations.

The evolution of a quantum system—set of qubits joined by

tensor product—is done through a unitary transformation.

Definition 1.1 (Unitary matrix). Amatrix𝑈 implementing a quan-

tum transformation is said to be unitary if the following condition

holds:

𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 (6)

Throughout this paper we will adopt the gate-based model of

Quantum Computation. In such framework, every unitary corre-

sponds to a gate that is applied to some specific qubits. Measurement

operations are used to extract information from the quantum states.

1.1.2 Grover algorithm. Let 𝜒 be an 𝑛-ary boolean function:

𝜒 : {0, 1}𝑛 ↦→ {0, 1} (7)

and let 𝑋 be the set of all 𝜒 ’s inputs that correspond to an output

of 1:

𝑋 B
{
𝑥 ∈ {0, 1}𝑛 : 𝜒 (𝑥) = 1

}
(8)

We call Search Problem the problem of finding (at least one) 𝑥 ∈ 𝑋
for some 𝜒 given in input.We usually refer to𝑋 as the set of solutions
to the problem. For convenience, define 𝑁 B |{0, 1}𝑛 | = 2

𝑛
as the

size of the search space and𝑀 B |𝑋 | as the number of solutions.

Grover’s Algorithm is a probabilistic quantum algorithm that

allows to solve a Search Problem with O
(√

𝑁

)
expected queries to

a quantum oracle for 𝜒 , i.e. it implements a procedure that exhibits

a quadratic speed up over the best classical algorithm. First of all,

the algorithm initializes all the qubits to a uniform superposition

of all the elements of the search space, by applying an Hadamard

gateH to every qubit:

H⊗𝑛 |0⟩⊗𝑛 = |+⟩⊗𝑛 (9)

The reader may notice that the generalization of the Hadamard

gate H to 𝑛 qubits—which is the gate we indicated with H⊗𝑛 in

Equation 9—is often referred to as the Walsh-Hadamard transform,

and represented by the letterW𝑛 .

After that, the aim of the procedure is to increase the ampli-

tude of the element 𝑥 in the superposition, while simultaneously

2
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decreasing all the other ones. Such task is carried out by repeat-

edly applying the Grover Operator G. After some iterations, the

amplitude of 𝑥 is intuitively expected to be high enough so that

the result of a measurement of all the qubits would result in 𝑥 with

high probability
2
.

To be more specific, the operator G can be seen as the concate-

nation of two distinct steps:

(1) first, G queries the quantum oracle 𝑆𝜒 . In particular, the

oracle is defined so that the effect on the quantum state it is

applied to corresponds to a sign flip on the amplitude of 𝑥 ,

while all the other amplitudes are left unchanged:

𝑆𝜒 |𝑥⟩ = (−1)𝜒 (𝑥 ) |𝑥⟩ (10)

Since 𝑆𝜒 can also be interpreted as a reflection about the |𝑥⟩
vector, it can be represented with a Hourseholder matrix:

𝑆𝜒 = 𝑈𝑥 B 𝐼𝑛 − 2 |𝑥⟩ ⟨𝑥 | (11)

where 𝐼𝑛 ∈ C2
𝑛×2𝑛

is the identity matrix. Clearly, 𝑆𝜒 is

unitary and thus it is a proper quantum operator;

(2) after that, the operator G maps each of the amplitudes 𝑎𝑖 to

their reflection about the average of all the amplitudes of the

state:

𝑎𝑖 { 2

(∑𝑁−1
𝑗=0 𝑎 𝑗

𝑁

)
− 𝑎𝑖 (12)

Once again, the operation can be represented as a reflection
3
,

usually referred to as the diffusion operator :

−𝑈+ = −W𝑛 𝑈0W𝑛 = W𝑛

(
2 |0⟩⊗𝑛 ⟨0|⊗𝑛 − 𝐼𝑛

)
W𝑛 (13)

Combining all the steps, the Grover Operator can be written as

follows:

G B −W𝑛 𝑈0W𝑛 𝑆𝜒 (14)

1.1.3 Quantum Counting. Exactly as in the Quantum Search prob-

lem setting, let 𝜒 be an 𝑛-ary boolean function and let 𝑋 be the

set of solutions to the equation 𝜒 (𝑥) = 1. The Quantum Counting
problem is concerned with evaluation the size of the solution set—

𝑀 B |𝑋 |. Let 𝑆𝜒 be a quantum oracle that implements 𝜒 using 𝑛 +1
qubits.

