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Over the years, the humanities community has increasingly requested the creation of artificial intelligence
frameworks to help the study of cultural heritage. Document Layout segmentation, which aims at
identifying the different structural components of a document page, is a particularly interesting task
connected to this trend, specifically when it comes to handwritten texts. While there are many effective
approaches to this problem, they all rely on large amounts of data for the training of the underlying
models, which is rarely possible in a real-world scenario, as the process of producing the ground truth
segmentation task with the required precision to the pixel level is a very time-consuming task and often
requires a certain degree of domain knowledge regarding the documents at hand. For this reason, in the
present paper, we propose an effective few-shot learning framework for document layout segmentation
relying on two novel components, namely a dynamic instance generation and a segmentation refinement
module. This approach is able of achieving performances comparable to the current state of the art on
the popular Diva-HisDB dataset, while relying on just a fraction of the available data.

Keywords: Document layout segmentation ; Few-shot learning ; Image segmentation ; Handwritten
documents analysis ; Layout analysis

1. Introduction

During the last few decades, many libraries and

archives have focused their activities on ensuring

worldwide access to their cultural heritage docu-

ments in digital form. Consequently, many challenges

and open issues have been raised by researchers, his-
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torians, humanists, and computer scientists working

on cultural heritage documents to optimize the man-

agement, navigation, and analysis of digitized docu-

ment images 1.

In DIA, two main types of analysis can be high-

lighted. The first one is Optical Character Recogni-

tion (OCR), used to derive the meaning of the doc-

ument characters and words, and the other is layout

analysis to determine the formatting of the document

page and text. These tasks may be performed sepa-

rately, or the results from one analysis may be used

to aid or correct the other 2.

OCR lies at the core of the discipline of pattern

recognition where the objective is to understand and

recognize language characters from different idioms,

either handwritten or printed 3; 4. The goal of OCR

is to detect the characters contained in a document

image and to transfer these into digital text.

Layout analysis is the process of identifying and

recognizing the physical and logical organization and

structure of document images 5; 6. Document layout

analysis includes three main tasks each with a spe-

cific purpose and which leads to the study of different

characteristics of the document. These three key sub-

processes of layout analysis are page segmentation,

text line segmentation and baseline detection.

Page segmentation is a prerequisite step of DIA.

Page segmentation is the process that segments the

document images into different semantically mean-

ingful regions like main text, paratexts, decorations

and background. In particular, the page segmenta-

tion of historical manuscripts allows humanists to

study documents more quickly and easily because it

allows the paratexts (i.e all the semantic elements

which are part of the foreground but don’t belong to

the main text) to be analyzed separately.However,

performing this task in historical manuscripts is

much more difficult than in printed documents 7, due

to many variations, such as layout structure, decora-

tion, different writing styles, texture, and degrada-

tion.

Text line segmentation aims at identifying the

areas in the document corresponding to each text

line. Text line extraction is one of the previous stages

of the OCR and document transcription process 8.

Finally, baseline detection is the task that has

the objective of identifying in the document image

the virtual line where characters of the text rest upon

and descenders extend below 9.

So, the tasks of document image layout anal-

ysis refer to the segmentation of a given document

image into semantically meaningful regions, such as

main text, paratexts, decorations, and background

or even the detection of individual baseline or text

lines 10.

In recent years many machine learning and deep

learning algorithms have been used to perform this

task and there are many fields in which it is applied

to the real context. For example, it is widely used

for the problem of anomaly detection in visual in-

spection in industrial production, biomedical image

analysis or infrastructure defects 11–14. Further deep

learning models for semantic segmentation are used

for autonomous driving, identifying obstacles such as

pedestrians, sidewalks, poles, and other cars 15.

Machine learning and deep learning models for

semantic segmentation have also been used to per-

form the task of layout analysis in historical docu-

ments 5 and especially in our work to perform page

segmentation.

In order to develop machine learning and deep

learning-based approaches and compare the perfor-

mance of different segmentation methods, ground

truth is needed. For ground truth to be suitable for

training accurate deep learning models, the anno-

tation of the segmentation masks must be as pre-

cise as possible down to the pixel level 16. The dis-

advantage is that the pixel-precise annotation of

the entire historical document page dataset is a

very time-consuming process and requires domain-

specific knowledge, which only an expert humanist

can satisfy, especially when working with histori-

cal manuscripts 17, making this type of information

rarely available in a real-world scenario. Nonetheless,

few-shot learning approaches in the context of docu-

ment layout segmentation are still under-explored in

the literature.

For this reason, in the present work, which ex-

tends earlier work 18, we propose a novel few-shot

learning framework for efficient pixel-precise page

segmentation of historical manuscripts, which is able

to accurately segment the different component of a

document page (e.g. text, paratext, images) achiev-

ing results comparable to the current state-of-the-

art approaches on the popular Diva-HisDB dataset

(Fig. 1) while using only a fraction of the available

data for the training process.

