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Experimental evaluation and comparison of
LiDAR SLAM algorithms for mobile robotics

Diego Tiozzo Fasiolo, Lorenzo Scalera, Eleonora Maset, and Alessandro
Gasparetto

Abstract This paper presents an experimental evaluation and comparison of Li-
DAR SLAM algorithms for mobile robotics. We analyze the performance of four
state-of-the-art methods for localization and mapping in terms of the capability
in reconstructing a point cloud of the surveyed environment and of the required
computational effort. More in detail, the cloud-to-cloud distance with respect to a
ground-truth reference model and the density of the final point cloud are evaluated
and compared. Experimental tests are conducted by performing repeated autonomous
surveys on two different scenarios with a mobile robot, showing the advantages and
disadvantages of the considered methods in reconstructing a 3D map.

1 Introduction

Over the last few years, a growing number of mobile robotics applications involv-
ing the acquisition of 3D information have been developed. Examples range from
mapping of hazardous environments [2], cultural heritages sites [3], as well as agri-
cultural lands [13, 15]. One particular field of application of mobile robotics for 3D
mapping is the analysis and digitization of buildings, as shown in [7].

Robotics, indeed, is increasingly applied as an aid to acquire 3D data for the sub-
sequent creation of as-is Building Information Models (BIMs) [1]. In this context,
the availability of efficient, cost-effective and user-friendly surveying techniques
for semi-structured and unstructured environments is crucial. Moreover, novel al-
gorithms may be used when speed and simplicity take priority over accuracy, for
instance in rescue application [16], or in building construction monitoring [6].

The acquisition of 3D information on buildings could be automated mounting a
Light Detection and Ranging (LiDAR) sensor on a robotic platform [11, 12]. Indoor
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environments are challenging as the Global Navigation Satellite System (GNSS) is
frequently not available, due to signal blockage and reflection. Consequently, differ-
ent localization methods are needed. The core of these technologies is Simultaneous
Localization and Mapping (SLAM), which was born for autonomous navigation but
can also estimate the trajectory of a moving scanning device, while acquiring maps
of the area of interest. It is worth noting that a complete autonomous system should
perform navigation, 3D data acquisition and processing, with the minimum human
intervention. Thus, the computational capability of the on-board computer cannot
be exhausted by the standalone SLAM algorithm.

Most SLAM methods are either visual or LiDAR-based. Visual-based methods
use RGB, stereo or time-of-flight cameras as inputs and store image frames, which
are used to compute the robot position and update the map. LiDAR-based methods
rely on LiDAR and store distance and angular measurements instead of image frames.
Comparative analysis (benchmarks) of SLAM algorithms can be easily found in the
literature for different environments: vineyards [8], indoor offices [5], outdoor cities
[10]. However, that works report results as root mean square error in the trajectory
estimation, and few information is given regarding 3D reconstruction capability.

In this paper, we present an experimental evaluation and comparison of four
state-of-the-art SLAM algorithms, which rely on LiDAR data only. Analysis are
conducted to assess the accuracy of the obtained 3D model with respect to a ground-
truth point cloud, the repeatability of the generated map and its points density.
Furthermore, the computational requirements are monitored, with the aim of finding
out which of the proposed mapping algorithms could be a trade off between the
quality of the final map and the computational effort. Experimental tests are carried
out performing the survey of two different indoor scenarios with a mobile robot that
autonomously follows closed-loop paths across a series of predefined way points.
The maps obtained from these data with the SLAM algorithms are compared with a
ground-truth point cloud provided by a terrestrial laser scanner (TLS) system.

The paper is organized as follows: in Sect. 2 the LiDAR-based SLAM algorithms
chosen for the comparison are briefly recalled. In Sect. 3 the materials and methods
are described, and Sect. 4 presents the results. The paper is concluded in Sect. 5.