Now consider the Grover Operator G that uses 𝑆𝜒 as an oracle:

since it represents a rotation of an angle 𝜃 in the space spanned by

|𝛼⟩ and |𝛽⟩, it must have two eigenvectors |𝑎⟩, |𝑏⟩ that lie in the

same subspace. Therefore, the vector |+⟩⊗(𝑛+1) can be expressed

as a linear combination of |𝑎⟩ and |𝑏⟩:

|+⟩⊗(𝑛+1) = 𝑐𝑎 |𝑎⟩ + 𝑐𝑏 |𝑏⟩ (15)

where 𝑐𝑎 and 𝑐𝑏 are complex coefficients. Observe what follows:

• due to Equation 15, |+⟩⊗(𝑛+1) can be regarded as a superpo-

sition of the states |𝑎⟩ and |𝑏⟩;
• in turn, this implies that if such a state is fed into the Phase

Estimation algorithm, the circuit behaves linearly and pro-

duces thus in output digits that are either from the eigen-

value associated to |𝑎⟩ or from the one associated to |𝑏⟩, with
probabilities related to 𝑐𝑎 and 𝑐𝑏 respectively;

2
A probability greater than 1/2 is usually required.

3
Observe that since |+⟩⊗𝑛 =W𝑛 |0⟩⊗𝑛 , the operator −𝑈+ can also be regarded as a

reflection about the initial state of the system, which is defined by Equation 9.

• since |𝑎⟩ and |𝑏⟩ are the eigenvectors of a rotation, their

associated eigenvalues can be respectively written as 𝑒𝚤𝜃 and

𝑒𝚤 (2𝜋−𝜃 ) . This means that estimating any of the two allows

to easily retrieve the value of 𝜃 .

Eventually, the value of𝑀 can be computed as follows:

𝑀 B 2𝑁 sin
2
𝜃

2

(16)

1.2 Answer Set Programming
In this section we introduce all the definitions related to ASP that

are required throughout the paper. The reader may refer to [8] for

further details.

Logic Programming is a declarative programming paradigm whose

foundations stemmed from formal logic. In particular, logic pro-

grams are used in the fields of knowledge representation and auto-
mated reasoning. Logic programs are built on top of 5 main ingredi-

ents:

• a finite set 𝐶 of constants;
• a finite set 𝑉 of variables;
• a finite set 𝐹 of functions;
• a finite set 𝑃 of predicates;
• a function ar : 𝐹 ∪ 𝑃 ↦→ N+, known as the arity of both

functions and predicates.

By combining elements from the sets 𝐶 , 𝑉 , and 𝐹 , terms can be

built:

• each constant 𝑐 ∈ 𝐶 and each variable 𝑣 ∈ 𝑉 is a term;

• if 𝑡1, . . . , 𝑡𝑛 are terms and 𝑓 ∈ 𝐹 is a function such that

ar(𝑓 ) = 𝑛, then 𝑓 (𝑡1, . . . , 𝑡𝑛) is also a term.

A term with no variables is said to be ground.
An atomic formula—or, for short, an atom—is an object of the

form:

𝑝 (𝑡1, . . . , 𝑡𝑛) (17)

where 𝑡1, . . . , 𝑡𝑛 are terms and 𝑝 ∈ 𝑃 is a predicate such that ar(𝑝) =
𝑛. An atom is said to be ground if it is built using only ground terms.

Moreover, we call literal an atom or the negation of an atom.

A rule 𝜌 is a syntactic object that can be expressed as follows:

𝛼 ← 𝛽1, . . . , 𝛽𝑛,¬𝛾1, . . . ,¬𝛾𝑚 (18)

where 𝛼 , 𝛽𝑖 , and 𝛾 𝑗 are all atoms. We usually refer to 𝛼 as the head
of the rule, and to 𝛽1, . . . , 𝛽𝑛,¬𝛾1, . . . ,¬𝛾𝑚 as the body. Some special

kind of rules are allowed:

• a fact is a rule whose body is empty (i.e. 𝑛 =𝑚 = 0);

• a denial is a rule without a head;
• a rule whose body does not contain any negated atom (i.e.

𝑚 = 0) is called a definite clause4.
A simultaneous substitution of every variable occurring in a rule

𝜌 with a ground term produces a ground instance of 𝜌 . Notice that
each rule may have several ground instances. A logical program Π
is a finite set of rules. In analogy to rules, a program is said to be

definite if it contains only definite clauses. The ground instance of
a program Π is the program defined as the union – for every rule

𝜌 ∈ Π – of all the possible ground instances of 𝜌 .