The rest of the paper is organized as follows: in
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(a) CSG18 page (b) CSG863 page (c) CB55 page

(d) CSG18 detail (e) CSG863 detail (f) CB55 detail

Fig. 1: Samples from the three representative manuscripts (CSG18, CSG863 and CB55) present in DIVA-HisDB.

Fig. 1a– 1c show a full page for each manuscripts, while Fig. 1d– 1f show a detail extracted from each of them.

Section 2 we provide a review of the recent works in

the context of document layout analysis. Sections 3

and 4 contain a detailed description of the proposed

framework and the experimental setup used to train

and test it. Section 5 provides an in-depth descrip-

tion of the results achieved by our model, both from

a quantitative and a qualitative perspective. Finally,

in Section 6, the conclusions are drawn.

2. Related Works

Different approaches have been proposed to tackle

the DIA tasks, especially for historical manuscripts.

In general, several surveys have been created con-

cerning the DIA tasks for both ancient and recent

documents, both printed and handwritten 19; 20. But

the proposed solutions for DIA tasks in ancient hand-

written documents are few.

Page segmentation, which is the task that we ad-

dress in this work, is an open problem in the machine-

learning community. The techniques employed for

this task are usually divided into three categories:

top-down, bottom-up and hybrid 19.

Top-down approaches assume that pages have a

well-defined structure and layout. The page segmen-

tation process starts from the whole page and cuts

it into homogeneous zones. In these methods, vari-

ous characteristics of the document page structure

are considered, such as white space between text re-

gions, size of text blocks and the measures between

main texts and paratexts 21; 22. In general, the top-

down methods are easily applicable but not suitable

for complex layouts such as handwritten historical

documents. In addition, these methods depend on

the layout structure of the document, so they have a

low generalization capability.

The bottom-up strategy derives document anal-

ysis dynamically from smaller granularity data lev-

els, such as pixels, groups of pixels and connected

components, to generate larger and different regions

with uniform elements 23; 20; 24. The main advan-

tage of bottom-up methods is that these techniques

do not require any prior knowledge of the document

layout structure, and, for this reason, this strategy

is preferred when working with ancient manuscripts.

However, usually, these techniques demand many la-

beled data that is often not available, especially in

the domain of historical documents where highly spe-

cialized expertise is needed. That is why the request

for methods with few-shot and unsupervised learning

is increasingly necessary and required.

Although research for this task is well estab-

lished, there are still many challenging issues that
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Fig. 2: Visual representation of the segmentation pipeline for the proposed framework. The green area represents

the processes carried out during the training phase, where each input image is split into 2 sets of patches: the

baseline patches, which are non-overlapping patches of size k × k providing a complete representation of the

original image and a set of C random crops which are extracted from random locations of the image at each

training epoch. These 2 sets of patches are then combined and given in input to the backbone segmentation

model which provides a predicted coarse segmentation map for each of them. These maps are compared with

the ground truth ones through the application of a weighted cross-entropy loss. At inference time the dynamic

instance generation step is removed while a segmentation refinement process is applied to the outputs of the

backbone architecture to obtain more precise segmentation maps

neither bottom-up nor top-down strategies can ade-

quately address. For this reason, a strategy has been

identified that derives from the integration of the

other two main ones, called the hybrid strategy 25; 26.

Over the years, many techniques have been used

to address the page segmentation task. Recently, [27]

proposed a learning-free and hybrid document layout

analysis for historical manuscripts. First, the pro-

posed method locates the main content initially us-

ing top-down white space analysis. Then, it extracts

template features representing the manuscripts au-

thor’s writing behavior. After that, moving windows

are used to scan the manuscript page and define

main-content boundaries more precisely. [28] used

a convolutional autoencoder to learn the features

directly from the pixel intensity values and train
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a Support Vector Machine (SVM) to segment the

page without any assumption of specific shapes of

document layouts. A similar approach was proposed

by [23] with the method based on learning texture

features. This method for extracting texture fea-

tures from images uses the linear iterative cluster-

ing of super-pixels, Gabor descriptors and the co-

occurrence matrix of the gray level. Then an SVM

is used to classify pixels into foreground and back-

ground. The page segmentation problem can ap-

proach as a pixel labeling problem such as the work

by [29], where the features are learned directly from

randomly selected image patches by using stacked

convolutional autoencoders. With an SVM trained

with the extracted features of the central pixels of

the super-pixels, an image is segmented into semantic

regions. Finally, the segmentation results are refined

by a connected components-based smoothing proce-

dure. Following the same idea, in [30] local features

are learned with stacked convolutional autoencoders

in an unsupervised manner for the purpose of initial

labeling. Then a conditional random field model is

applied for modeling the contextual information to

improve the segmentation results. Another interest-

ing approach was proposed by [31] with a multi-task

framework to solve all layout analysis tasks simul-

taneously. The model trains a multi-task fully con-

volutional network to predict pixel-wise classes and

as the final step a heuristic-based post-processing is

adopted to reduce noise and correct misclassification.