2 LiDAR SLAM algorithms

SLAM is the process of building a map of an unknown environment while concur-
rently estimating the location of an autonomous robot. The key process of LiDAR
SLAM methods is point cloud scan matching. It consists of calculating a best-fit
rigid transformation that minimizes the error across corresponding matching points
between two point clouds (typically a non-linear optimization problem).

The following state-of-the-art algorithms are considered in this paper: Real-
Time Appearance-Based Mapping (RTAB-Map) [10], Lightweight and Ground-
Optimized Lidar Odometry and Mapping (LeGO-LOAM) [14], Direct LiDAR
Odometry (DLO) [4], hdl_graph_slam [9]. These algorithms are chosen for the
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comparison as they rely on LiDAR data only, without the needs of an Inertial Mea-
surement System (IMU) or other additional odometry sources (e.g., encoders or
GNSS). Moreover, they present: (a) different down sampling and scan matching
approaches that lead to different results in the final point cloud; and (b) different data
structures, to store and access data, during the mapping process, which can affect
the efficiency of the code. Furthermore, these algorithms are suitable for embedded
system and, thus, for mobile robotics applications.

RTAB-Map implements a voxel grid as down-sampling method. A voxel grid is
a set of 3D boxes over the point cloud data. In each voxel, all the present points are
approximated with their centroid.

Instead of using the down-sampled cloud one can resort only on relevant points to
perform SLAM: this idea is exploited in LeGO-LOAM. With a clustering process,
points belonging to the same objects, or to the ground, are labeled. Edges and planes
features are then extracted from clustered points, and used as input for SLAM. LeGO-
LOAM exploits loop closure: the ability of recognizing if the vehicle has returned
to a previously visited location, and to use this information to correct the map.

DLO, similarly to RTAB-Map, exploits directly a down sampled cloud. How-
ever, DLO uses a local map instead of performing scan matching with the whole
point cloud. This algorithm is particularly suited for computationally limited robotic
platforms because of the innovative data structure it introduces.

Finally, hdl_graph_slam uses Normal Distribution Transform (NDT) scan match-
ing. NDT method represents the point cloud as a voxel grid, at whose cells is as-
sociated a normal distribution, which locally models the probability of measuring a
point. Moreover, ground plane constraint are applied in order to avoid drift along the
𝑧 axis, due to the accumulated error.

These algorithms are usually adopted for navigation purposes of mobile robots, as
they manage to provide a six degrees of freedom pose with respect to a fixed reference
frame, with high frequency, in indoor as well as outdoor environments. However, to
the best of our knowledge, the focus of the application of these algorithms is not the
3D reconstruction of buildings, but rather the localization of the robot in a map of
the surrounding environment.

3 Materials and methods

In this work, a Scout Mini mobile robot by Agile-X Robotics (Fig. 1a), equipped with
a NVIDIA Xavier computer and a Velodyne VLP-16 laser scanner, is employed to
acquire data for the benchmark. The VLP-16 measurement range is up to 100 𝑚 with
an accuracy of ±3 𝑐𝑚. The vertical field of view is 30◦ (±15◦), and the horizontal
field of view is 360◦. The laser provides a vertical angular resolution of 2◦ and
an horizontal resolution of 0.2◦, as the rotation rate is set to 10 𝐻𝑧. Thanks to
the ROS Navigation Stack 1 , the mobile robot can autonomously navigate from a

1 http://wiki.ros.org/navigation

http://wiki.ros.org/navigation
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(a) (b)

Fig. 1: (a) Agile-X mobile robot in the corridor of test case (1); (b) point cloud of the
surveyed environment obtained with LeGO-LOAM. The path followed by the robot
is shown in yellow for test case (1), in red for test case (2).

starting location to a goal one, if a 2D map of the surroundings is provided. The 2D
map is previously built with the gmapping 2 SLAM package, moving the robot by
teleoperation with a wireless joystick, while employing rf2o 3 as odometry source.