The semantics of a logic program Π is defined with respect to

a given set U—called universe—of objects. An interpretation is an

4
Definite clauses are also known as Horn clauses in the literature.
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assignment that binds some values to constants, functions, and

relations. Let 𝐼 be an interpretation for Π. 𝐼 is referred to as a model
if it satisfies the logical meaning of all the rules 𝜌 ∈ Π. Thanks to
Theorem 1.2, we can however limit ourselves to Herbrand universes

and interpretations. In particular, fixed a program Π:

• itsHerbrand universeUΠ is the set of all the ground instances

of the terms that occur in Π;
• an Herbrand interpretation is an interpretation for Π inUΠ .

Herbrand interpretations that are also models of Π are called

Herbrand models.

Theorem 1.2 (Herbrand Fundamental Theorem). Let 𝑇 be
a conjunction of clauses. Then 𝑇 has a model if and only if it has a
Herbrand model.

For convenience, we can also define the Herbrand base 𝐵Π of a

program Π:
𝐵Π B {𝛼 : 𝛼 is a ground atom} (19)

Observe that any 𝐼 ⊆ 𝐵Π is a Herbrand interpretation for Π.
The whole point of Logical Programming is being able to com-

pute logical consequences of programs that encode knowledge

about some application domain. However, it is not always so easy

to perform such task.

If we restrict ourselves to definite programs, the following lemma

provides the foundations for being able to compute logical conse-

quences:

Lemma 1.3. Let Π be a definite program, and let 𝐼1 and 𝐼2 be two
Herbrand models of Π. Then 𝐼1 ∩ 𝐼2 is also a model of Π.

Proof. Let 𝛼 ← 𝛽1, . . . , 𝛽𝑛 be a ground instance of a definite

clause 𝜌 ∈ Π, and assume that {𝛽1, . . . , 𝛽𝑛} ⊆ 𝐼1 ∩ 𝐼2. Then,

{𝛽1, . . . , 𝛽𝑛} ∈ 𝐼1 and {𝛽1, . . . , 𝛽𝑛} ∈ 𝐼2. Since both 𝐼1 and 𝐼2 are

models of Π, it holds that 𝛼 ∈ 𝐼1 and 𝛼 ∈ 𝐼2. Thus, 𝛼 ∈ 𝐼1 ∩ 𝐼2. □

Corollary 1.4. If Π is a definite program, then it has a minimum
Herbrand model𝑀Π that is the intersection of all its models.

Unfortunately, Lemma 1.3 does not hold in the case of general
programs, i.e. programs that have rules that are not definite clauses.

To address this problem, the completion of a program can be com-

puted by replacing implications with double implications. Moreover,

the set 𝐵Π can be partitioned into three subsets 𝐼+Π, 𝐼
−
Π , 𝑅, where:

• 𝐼+Π contains all the atoms that belong to every model of the

completion;

• 𝐼−Π that is made of all the atoms that do not belong to any

model of the completion;

• 𝑅 defined as 𝐵Π \
(
𝐼+Π ∪ 𝐼

−
Π

)
.

We call well-founded model the pair ⟨𝐼+Π, 𝐼
−
Π ⟩. Notice that it can be

computed in polynomial time with respect to the size of the ground

instance of the input program Π. Then, either one of the following
two cases applies:

• if 𝐼+Π ∪ 𝐼
−
Π = 𝐵Π , then the well-founded model identifies the

unique, minimum model of Π;
• otherwise, the well-founded model represents some sort of

“partial” model of Π.

In order to deal with the possibility of having multiple plausible

interpretations, the notion of stable model semanticswas introduced.

Definition 1.5 (Gelfond-Lifschitz reduct). The Gelfond-Lifschitz
reduct Π𝑆

of the (ground) program Π with respect to a candidate
model 𝑆 ⊆ 𝐵Π can be computed by applying the following transfor-

mations to Π:

(1) first, all the rules 𝜌 ∈ Π whose body contains an occurrence

of a literal of type ¬𝛼 such that 𝛼 ∈ 𝑆 are removed;

(2) after that, any other negated literal is removed from the

remaining rules’ bodies.

Observe that for any Π and for any 𝑆 ⊆ 𝐵Π , Π
𝑆
is a definite

program, and thus it has a minimum model𝑀Π𝑆 . We say that 𝑆 is

a stable model – or, equivalently, an answer set – of Π if and only if

the following condition holds:

𝑆 = 𝑀Π𝑆 (20)

More in general, a candidate model 𝑆 ⊆ 𝐵Π is a stable model of the

program Π if it is a stable model of its ground instance. We denote

by AS(Π) the set that contains all the stable models of Π.