The prediction of the four branches was combined

to produce the result of layout analysis tasks. [26]

proposed a hybrid method for page segmentation

problems. In the first stage, the text and non-text

elements are classified by using a minimum homo-

geneity algorithm which is the combination of con-

nected component analysis and multilevel homogene-

ity structure. Then, in the second stage, a new ho-

mogeneity structure is combined with an adaptive

mathematical morphology in the text document to

get a set of text regions. [32] proposed a novel method

for document layout analysis that reduces the need

for labeled data. This method is a dictionary-based

feature learning model where a sparse autoencoder

is first trained in an unsupervised manner on a doc-

ument’s image patch. Then, the latent representa-

tion of image patches is then used to classify pixels

into various region categories of the document using

a feed-forward neural network. Also, [33] used the

patching of the document image to train a siamese

network model that takes an input a pair of patches

and gives as an output a distance that corresponds

to their similarity. The trained model is also used to

calculate a distance matrix which in turn is used to

cluster the patches of a page as either main text, side

text or a background patch. [34] tackle the problem

of the limited presence of annotated data by intro-

ducing the use of pre-trained segmentation models on

images from a different domain and then fine-tuning

them on historical handwritten documents. The re-

sults demonstrated that on some manuscripts pre-

training on ImageNet increases the performance, but

on others, the pre-trained network performs much

worse. Also [35] try to tackle the problem of the lim-

ited presence of ground truth by presenting an un-

supervised deep learning method for page segmen-

tation. In this work a Siamese neural network is

trained to differentiate between patches using their

measurable properties such as the number of fore-

ground pixels so that spatially nearby patches are

similar. The network’s learned features are used for

page segmentation. Finally, [36] propose the few-shot

learning approach Deep&Syntax to segment histori-

cal handwritten registers. Their work uses a hybrid

system that exploits recurring patterns to delimit

each record, combining U-shaped networks and logi-

cal rules such as filter and text alignment. While the

presented approaches have different degrees of effec-

tiveness when trying to solve the document layout

segmentation task, they all rely on large amounts

of data for their training. The main contribution we

bring with the present work is the ability to achieve

similar, or even better performance while relying on

just a fraction of the available data.

3. Proposed approach

The proposed approach is built on three core compo-

nents, namely a robust segmentation backbone used

to retrieve the semantic components of each docu-

ment page, a dynamic instance generation module

that allows us to fully leverage the limited amount

of data available at training time and finally a seg-

mentation refinement module that makes it possible

to further improve the quality of the segmentation

maps produced by our model. A visual representa-

tion of the proposed framework pipeline is reported

in Fig. 2.
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(a) Baseline patches (b) Randomly selected crops

Fig. 3: Representation of the instance generation pro-

cess of the 2 sets of patches used to train our model:

in 3a is shown the generation process for baseline

non-overlapping patches, while 3b provides a visual

depiction of our dynamic crop generation process

3.1. Segmentation backbone

Adoption of a robust backbone is a crucial step in

each Deep Learning framework. When working in a

few-shot setting in particular we need a network that

is able to capture a sufficient level of detail while be-

ing given in input just a handful of samples. For this

reason, we selected DeepLabV3+ 37 as the backbone

of our framework. DeepLabV3+ is a popular pixel-

wise semantic segmentation model built on its prede-

cessor DeepLabV3 38. The latter is a ResNet 39 based

architecture heavily relying on atrous convolutions

which are employed both in parallel and in a cascade

in order to enlarge the receptive fields of the filters

and consequently retain a higher spatial resolution

throughout the network. The key advantage of this

approach is that it allows for deeper neural networks

that provide larger feature maps at no additional

computational cost. Finally, the Atrous Spatial Pyra-

mid Pooling (ASPP) is introduced in DeepLabV3 as

a way of capturing features at different scales in the

original image by relying on a heterogeneous set of di-

lation rates in the network. DeepLabV3+ introduces

two substantial changes compared to the aforemen-

tioned architecture. The first one regards the substi-

tution of the ResNet encoder with a custom version

of the Aligned XCeption 40 model in which all max

pooling operations are replaced by depth-wise sepa-

rable convolution. Furthermore, it adds a simple yet

effective decoder which refines the segmentation re-

sults. The decoder module employs depth-wise sepa-

rable convolutions to enhance the spatial resolution

of the feature maps, resulting in sharper and more

detailed output segmentation maps.

3.2. Dynamic instance generation

The dynamic instance generation module is a key

component of the training pipeline of our framework.

The key idea behind it is that it efficiently exploits

the small amount of data available at training time.