Experimental tests are carried out in two different scenarios of the main building
of the scientific campus of University of Udine (Italy): (1) a single corridor of the
squared plant of the west wing of the building (40 𝑚 long, 8 𝑚 wide and 4 𝑚

high); (2) the whole squared plant (80 × 80 𝑚, measured along the center line of
the corridors). To quantify the results in terms of repeatability, in test case (1), three
data sets (referred to as (1.1-3)) are acquired by the robot while moving through five
way points that define a closed path inside the corridor (Fig. 1b). Nevertheless, test
case (2) was performed only once. The robot traveled a path 112 𝑚 long in about 9
minutes in test case (1), 324 𝑚 in about 12 minutes in test case (2).

During each autonomous survey the robot records raw data from the Velodyne
sensor in the standard file format used for storage in ROS, the so called ROS Bags.
Reproducing these files simulates the LiDAR sending the same data in real-time at
the same rate they were recorded. According to this method, in this experimental
campaign, the aforementioned SLAM algorithms are run, at a subsequent stage,
using the ROS Bags as input on a workstation mounting an Intel Core i9-10900 CPU
and 32 GB of RAM. The analysis of the required computational effort is made by
monitoring the RAM usage of the workstation over time.

We acquired the ground-truth reference model of the corridor of test case (1)
by means of the RIEGL Z390i TLS, placing the instrument vertically in three
positions along the corridor axis. In order to register the three obtained scans,
reflecting landmarks were located in the corridor and their coordinates measured
using a Leica TCRA 1201+ total station. Since the robotic and TLS point clouds

2 http://wiki.ros.org/gmapping

3 http://wiki.ros.org/rf2o

http://wiki.ros.org/gmapping
http://wiki.ros.org/rf2o
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(a)

(b) DLO. (c) hdl_graph

(d) LeGO-LOAM. (e) RTAB-Map.

Fig. 2: (a) Box plots of C2C absolute distance; (b)-(e) histograms of surface density
for test case (1), data set (1.1).

(a) DLO. (b) hdl_graph. (c) LeGO. (d) RTAB-Map.

Fig. 3: Point clouds obtained for test case (1), data set (1.1). Colors indicate density,
blue for lower, red for higher values.

Table 1: Experimental results in terms of mean ± standard deviation.

Test case (1), data set (1.1) Test case (2)

Points C2C Density RAM Points RAM
[𝑝𝑡𝑠] [𝑚𝑚] [𝑝𝑡𝑠/𝑚2 ] [𝑀𝐵] [𝑝𝑡𝑠] [𝑀𝐵]

DLO 39, 310 21 ± 34 16 ± 6 1789 ± 45 139, 746 2166 ± 71
hdl_graph 383, 920 35 ± 37 353 ± 180 1663 ± 133 1, 179, 703 2587 ± 389
LeGO-LOAM 24, 111 27 ± 45 8 ± 3 1858 ± 103 95, 813 2219 ± 123
RTAB-Map 10, 240, 867 22 ± 24 7780 ± 3668 3317 ± 1079 14, 723, 532 6181 ± 1712

are expressed in arbitrary reference frames, the comparison with the ground truth
requires a preliminary alignment to the reference model that was performed in
CloudCompare software, using the Iterative Closest Point method.
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(a) DLO. (b) hdl_graph (c) LeGO-LOAM. (d) RTAB-Map.

Fig. 4: Results for test case (2): zoom on the orthophotos near the loop closure. For
LeGO-LOAM, the drift along the x axis is not appreciable from the point cloud.
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Fig. 5: Memory usage over time in test case (2).

4 Experimental results

In this section, the experimental results and the comparison between the considered
SLAM algorithms are described. The first quantitative evaluation regards the point
clouds accuracy, obtained with each algorithm, which is evaluated by measuring the
cloud-to-cloud absolute distance (C2C) with respect to the ground-truth model of the
corridor. Fig. 2a illustrates a graphical representation of the results of test case (1)
in the form of box plots. Fig. 2a shows that a good repeatability of the results can
be achieved in multiple tests across the same sequence of way points. The second
column of Tab. 1 shows that the best results in terms of C2C absolute distance are
obtained by RTAB-Map and DLO (with an average value of 2 𝑐𝑚). Moreover, from
a visual inspection it can be seen that point clouds from RTAB-Map and hdl_graph
are noisy, mostly on floor. RTAB-Map and sometimes also hdl_graph maps present
scans not properly aligned to the global point cloud, which results in few points
deviating from the real surface even tens of centimeters.