Example 1.6. Consider the following (ground) program:

Π B {𝑝 ← ¬𝑞, 𝑞 ← ¬𝑝, 𝑟 ← 𝑝, 𝑟 ← 𝑞} (21)

In addition, consider the candidate model 𝑆 B {𝑝, 𝑟 }. Let’s now
test whether 𝑆 ∈ AS(Π) by applying the definition:

(1) the reduct of Π with respect to 𝑆 is Π𝑆 B {𝑝, 𝑟 ← 𝑝, 𝑟 ← 𝑞};
(2) the unique minimum model of Π𝑆

is𝑀Π𝑆 B {𝑝, 𝑟 };
(3) since 𝑆 = 𝑀Π𝑆 , we can conclude that 𝑆 ∈ AS(Π).

Now consider another candidate model 𝑆 ′ B {𝑝, 𝑞, 𝑟 }, and apply

the same procedure:

(1) the reduct with respect to 𝑆 ′ is Π𝑆 ′ B {𝑟 ← 𝑝, 𝑟 ← 𝑞};
(2) the unique minimum model of the reduct is 𝑀Π𝑆′ B ∅;
(3) since 𝑆 ′ ≠ 𝑀Π𝑆′ , we can conclude that 𝑆 ′ ∉ AS(Π).

□

Remark. The term Answer Set Programming—often shortened as

ASP—refers to all those Logic Programming techniques whose goal

is to compute the stable models of a program given in input. On the

other hand, languages like Prolog, allow the use also of non definite

programs, but negation is interpreted as negation as failure.

2 ANSWER SET PROGRAMMING VIA
QUANTUM COMPUTATION

Before delving into the description of both the algorithms in [7, 14,

19] and our original proposal, we want to briefly recall their key

aspects.

In [7] the authors proposed a graph-based classical algorithm

to find the stable models of an ASP program. The same problem

was solved in [14] but with a quantum algorithm. In this case, the

authors proposed a Grover-based quantum technique to find stable

models.

A different question was answered in [19]: given a propositional

logic formula 𝜙 , we want to count in aweighted manner the number

of interpretations that satisfy 𝜙 .

Hence, our proposal stands somehow in the middle between [7]

and [19]. An issue in [7] is that one of the best quantity to guide

the graph visit is computationally hard to determine. Therefore,

we devise a Quantum Algorithm, based on the proposal of [19], to

4
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compute such quantity with a quadratic speed up with respect to

any classical approach.

2.1 Stable Models via Grover Operator [14]
In [14], the authors proposed a quantum algorithm to both find and

count stable models of an ASP program. Their approach was based

on a quantum phase-flip oracle O capable of identifying stable

models. Such oracle O was then plugged into a Grover Operator

and they let the search algorithm do the trick. Roughly speaking,

the steps performed by the algorithm are as follows:

(1) It initializes an equiprobable superposition of all the inter-

pretations 𝑆 ⊆ 𝐵Π
(2) The superposition is run through O. The result is that all

the states that represent a desired solution—a stable model

𝑆 ∈ 𝐴𝑆 (Π)—are marked with a phase-flip.

(3) The state is then fed into the diffusion operator, whose aim

is to increase the amplitude of the solutions marked by the

oracle. Simultaneously, amplitudes of the unmarked states

are reduced

(4) The two previous steps are iterated until a the probability of

the desired states is high enough—greater than 1/2.

This kind of approach almost mimics what in classical computa-

tion would be called bruteforce. Despite Grover algorithm quadratic

speedup is undeniable, it also holds that a lot of real-world problems

can be solved using vary effective heuristics [4].

Hence, the aim of this paper is to study variations of the Grover

Algorithm in order to apply this modified version to some ASP-

related problems. As stated in the introduction, our goal is not to

provide some groundbreaking results about both Quantum Com-

putation and ASP. On the other hand, what we want to show is

that some natural overlaps are present in the literature. These kind

of overlaps should encourage authors from different areas to work

alongside.

2.2 Weighted Count of Propositional Models
[19]

TheWeightedModel Counting (QMC) problem has been introduced

in [19], where a quantum algorithm for solving it has also been

proposed.

Roughly speaking, the aim is to solve a tweaked version of a

counting problem. Tweaked in the sense that some in the overall

counting some elements are heavier than others.