To do so, instead of relying on the full document

pages as the instances of our dataset, we split them

into two sets of smaller patches. The first ones, which

we will refer to as baseline patches, consist of a set of

non-overlapping sub-regions of size m× n extracted

from the original input image in order to cover its

entire surface and are kept consistent between the

training and inference time (Fig. 3a). In addition to

the baseline patches, as a way to further improve the

generalization capabilities of our model, we also gen-

erate a small set of k potentially overlapping crops of

the same size as the baseline patches which are ex-

tracted from random locations of the original image

(Fig. 3b). This process is carried out at each epoch

during training time, while at inference time no ad-

ditional crops are generated as they are not needed

to obtain the final segmentation mask. While rely-

ing on sub-patches of the original images is a com-

mon approach in computer vision-related tasks, in

most cases, these patches are either limited to the

ones corresponding to our baseline ones, which leads

to losing potentially useful information contained in

the data. As an alternative approach, they may gen-

erate a large number of patches in advance, with-

out considering the varying complexity of different

datasets 31 . As a consequence, excessive amounts of

potentially unnecessary data is produced. Our dy-

namic instance generation approach addresses both

limitations effectively at the cost of a very small com-

putational overhead at training time.

3.3. Segmentation refinement

Our segmentation refinement module is based on the

Sauvola thresholding algorithm for document bina-

rization 41. The Sauvola thresholding algorithm is an

evolution of Niblack’s method 42, which introduced

the idea of a dynamic threshold that is calculated

based on the mean and standard deviation of the

gray levels of a local window inside an image. The
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main drawback of Niblack’s approach is that it didn’t

perform well for images with a light-textured back-

ground as it would result in very noisy binarization

masks. Sauvola solved this problem by introducing

the dynamic range of the standard deviation as an

additional term in the equation used to calculate the

local threshold, which has the effect of amplifying the

contribution of the standard deviation in an adaptive

manner throughout the image. The resulting equa-

tion adopted by the Sauvola algorithm is shown in

Eq. 1, where N is the local window of size n × n,

µ(N) and σ(N) are, respectively, the corresponding

mean and standard deviation and R is the dynamic

range of the standard deviation. Finally, k is a man-

ually selected parameter that regulates the value of

the local threshold.

T = µ(N)×
(
1 + k × (

σ(N)

R
− 1)

)
(1)

The refined segmentation masks are then obtained

by performing the Hadamard product between the

layout segmentation predictions provided by our

backbone and the mask resulting from running the

Sauvola algorithm on the corresponding images of

the dataset.

4. Experimental setup

In this section, we outline a detailed description of

the dataset adopted for the experiments and the

training setup. Furthermore, the metrics used to

evaluate and compare the performance of the pro-

posed approach are presented, together with the re-

sults of the ablation study.

Table 1: Classes distribution (%) for

each manuscripts of Diva-HisDB 43 (CB55, CSG18

and CSG863), and for Bukhari et al. 44 dataset

Manuscript BG Comment Decoration Text

CB55 82.41 8.36 0.55 8.68

CSG18 85.16 6.78 1.47 6.59

CSG863 77.82 6.35 1.83 14.00

Bukhari et al. 86.07 4.71 — 9.22

Fig. 4: Instances selected from each manuscript in

DIVA-HisDB as the training set for the proposed ap-

proach. Each of them was chosen to effectively rep-

resent the characteristics for the corresponding class

4.1. Dataset

To train and test our model we selected the popu-

lar Diva-HisDB dataset 43. Diva-HisDB is a collec-

tion of 3 medieval manuscripts (CB55, CSG18 and

CSG863) selected for their heterogeneity and lay-

out complexity. All the documents contained in the

dataset are characterized by 4 classes of semantic

components, namely main text, comments, decora-

tions and background (BG), with very unbalanced

distributions making the dataset particularly chal-

lenging for a few shot settings as the less common

classes are present in a very small amount or not at

all in some of the instances. A detail of the seman-

tic component distributions for each manuscript is

provided in Tab. 1.

Furthermore, the manuscripts provide a high de-

gree of heterogeneity concerning the level of degra-

dation of the pages, the epoch in which they were

written, both inter and intra class differences in the

pages layout and in writing styles, as both the CSG18

and CSG863 were written by an unspecified number

of authors. The dataset consists of a total of 150 in-

stances, 50 for each document class, of these 60 are

typically used for training, 30 for validation and an-

other 60 for testing the models. In the present work,
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we relied on just 6 images, 2 for each class, for train-

ing our model (Fig. 4). For each of the document

pages, the dataset provides a corresponding ground

truth segmentation mask as shown in Fig. 5.

Finally, to further validate the robustness of our

approach we also tested it on the dataset proposed

by Bukhari et al.44 which consists of 32 images each

representing a page from one of three different Ara-

bic historical manuscripts. Out of all the samples 24

are typically used for the training process while the

remaining 8 are used for the testing, while for the

purpose of this paper we only relied on 3 images, one

for each manuscript, to train our model. A detail of

the semantic component distributions is provided in

Tab. 1.