Subsequently, the surface density that characterizes the point clouds of test case (1)
is evaluated. From the first and third columns of Tab. 1, it can be noticed that RTAB-
Map guarantees the higher density, followed by hdl_graph. On the other hand,
the individual peaks in histograms of DLO and LeGO-LOAM (Fig. 2b and Fig. 2d,
respectively) demonstrate that the final maps result in a regular distribution of points,
because of the voxel filter exploited in the final point cloud. Meanwhile, hdl_graph
and RTAB-Map histograms present two peaks (Fig. 2c and Fig. 2e respectively).
Thus, the higher density is reached for walls points and on the contrary, ground
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and roof present a low density, as shown in Fig. 3b and Fig. 3d. This is due to the
horizontal placement of the LiDAR on top of the robot and its angular resolution.

The main characteristics of the point clouds obtained from test case (2) (Fig. 1b)
are reported in the two last columns of Tab 1, which confirms the results in terms of
density. Furthermore, from test case (2) it can be noticed that the drift along 𝑧 axis
does not present significant values, except for RTAB-Map. In this last case, the map
is affected by an offset in correspondence to the loop closure, which was estimated
to be roughly 30 𝑐𝑚. On the other hand, Fig. 4a-4d report drift along 𝑥 and 𝑦 axis,
which is visibly reduced in hdl_graph and LeGO-LOAM thanks to their loop closure
capability, meanwhile in DLO and RTAB-Map drift is approximately 0.6 ÷ 1 𝑚.

Finally, the computational effort of each SLAM algorithm is evaluated. The
fourth and last columns of Tab. 1 report the obtained results for data set (1.1)
and for test case (2), respectively. Moreover, the RAM usage over time in test
case (2) is shown in Fig. 5. RTAB-Map takes approximately 19 minutes more than
the ROS Bags file duration to process the LiDAR data and concurrently build the
map. This algorithm, when used for navigation, employs a memory management
solution that implies the deletion of the oldest point in the global map. However, for
environment reconstruction purposes, all points must be kept and this tool must be
disabled. Consequently, the algorithm slows down and stores LiDAR data in a buffer
for further processing. This is demonstrated by the slope change in Fig. 5 at the
instant corresponding to the end of the ROS Bags. Moreover, RTAB-Map is likely to
saturate the embedded system memory when running also the navigation framework.
Nevertheless, the memory usage of the other SLAM algorithms is similar between
each other and suitable for online 3D mapping.

In contexts when a rapid survey is necessary, and mobile scanning system are
preferred to TLS, hdl_graph proved to be the best trade-off in our test cases, because
of its good results in terms of memory usage and point cloud density. Moreover, the
accuracy provided by hdl_graph (despite it is the lowest among the other algorithms)
is still suitable and comparable with the accuracy of the sensor.

5 Conclusion

In this paper, an experimental evaluation and comparison of state-of-the-art LiDAR
SLAM algorithms for mobile robotics has been reported. The point clouds obtained
with the reported algorithms have been analyzed in terms of capability of recon-
structing an indoor environment and computational effort. Experimental tests have
been conducted performing repeated autonomous surveys on two test cases. From
the experiments, it results that DLO and LeGO-LOAM yield to a surface density not
suited for 3D environment reconstruction, meanwhile RTAB-Map provides a dense
map, but with a significant computational effort.

Future works will involve the integration of additional sensors as odometry
sources and the test of further SLAM approaches. We will also evaluate the ef-
fects of robot path and speed on the resulting maps, especially in exploration tasks.
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