Let𝜙 be a propositional logic formula over a set𝐿 of propositional

letters and let 𝑛 := |𝐿 |. Let ≺ be some strict total order over the

elements of 𝐿:

𝐿 = {𝑙1, 𝑙2, · · · 𝑙𝑛} 𝑤ℎ𝑒𝑟𝑒

𝑙1 ≺ 𝑙2 ≺ 𝑙3 ≺ · · · ≺ 𝑙𝑛

For each 𝑆 ⊆ 𝐿, let en(𝑆) := 𝑠1𝑠2 · · · 𝑠𝑛 be the 𝑛−symbol binary

string such that 𝑠𝑖 = 1 if and only if 𝑙𝑖 ∈ 𝑆 . We refer to en(𝑆) as
the encoding of 𝑆 . With respect to such encoding, let 𝜒 : {0, 1}𝑛 →
{0, 1} be the following function:

𝜒 (en(𝑆)) :=
{
1 if 𝜙 (𝑆) = 1

0 otherwise

(22)

Moreover, let𝑤 : {1, 2, · · ·𝑛} × 0, 1→ R≥0 be a weight function
for 𝜒 . Informally,𝑤 (𝑖, 𝑏) is theweight of setting the 𝑖-th input of 𝜒 to
the value 𝑏. The cumulative weight𝑊𝑥 of some encoding 𝑥 := en(𝑆)
is defined as follows:

𝑊𝑥 =

𝑛∏
𝑖=1

𝑤 (𝑖, 𝑥𝑖 )

The reader may notice that, considering the Search Problem

associated to 𝜒—finding those en(𝑆) for which the result is one—

the function𝑤 can be regarded as a way to express some preference
on the elements of the search space.

TheWeighted Model Counting problem is the evaluation of the

following quantity:

WMC(𝜒,𝑤) :=
∑︁

𝑥 :𝜒 (𝑥 )=1
𝑊𝑥

As the name suggests, this problem is a weighted variation of

the problem of counting all the solutions of a Search Problem.

In [19], authors proposed a variation of the Quantum Count-

ing circuit to solve WMC. The core idea was to replace the the

Hadamard gates of the Quantum Counting Circuits, with a generic

Rot gate that mimic the behaviour of the weight function𝑤 .

Let 𝑆𝜒 be the quantum phase-flip oracle that implements the

boolean function 𝜒 , as defined in 22. For sake of readability, we will

consider and explain the case where the weights are normalized:

𝑤 (𝑖, 0) +𝑤 (𝑖, 1) = 1 ∀𝑖 = 1, 2, · · ·𝑛
The reader may refer to [19] for the discussion about the un-

normalized case. Since each weight𝑤𝑖 encodes some kind of pref-

erence for the 𝑖-th bit being set to 1, we would like the gate Rot
to relate each 𝑤𝑖 to the probability of measuring a 1 on the cor-

responding qubit. Formally speaking, the gate Rot must initialize

each qubit to the following state:

|𝜓𝑖 ⟩ =
√
1 −𝑤𝑖 |0⟩ +

√
𝑤𝑖 |1⟩

In [19], it has been shown that this can be achieved by performing

a rotation 𝑅𝑦 of an angle 𝜃𝑖 defined as follows:

𝜃𝑖 = 2 arccos

√
1 −𝑤𝑖 = 2 arcsin

√
𝑤𝑖

Joining the effect of the rotation on each qubit, the operator Rot
is defined as:

Rot :=

(
𝑛⊗
𝑖=1

𝑅𝑦 (𝜃𝑖 )
)
⊗ H

where the rightmost Hadamard gate has been added to account

for the number of solutions—we do not know if the number𝑀 of

solutions to the problem is larger or smaller than half of the size

𝑁 = 2
𝑛
of the search space.

This operator is then used to define the so calledWeighted Grover
Operator :

𝐺𝑤 = −Rot𝑈0 Rot 𝑆𝜒
To prove the overall behaviour of their algorithm, the authors

in [19] started by noticing that it is indeed possible to write two

orthonormal vectors |𝛾⟩ and |𝛿⟩ such that the following hold:

• |𝜓 ⟩ := Rot |0⟩⊗(𝑛+1) can be expressed as a linear combination

of these two vectors

• 𝐺𝑤 is a rotation of an angle 𝜃 in the space spanned by |𝛾⟩
and |𝛿⟩
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What they obtained is that using Phase Estimation to estimate 𝜃

actually solves WMC, since:

WMC(𝜒,𝑤) :=
∑︁

𝑥 :𝜒 (𝑥 )=1
𝑊𝑥 = 2 sin

2
𝜃

2

2.3 Classically navigating Stable Models [7]
Fichte, Gaggl, and Rusovac presented in [7] a novel approach to the

navigation of the solution space of an ASP program.

Given an ASP program Π such that AS(Π) denotes the set of
all its stable models, we call:

• BC(Π) B ⋃AS(Π) the set of Π’s brave consequences;
• CC(Π) B ⋂AS(Π) the set of its cautious consequences.