(a) Original page (b) Page ground truth

Fig. 5: Images showing a page of the CSG18

manuscript (5a) as well as its corresponding ground

truth mask (5b), in which the magenta areas repre-

sent the main text, while the yellow and cyan areas

represent the comments and decorations respectively.

Finally, the black area represents the background of

the image

4.2. Training and inference setup

Our model was trained using the popular Adam opti-

mizer with a learning rate of 10−3 and a weight decay

of 10−5. The maximum number of epochs for which it

was allowed to run has been set to 200 with an early

stop in case the validation loss didn’t improve in the

last 20 epochs and a buffer of 50 epochs which guar-

antees that the model will be trained at least for the

specified amount of iterations. During each epoch,

a set of 10 dynamic crops of size 672 × 672 px has

been generated in addition to the baseline patches

of the same sizes extracted from the original image.

This process led to a maximum of 4012 instances be-

ing generated for each document class during train-

ing, in case the model needed all the 200 epochs in

order to converge. In order to be able to fit them

in the GPU memory the images of the dataset have

been resized from their original high resolution (up to

4.8k×6.8k px), down to a size of 1344×2016 px. The

loss function selected to train the model is a weighted

Cross Entropy Loss 45 in which the weight for each

semantic element class is inversely proportional to

the frequency of that element in that dataset and,

more precisely is calculated as the square root of 1

over the square root of the occurrence frequency of

the corresponding element in the dataset (Eq. 2).

Wi =

√
1

Fi
(2)

This specific choice was made to take into account

the high imbalance between the semantic classes dis-

tribution in each document category of the datasets

(Tab. 1). Our model was trained separetly and from

scratch on each document class. Regarding the infer-

ence setup, the main choice involved in it is repre-

sented by the hyper parameters of the segmentation

refinement algorithm, namely the window size which

was kept consistent at 15 × 15 px for all document

classes and the control value k, which regulates the

value of the threshold in the local window (the higher

the k value, the lower the threshold) and was set at

the value of 0.01 for all classes.

4.3. Evaluation metrics

In order to evaluate the performance of our pro-

posed approach we use different metrics such as Pre-

cision, Recall, Intersection over Union (IoU) and F1-

Score. These evaluation metrics are calculated indi-

vidually for each one of the manuscripts that com-

pose DIVA-HisDB dataset. Metric definitions are re-

ported in Eq. 3– 6, where TP, FP and FN stand

respectively for True Positives, False positives and

False Negatives. For each metric a weighted average

is performed, based on each class frequency in each

manuscript. The final evaluation of a model is then

obtained by averaging the metrics of all pages of the
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Table 2: Comparison between the performance of our model and the competition on the 4 selected metrics. The

best and second-best performing models are reported in a bold and underlined fashion respectively while FS

indicates the models trained in a few-shot setting by using the same set of images selected for our framework

CB55 CSG18 CSG863 Mean

Backbone Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

FCN (FS) 0.894 0.883 0.783 0.863 0.874 0.885 0.797 0.863 0.915 0.907 0.826 0.895 0.894 0.892 0.802 0.874

FCN 0.902 0.900 0.815 0.884 0.930 0.930 0.869 0.919 0.923 0.919 0.847 0.909 0.918 0.916 0.844 0.904

LRSAPP (FS) 0.847 0.837 0.718 0.808 0.919 0.913 0.871 0.911 0.869 0.864 0.757 0.842 0.878 0.871 0.782 0.854

LRSAPP 0.880 0.883 0.789 0.864 0.921 0.927 0.868 0.918 0.911 0.910 0.833 0.899 0.904 0.907 0.830 0.894

PSPNET (FS) 0.876 0.868 0.761 0.846 0.906 0.905 0.829 0.890 0.913 0.896 0.817 0.888 0.898 0.890 0.802 0.875

PSPNET 0.887 0.894 0.811 0.880 0.912 0.920 0.857 0.910 0.913 0.915 0.845 0.906 0.904 0.910 0.838 0.899

DeepLabV3 (FS) 0.893 0.883 0.784 0.863 0.901 0.895 0.806 0.873 0.864 0.853 0.737 0.828 0.886 0.877 0.776 0.855

DeepLabV3 0.905 0.901 0.817 0.886 0.930 0.931 0.871 0.920 0.920 0.914 0.839 0.903 0.918 0.915 0.842 0.903

DeepLabV3+ (FS) 0.908 0.903 0.821 0.888 0.931 0.929 0.867 0.918 0.936 0.933 0.875 0.927 0.925 0.922 0.854 0.911

DeepLabV3+ 0.943 0.945 0.896 0.939 0.961 0.962 0.929 0.959 0.965 0.965 0.935 0.964 0.956 0.957 0.920 0.954