Roughly speaking, the brave consequences of Π are all the atoms

that appear in some of its stable models, while the cautious conse-

quences are those that occur in all of them. The set of facets of Π is

then defined as follows:

F (Π) B F + (Π) ∪ F − (Π) (23)

where:

F + (Π) B BC(Π) \ CC(Π)
F − (Π) B

{
𝛼 : 𝛼 ∈ F + (Π)

}
An interpretation 𝑆 ⊆ 𝐵Π for Π is said to satisfy an inclusive facet

𝛼 ∈ F + (Π) if 𝛼 ∈ 𝑆 . Symmetrically, 𝑆 is said to satisfy an exclusive
facet 𝛼 ∈ F − (Π) if 𝛼 ∉ 𝑆 . We denote by 𝑖𝑐 (𝑓 ) the singleton ASP

program that contains the integrity constraint
5
corresponding to

the facet 𝑓 ∈ F (Π):

𝑖𝑐 (𝑓 ) B
{
{← ¬𝛼} if 𝑓 is an atom 𝛼

{← 𝛼} otherwise

(24)

Let Π be an ASP program. The result of the activation of a facet

𝑓 ∈ F (Π) is the program Π′ defined as:

Π′ B Π ∪ 𝑖𝑐 (𝑓 ) (25)

We say that the activation of 𝑓 denotes a navigation step from Π to

Π′. Observe that recursively applying different navigation steps to

a program Π produces a graph-like structure, which we may wish

to navigate. In order to do so, a finite sequence 𝛿 B ⟨𝑓1, . . . , 𝑓𝑘 ⟩ of
facets defines a route, and denotes an ordered sequence of naviga-

tion steps from an initial program Π. Notice that faceted navigation
is possible as long as F (Π) ≠ ∅. As a consequence, we are usually
interested in identifying a set of safe routes, which we denote by:

ΔΠ
𝑠 B

{
𝛿 ∈ ΔΠ

: AS(Π𝛿 ) ≠ ∅
}

(26)

where ΔΠ
is the set of all possible routes on Π, and Π𝛿 B Π ∪

𝑖𝑐 (𝑓1) ∪ · · · ∪ 𝑖𝑐 (𝑓𝑘 ), with 𝛿 B ⟨𝑓1, . . . , 𝑓𝑘 ⟩. In [7], the authors

define two navigation modes, i.e. functions that prune the solution
space according to some strategy that involves routes and facets.

Intuitively:

• goal-oriented navigation aims to narrow down the solution

space until a unique solution is found;

5
An integrity constraint is a rule with an empty head.

• free navigation does not follow any particular strategy: it

allows following unsafe routes, which can be redirected if

F (Π) eventually becomes empty.

In addition, the authors also propose a weighted navigation variant:

since the effect of activating a facet is basically unknown before-

hand, they suggest to associate a weight to each facet in order to

characterize the extent to which activating said facet affects the

size of the solution space. Intuitively, weight functions can be used

to guide the faceted navigation process in a meaningful manner.

2.4 Speeding up Stable Models navigation with
QuantumWMC

Among the different weight functions that Fichte, Gaggl, and Ruso-

vac considered and evaluated in [7], we take as example Absolute
Weight, defined as follows

6
:

𝑤
#AS (𝑓 ,Π𝛿 ) B |AS(Π𝛿 ) | − |AS(Π⟨𝛿,𝑓 ⟩) | (27)

The authors showed that𝑤
#AS is really effective when used to

guide the navigation
7
. Unfortunately, computing absolute weights

is #coNP-complete [7].
As original contribution of this paper, we now show how Quan-

tumWMCcan be used to compute absoluteweightswith a quadratic

speed up over any classical method. Let Π be an ASP program such

that 𝑛 B |𝐵Π |, and let 𝛿 B ⟨𝑓1, . . . , 𝑓𝑘 ⟩ ∈ ΔΠ
be a route for Π. Our

goal is to estimate the following quantity:

𝑀𝛿 B |AS(Π𝛿 ) | (28)

Being able to solve such problem would result in a simple technique

to compute the weight𝑤
#AS (𝑓 ,Π𝛿 ) through Equation 27.

Let 𝜒 : {0, 1}𝑛 ↦→ {0, 1} be a boolean function that outputs a 1 if

and only if its input is a binary string that encodes a stable model

of Π, and let 𝑆𝜒 be a quantum phase-flip oracle for 𝜒 . Now consider

the weight function𝑤 defined as follows:

𝑤 (𝑖, 1) B


1 if ∃ 𝑗 = 1, . . . , 𝑘 𝑓𝑗 = 𝛼𝑖

0 if ∃ 𝑗 = 1, . . . , 𝑘 𝑓𝑗 = 𝛼𝑖

1/2 otherwise

∀ 𝑖 = 1, . . . , 𝑛 (29)

and set each 𝑤 (𝑖, 0) so that 𝑤 is normalized. Let 𝑆 ⊆ 𝐵Π be an

interpretation forΠ and 𝑒𝑛(𝑆) be its binary encoding. The following
observations can be done:

• if 𝑆 ∉ AS(Π𝛿 ), then either one of the following two cases

applies:

– 𝛿 contains an inclusive facet 𝑓𝑗 = 𝛼𝑖 such that 𝛼𝑖 ∉ 𝑆 .