MLA - - - - - - - - - - - - 0.965 0.995 0.989 0.995

Ours 0.989 0.987 0.977 0.988 0.983 0.982 0.967 0.982 0.986 0.983 0.971 0.984 0.986 0.984 0.972 0.985

three manuscripts.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

IoU =
TP

TP + FP + FN
(5)

F1-score =
2× Precision× Recall

Precision + Recall
(6)

5. Results

In the following section, we provide a thorough com-

parison between the results achieved by the pro-

posed framework and a set of popular semantic

segmentation approaches, namely DeepLabV3 38,

its improvement represented by DeepLabV3+ 37,

FCN 46, Lite Reduced Atrous Spatial Pyramid Pool-

ing (LRASPP) 47 and Pyramid Scene Parsing Net-

work (PSPNet) 48, furthermore we also include the

results obtained by current state of the art for the

task of document layout segmentation, which we will

refer to as MLA 31. The comparison focuses both on

a quantitative and a qualitative perspective in or-

der to provide a complete overview of the quality of

the model’s predicted segmentations. To this end, we

also provide a discussion about the critical cases in

which our approach fails to provide the correct seg-

mentation for the corresponding instances. All the

models, excluding MLA for which we gathered the

results from the respective paper, have been person-

ally tested by us keeping the training and evaluation

settings as consistent as possible.

5.1. Quantitative results

In Tab. 2 the quantitative results achieved by our

proposed framework for all the selected metrics

across all the document classes contained in the Diva-

HisDB dataset, are shown and compared with the

competitor models. In particular, for all the models,

excluding MLA, we provide both the results obtained

by training them on the entire available dataset and

the ones obtained by training the model only on

the subset of 2 pages selected for our approach (FS

= Few-Shot setting). Unfortunately, MLA authors

provided only the mean scores for the selected met-

rics and some implementation details were missing,

leading our attempt at reimplementing their work to

achieve sub-optimal results. As we can see our model

is consistently capable of outperforming the other se-

mantic segmentation networks on all the metrics, re-
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Fig. 6: Image showing a qualitative comparison between our framework and the competition ones. Each row rep-

resents a zoomed area belonging to a different instance of the dataset, representing the three classes of manuscript

contained in it. In the first column, the ground truth segmentation maps for the 3 images are shown, while on

the remaining columns we provide the results produced by the three systems, FCN, DeepLabV3+ and Ours

respectively

gardless of the setup in which they have been trained.

In particular, compared to the second best perform-

ing approach, being represented by DeepLabV3+,

our model achieves an mean improvement of 7.7%

when the former is trained in a few-shot setting with

a peak improvement of 11.8% for the IoU metric.

While when DeepLabv3+ is trained using the full

training set, our approach outperforms it by a still

substantial mean of 3.5% (5.2% for the IoU metric)

while using only a fraction of the available data.

Furthermore, our framework achieves very close

performance even when compared with the current

state-of-the-art MLA, even surpassing it by 2.1% on

the mean precision metric. As for the remaining met-

rics our model performance is still comparable to

that of MLA with a difference going from 1.7% for

the IoU metric, to as little as 1% for the F1-score. It

is important to notice, however, that MLA is trained

on around 180000 instances extracted from all the

images of the training set, while our framework, as

previously mentioned, extracts at most 4012 unique

instances from just 2 of the available images in the

training set, resulting in a reduction of the needed

data by a factor approximately 45.
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Finally in Tab. 3 we show the comparison be-

tween our model and the competition on the Bukhari

dataset for Arabic manuscript layout segmentation.

As we can see our framework achieves the best

performance compared to all the other approaches

even when they are trained using the full training

set. In particular, compared to the single best per-

forming model, being represented by DeepLabV3+

our achieves a 2-4% improvement across all metrics

against its fully trained configuration and around a

4-9% performance improvement against the few shot

version of the model.

Table 3: Comparison between the performance of our

model and the competition on the Bukhari dataset.

The best and second-best performing models are re-

ported in a bold and underlined fashion respectively

while FS indicates the models trained in a few-shot

setting by using the same set of images selected for

our framework

Backbone Prec Rec IoU F1

FCN (FS) 0.836 0.875 0.788 0.853

FCN 0.865 0.899 0.824 0.879

LRSAPP (FS) 0.806 0.858 0.742 0.805

LRSAPP 0.899 0.876 0.806 0.884

PSPNET (FS) 0.843 0.859 0.770 0.846

PSPNET 0.911 0.861 0.790 0.875

DeepLabV3 (FS) 0.879 0.815 0.735 0.836

DeepLabV3 0.908 0.871 0.802 0.883

DeepLabV3+ (FS) 0.929 0.907 0.850 0.914

DeepLabV3+ 0.956 0.943 0.902 0.946

Ours 0.970 0.966 0.940 0.967

5.2. Qualitative results

Fig. 6 shows the segmentation maps produced by

our model for three document pages belonging, re-

spectively, to the three document class present in

the Diva-HisDB dataset and compared with the ones

predicted by the FCN and DeepLabV3+ models,

both trained on the whole available training set. Fur-

thermore, the corresponding ground truth segmenta-

tion is provided as a reference.

While the maps produced by FCN are typi-

cally correct and with very limited amounts of noise,

they tend to be very coarse, especially when ob-

served in the areas of the pages where the text is

smaller and the different components more inter-

twined. DeeplabV3+ provides a higher level of detail,

in particular when looking at the main text com-

ponent (magenta segmentation). Finally, our model

provides visibly more precise segmentation maps

than the competition when compared to the ground

truth ones.

5.2.1. Fail cases

As already mentioned in the previous section the

main drawback of the presented approach is that

compared to the competition it introduces more

noise in the provided segmentations. For complete-

ness, in Fig. 7 we provide some more criticalities of

the proposed framework together with the original

image and the corresponding ground truth. In partic-

ular, other than the typical misclassification of fore-

ground elements (Fig. 7d) we can notice three main

instances of recurrent mistakes. The first one is rep-

resented by the edge of the pages of the documents

which, being lighter than the black background in-

troduces an area of high contrast which is identi-

fied both by the model and by the thresholding al-

gorithm as part of the text (Fig. 7b). A similar oc-

currence can be observed for degraded areas in the

page’s background, these areas are, in fact, typically

darker than the rest of the background and are once

again misclassified as foreground elements (Fig. 7a).

Finally, we have the misclassification caused by the

text belonging to the page adjacent to the currently

analyzed instance, which while correctly identified as

part of the text by our model, is not included in the

ground truth segmentations (Fig. 7c). This last case,

however, is highly dependent on the coarse cropping

process of the instances of the Diva-HisDB dataset

which doesn’t precisely include only the elements of

the current page and, as such, is easily solvable by

refining the crops.

5.3. Ablation study

In this section, we provide the details regarding the

ablation study we conducted in order to obtain the fi-

nal version of the proposed framework. In particular,
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(a) Degraded page (b) Edge misclassification

(c) Adjacent page text (d) Foreground misclassification

Fig. 7: Overview of the main instances of misclassification for the proposed approach. From the top left corner

we have: 7a degraded spots in the page background being misclassified as foreground, 7b the same type of mis-

classification involving page edges, 7c Text belonging to the adjacent page being recognized as part of the current

one, 7d a simple case of misclassified foreground elements in particular involving the main text being mistaken

as part of the comments

we show the effects that different segmentation back-

bones and patch sizes for the generated instances

have on the performance of our approach for the task

at hand. Furthermore, we provide a comparison be-

tween the performance of the baseline model and the

models enhanced with the additional modules intro-

duced in this paper in order to provide proof of their

effectiveness.

5.3.1. Backbones

Tab. 4 shows a comparison of the performance of

our framework when using different backbones for

the segmentation module. For this comparison, we

selected a set of recent and popular semantic segmen-

tation networks (DeepLabV3 38, DeepLabV3+ 37,

FCN 46, LRASPP 47 and PSPNet 48). To allow for a

fair comparison all the models have been trained and

tested with the exact same setup, with 2 images for

each document class as the training set and a consis-

tent patch size of 672× 672 px. As we can see all the

models provide reasonably good performance on the

task at hand achieving an IoU higher than 70% and

a performance of over 80% for all the remaining met-

rics. From this analysis emerges that DeepLabV3+

consistently outperforms all other models on each of

the selected metrics and on all the document classes

present in the dataset, achieving an mean improve-

ment of 6.23% over the second-best model, being rep-

resented by its predecessor DeepLabV3. A particu-

larly interesting boost in performance is achieved for

the IoU metrics where an increase of almost 9% is

obtained by the former over the latter.

5.3.2. Patch sizes

A further comparison has been performed by explor-

ing the adoption of different sizes for the crops of

the instances being provided to the backbone net-

works. In particular, we selected 3 different sizes, go-

ing from the standard 224 × 224 which is the size

used by all the pre-trained models available in Py-

Torch, to a much larger 672×672. The results of this

comparison are shown in Tab. 5. In this case, the dif-
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Table 4: Comparison between the use of different neural network architectures as the segmentation backbone for

our model, in bold is reported the best performing model

CB55 CSG18 CSG863 Mean

Backbone Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

FCN 0,871 0,850 0,728 0,820 0,887 0,876 0,773 0,847 0,884 0,874 0,770 0,851 0,881 0,867 0,757 0,839

LRASPP 0,801 0,770 0,614 0,718 0,815 0,835 0,718 0,797 0,919 0,908 0,858 0,912 0,845 0,838 0,730 0,809

PSPNET 0,849 0,828 0,694 0,792 0,877 0,869 0,761 0,838 0,901 0,887 0,801 0,876 0,876 0,861 0,752 0,835

DeeplabV3 0,873 0,853 0,734 0,824 0,891 0,881 0,781 0,854 0,882 0,869 0,762 0,845 0,882 0,868 0,759 0,841