This means that 𝑤 (𝑖, 1) = 1 and 𝑤 (𝑖, 0) = 0. But since

𝛼𝑖 ∉ 𝑆 by hypothesis, then the 𝑖-th bit of 𝑒𝑛(𝑆) is 0 and
thus𝑊𝑒𝑛 (𝑆 ) = 0;

– otherwise, 𝛿 contains an exclusive facet 𝑓𝑗 = 𝛼𝑖 such that

𝛼𝑖 ∈ 𝑆 . In this case 𝑤 (𝑖, 1) = 0, and since the 𝑖-th bit of

𝑒𝑛(𝑆) is 1 by hypothesis then again𝑊𝑒𝑛 (𝑆 ) = 0.

6
The actual definition of 𝑤

#AS that the authors show in their article is a bit more

complex, as it needs to account for “fallback” routes in the case ⟨𝛿, 𝑓 ⟩ is not a safe
route. For simplicity, we ignore here the added complexity that derives from this fact.

7
Fichte, Gaggl, and Rusovac proved in [7] that 𝑤

#AS enjoys a list of properties that

they define in order to compare several weight functions.

6
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• if, instead, 𝑆 ∈ AS(Π𝛿 ), then𝑊𝑒𝑛 (𝑆 ) = 1
𝑘 · (1/2)𝑛−𝑘 , where

𝑘 is the number of facets of the route 𝛿 . Notice that 𝑘 does

not depend on 𝑆 .

Therefore, applying the quantum circuit for Weighted Model Count-

ing that we analyzed in Section 2.2 produces the following result:

WMC(𝜒,𝑤) B
∑︁

𝑆∈AS(Π)
𝑊𝑒𝑛 (𝑆 ) = |AS(Π𝛿 ) | ·

(
1
𝑘 · (1/2)𝑛−𝑘

)
(30)

Thus,𝑀𝛿
can be retrieved using the following equality:

𝑀𝛿 B |AS(Π𝛿 ) | = WMC(𝜒,𝑤)(
1
𝑘 · (1/2)𝑛−𝑘

) = 2
𝑛−𝑘 ·WMC(𝜒,𝑤) (31)

. . .

. . .

. . .

. . .

. . .

. . .

|0⟩ W𝑡 𝑄𝐹𝑇 −1

|0⟩ 𝑅𝑜𝑡 G20𝑤 G21𝑤 G2𝑡−1𝑤

Figure 1: Circuit implementing the Quantum Weighted
Model Counting algorithm.

In Figure 1 we depicted a quantum circuit solving the WMC

problem. The result of such circuit is a key ingredient to compute

|AS(Π𝛿 ) |.
Example 2.1. To clarify the definition of 𝑤 from Equation 29,

reconsider the programΠ fromExample 1.6. In addition, let 𝛿 B ⟨𝑝⟩,
and observe that AS(Π𝛿 ) = {{𝑝, 𝑟 }}. According to the definition

and assuming 𝑝 ≺ 𝑞 ≺ 𝑟 – i.e. 𝑝 corresponds to the first bit, 𝑞 to

the second one, and 𝑟 to the third one – the weight function𝑤 is

defined as follows:

𝑤 (1, 0) B 0 𝑤 (2, 0) B 1/2 𝑤 (3, 0) B 1/2
𝑤 (1, 1) B 1 𝑤 (2, 1) B 1/2 𝑤 (3, 1) B 1/2 (32)

In Section 3, we show an implementation of the 𝑅𝑜𝑡 gate that

uses the weight function from Example 2.1, with the aim of counting

the stable models of Π𝛿
.

3 IMPLEMENTATION
In this section we briefly describe the implementation we provide

for the aformentioned algorithms. Our code is written in Python

and it is publicly available on GitHub at the following address:

https://github.com/davidedellagiustina/qasp-solver

The code is extensively documented and the README.md file in
the repository reports detailed build and execution instructions.

Hence, in this section we focus on explaining which examples have

been implemented.

3.1 Running the Examples
As previously mentioned, our GitHub repository also contains some

examples, which can be found in the folder ./src/examples. In
order to run them, the command runner just can be used.