DeeplabV3+ 0.918 0.908 0.827 0.894 0.926 0.923 0.855 0.910 0.931 0.927 0.863 0.917 0.925 0.919 0.848 0.907

Table 5: Comparison between the adoption of different patch sizes during the instance generation process of our

framework, in bold is reported the best performing model

CB55 CSG18 CSG863 Mean

Patch size Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

224 0.911 0.900 0.813 0.884 0.920 0.916 0.843 0.900 0.919 0.917 0.846 0.904 0.917 0.911 0.834 0.896

336 0.916 0.906 0.823 0.891 0.925 0.920 0.849 0.905 0.928 0.926 0.860 0.916 0.923 0.917 0.844 0.904

672 0.918 0.908 0.827 0.894 0.926 0.923 0.855 0.910 0.931 0.927 0.863 0.917 0.925 0.919 0.848 0.907

ference in performance wasn’t as substantial as the

one resulting from the adoption of different types of

segmentation backbones. In particular, we can notice

that the difference between the best and the worst

performing models, which are the ones adopting the

largest and smallest patch sizes respectively, is on

mean around 1%. A potential explanation behind the

improved performance corresponding to the adoption

of larger patch sizes is that the model to which they

are given in input is able to capture a higher amount

of contextual information regarding the layout of the

original image from which they are extracted, allow-

ing for more accurate segmentation.

5.3.3. Framework modules

Finally, we provide a comparison between different

versions of our framework in which we systemati-

cally introduce the original modules presented in this

paper, namely the dynamic instance generation and

the segmentation refinement ones. In particular, in

Tab. 6 we show the performance obtained by our

baseline model, in which the images have been split

into patches but without the addition of either the

dynamically generated crops or the segmentation re-

finement process, as well as the one achieved by intro-

ducing these 2 techniques singularly and in a com-

bined fashion, which represents our full framework

pipeline. As we can see each of the additional mod-

ules leads to a substantial improvement in perfor-

mance over the baseline approach with the best per-

formance being achieved with the use of both mod-

ules. More specifically the final framework achieves

an improvement in performance going from 6.8% for

the precision metric to a very substantial 13.3% for

the Intersection over Union one, with an mean im-

provement of 9% across all metrics when compared

to the baseline approach.

As additional proof of the effectiveness of the

proposed approach. In Fig. 8 we provide a quali-

tative comparison between the segmentation masks
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Table 6: Results of the ablation study. Each row shows the performance of the different versions of our system

across all the selected metrics for the 4 classes of manuscripts composing the DIVA-HisDB dataset. The last four

columns show the mean scores achieved by the models across the different classes

CB55 CSG18 CSG863 Mean

Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

Ours (baseline) 0.907 0.900 0.815 0.884 0.926 0.923 0.860 0.912 0.917 0.914 0.840 0.900 0.917 0.912 0.838 0.899

Ours (w/ dynamic crop gen.) 0.918 0.908 0.827 0.894 0.926 0.923 0.855 0.912 0.931 0.927 0.863 0.917 0.925 0.919 0.848 0.907

Ours (w/ seg. refinement) 0.979 0.978 0.967 0.976 0.981 0.978 0.963 0.979 0.982 0.980 0.965 0.980 0.981 0.979 0.965 0.978

Ours (w/ both) 0.989 0.987 0.977 0.988 0.983 0.982 0.967 0.982 0.986 0.983 0.971 0.984 0.986 0.984 0.972 0.985

provided by the baseline and the final framework,

while also showing the corresponding ground truth

as a reference.

(a) Ground Truth

(b) Coarse Prediction

(c) Refined Prediction

Fig. 8: Qualitative results showing the effects of the

segmentation refinement process. Fig. 8a shows the

original ground truth for a zoomed area of the orig-

inal image. Fig. 8b shows the coarse segmentation

mask obtained by the model. Finally Fig. 8c shows

the segmentation prediction resulting from the re-

finement process

6. Conclusions

In this paper, we proposed an effective framework

that tackles the underexplored problem of few-shot

document layout analysis by introducing two origi-

nal modules, namely the dynamic instance genera-

tion and segmentation refinement ones which help

the core image segmentation backbone to fully lever-

age the small amount of training data available in or-

der to achieve pixel-precise segmentations of the doc-

ument pages. When compared to other popular im-

age segmentation algorithms, our model consistently

outperforms them, while relying only on a fraction of

the training data and with a computational load that

is comparable to the one of the original backbone

segmentation network adopted, being represented by

DeepLabV3+. Furthermore, when compared to the

current State of the Art framework, our approach

achieves comparable performance on all the selected

metrics. While the reported results are very promis-

ing, there are still some criticalities we plan to ad-

dress in the future, specifically by investigating more

effective segmentation refinement strategies.
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