# Install `just' command runner (Ubuntu)
snap install --edge --classic just

# List of commands that `just' can run
just -l

Examples can be listed and run using the following commands:

# List all the available examples
just list

# Run the example <example_name>
just run <example_name>

The paragraphs that follow briefly explain the purpose of each

example. Additionally, in each file, the head of the file is allocated

to explain which ASP program has been taken into account for that

particular example

3.1.1 grover_search_known_m. This example demonstrates how

to use a plain implementation of the Grover Search algorithm to

find one of the stable models of Π. In order to compute the optimal

number of iterations needed to maximize the probability of measur-

ing a correct solution, we assume here to know a priori the number

𝑀 of answer sets of the considered program.

3.1.2 quantum_counting. Elaborating on the previous example,

we show here how to use the Quantum Counting circuit in order

to estimate the value of 𝑀 . However, observe that using 𝑚 B
⌈𝑛/2⌉ + 1 = 3 in this case provides a very inaccurate estimate for

the desired value.

Remark. As we already discussed, the raw output of the Quantum

Counting algorithm is an estimate of an angle 𝜑 to𝑚 binary digits

that is correct with probability 1 − 𝜀. Aside from the probability of

success of the algorithm, observe that stating that 0.𝜑0 . . . 𝜑𝑚−1 is
an estimate for 𝜑 up to the𝑚-th binary digit is equivalent to the

following:

0.𝜑0 . . . 𝜑𝑚−1000 . . . ≤ 𝜑 ≤ 0.𝜑0 . . . 𝜑𝑚−1111 . . .

≡
0.𝜑0 . . . 𝜑𝑚−1 ≤ 𝜑 < 0.𝜑0 . . . 𝜑𝑚−1 + 2−𝑚

(33)

This is why our implementation outputs an interval for𝑀 , instead

of a point estimate.

3.1.3 quantum_counting_advanced. In order to improve the ac-

curacy of the estimate in the previous example, we show here the

same algorithm but with an increased value of𝑚 B 5. While the

circuit takes significantly longer to simulate, the results are clearly

better. In this case, the algorithm correctly identifies (with proba-

bility at least 1 − 𝜀 = 5/6) that the considered ASP program has 2

stable models.

3.1.4 oracle_construction. This example shows an application

of the Grover Search algorithm to the resolution of an ASP program

7
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where the oracle is built by implementing the classical procedure

that checks whether a given interpretation is a stable model or not.

3.1.5 quantum_faceted_navigation. This example implements

an instance of the quantum circuit that solves Weighted Model

Counting—as presented in [19]—to count the number of stable

models of an ASP program during faceted navigation of its solution

space. In particular, the gate 𝑅𝑜𝑡 is built by instantiating the weight

function shown in Example 2.1.

3.1.6 grover_search_unknown_m. As the name suggests, this is a

variation of the example grover_search_known_m where we addi-

tionally assume that the number𝑀 of stable models of the program

Π is not known in advance, but we still want to find one of its stable

models.

3.1.7 embedded_heuristic. While quantum_faceted_navigation
exploits an instance of the 𝑅𝑜𝑡 gate to approximately count the sta-

ble models of an ASP program Π during faceted navigation of its

solution space, this example shows how to use the same instance

of 𝑅𝑜𝑡 in order to also find (one of) those stable models.

In our code, we demonstrate the functioning of the techniques

presented on some toy examples. Given the computational complex-

ity of the problems addressed, scalability will remain a bottleneck

nonetheless.

4 CONCLUSIONS AND FUTUREWORKS
In this paper we addressed the possible improvement that could

be obtained by speeding up Answer Set Programming using Quan-

tum Computation. We started by presenting all the required back-

grounds in both Quantum Computation and Answer Set Program-

ming. After that we delved into the proposals from [7, 14, 19] by

explaining their internals and we addressed one of the problems de-

scribed of [7], i.e., the computation of guiding functions. In order to

speed up this particular process, we proposed a QuantumAlgorithm

built upon a tweaked version of the quantum algorithm proposed

in [19] to solve WMC. We also presented an implementation of our

result.

As stressed before, in this paper we showed how Quantum Com-

putation could help Answer Set Programming. The other way round

is possible too. In fact, in works like [17, 18] Answer Set Program-

ming is used as a technique to tackle Quantum related problems. In

that particular case, the issue was the synthesis of CNOT-minimal

quantum circuits. Hence, a double link connection, as proposed in

[20], is actually a path worth following.

In the future, we are interested in an in depth analysis of quantum

algorithms for solving ASP related problems, to show how the two

disciplines can co-exists.
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