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Abstract

The current existing deep image super-resolution meth-
ods usually assume that a Low Resolution (LR) image
is bicubicly downscaled of a High Resolution (HR) im-
age. However, such an ideal bicubic downsampling process
is different from the real LR degradations, which usually
come from complicated combinations of different degrada-
tion processes, such as camera blur, sensor noise, sharp-
ening artifacts, JPEG compression, and further image edit-
ing, and several times image transmission over the internet
and unpredictable noises. It leads to the highly ill-posed
nature of the inverse upscaling problem. To address these
issues, we propose a GAN-based SR approach with learn-
able adaptive sinusoidal nonlinearities incorporated in LR
and SR models by directly learn degradation distributions
and then synthesize paired LR/HR training data to train
the generalized SR model to real image degradations. We
demonstrate the effectiveness of our proposed approach in
quantitative and qualitative experiments.

1. Introduction
Single image super-resolution (SISR) aims to restore the

high-resolution (HR) image from its low-resolution (LR)
image counterpart. SISR problem is a fundamental low-
level vision and image processing problem with various
practical applications in e.g., satellite imaging, medical
imaging, astronomy, remote sensing, surveillance, image
compression, environment and climate change monitoring,
mobile photography, image / video enhancement, and se-
curity and surveillance imaging, etc. With the increasing
amount of HR images / videos data on the internet, there is
a great demand for storing, transferring, and sharing such
large sized data with low cost of storage and bandwidth re-
sources. Moreover, the HR images are usually downscaled
to easily fit into display screens with different resolution
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Figure 1: The structure of our proposed real-world SR ap-
proach setup. In the LR Learning part, we train the LR
generator network GLR in a GAN framework, where our
goal is to learn the real LR (y) corruptions/degradations.
Then, we use the synthesized paired LR/HR data by the
GLR model to train the generalized SR model GSR in the
SR Learning part. Both the GLR and GSR generators uti-
lize the modified residual structure (refer to the sections 4
and 5 for more details).

while retaining visually plausible information. The down-
scaled LR counterpart of the HR can efficiently utilize lower
bandwidth, storage save, and easily fit to various digital dis-
plays. However, some details are lost and sometimes visible
artifacts appear when users downscale and upscale the dig-
ital contents.

Mathematically, SISR is described as a linear forward
observation model [19, 21] with the following image degra-
dation process:

y = (H⊗ x̃) ↓s +η, (1)

where, y is an observed LR image, H is a down-sampling
operator (unknown) that convolves (⊗) with a latent HR
image x̃ and resizes it by a scaling factor s, and η is con-
sidered as an i.i.d additive white Gaussian noise (AWGN)
of variance σ2, i.e., η ∼ N

(
0, σ2

)
. However, in real-

world settings, η also accounts for all possible errors dur-
ing the image acquisition process that include inherent sen-
sor noise, stochastic noise, compression artifacts, and the
possible mismatch between the forward observation model
and the camera device. The operator H is usually ill-
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conditioned or singular due to the presence of unknown
noise realization (η) that turn the SISR to a highly ill-posed
nature of inverse problems. Since, due to ill-posed nature,
there are many possible solutions thus regularization is re-
quired to select the most plausible ones.

Recently, numerous works have been addressed towards
the task of SISR [7, 14, 32, 33, 30, 13, 34, 24, 20, 18, 35, 12,
5] and real-world SISR [9, 28, 16, 3, 19, 21, 25]. Most of the
SISR methods assume usually bicubic downsampling pro-
cess, which is different from the real LR degradations. The
real-world SISR methods try to solve the problem by uti-
lizing data distribution learning using the GAN [4] frame-
work. However, they do not generalize well to the real
complex degradation, which usually come from the compli-
cated degradation processes, i.e., sensor noise, camera blur,
sharping artifacts, JPEG compression, and further image
editing, and several times image transmission over the in-
ternet. In the most recent works [27, 31], the authors aim to
restore general real-world LR images by synthesizing train-
ing pairs with a more practical degradation process. As the
real-world degradation space is much larger/complex, the
synthetic modeling also becomes challenging. Moreover,
the generators (i.e., LR/HR) require a more powerful capa-
bility to model the complex training data, while the gradi-
ents needs to be more accurate for local detail enhancement
with some sophisticated nonlinearities inside the network.

In this work, we proposed the GAN-based real image SR
approach that solves the problem by modeling the LR/HR
process with adaptive sinusoidal activitions (i.e., better rep-
resent the complicated signals) and thus synthesize the more
realistic paired LR/HR data to train the generalized SR
model for the real SR task. The structure of our proposed
real-world SR approach setup is shown in Fig. 1. In the
LR learning, we train the LR network (GLR) with modified
residual structure (i.e., incorporating the sinusodial non-
linearities) in a GAN-framework [4] to generate the real-
istic LR images as the corruptions/degradations of the real
LR images (y). After that, we use the synthesized paired
LR/HR data to train the generalized SR model in the SR
Learning part. The SR network (GSR) is trained in a GAN-
framework [4] with the modified residual structure to super-
resolve the LR images.

We evaluate our proposed SR method on the Real-World
Super-resolution (RWSR) dataset [17] to show the effec-
tiveness of our approach through the quantitative and qual-
itative experiments. We summarize our contributions in
three fold as:

1. We propose an end-to-end deep SRResCSinGAN for
the real-world SR task. Instead of using traditional
bicubic downsampling or the existing deep LR degra-
dation methods, we synthesize the paired training data
with a more practical image corruptions/degradations
by modeling the LR/HR process.

2. By exploiting the sinusoidal non-linearities, we em-
ploy the modified residual network structure incorpo-
rated in both LR and SR learning stages, which bet-
ter models the underlying complex signals i.e., real LR
and HR process.

3. Our proposed approach achieve better quantitative and
visual performance in terms of PSNR/SSIM/LPIPS
(refer to Tables 1 and 2).

2. Related Work

2.1. Real World SISR methods

Recently, numerous works [7, 14, 32, 33, 30, 13, 34, 24,
20, 18, 35, 12, 5] have addressed the task of SISR using
deep CNNs for their powerful feature representation capa-
bilities. The SISR methods mostly rely on the PSNR-based
metric by optimizing the L1/L2 losses with blurry results
in a supervised way, while they do not preserve the visual
quality with respect to human perception. Moreover, the
above-mentioned methods are deeper or wider CNN net-
works to learn non-linear mapping from LR to HR with
the ideal bicubic downsampling, while neglecting the real-
world settings.

For the real image SR task, several attempts [9, 28, 16,
3, 19, 21, 25] have done to solve for realistic LR degrada-
tion. However, the real SR methods still suffer unpleasant
artifacts and challenging for learning fine-grained corrup-
tions/degradations with unpaired data. Our approach takes
into account the real-world settings by increasing its appli-
cability in practical scenarios.

2.2. Blind / Non-Blind degradation models

Classical degradation model (refer to Eq. (1)) is mostly
used in the blind / non-blind deep SISR methods. The
common choice, in the existing SISR degradation models,
usually consist of a sequence of blur kernel (i.e., Gaus-
sian/motion), downsampling (i.e., bicubic, bilinear, nearest-
neighbor), and noise addition (i.e., AWGN). In the existing
deep SISR methods [27, 31], they attempt to explicit model
the real-world degradation to super-resolve the real LR im-
ages. But, yet the real-world degradations are too complex
to be explicitly modeled. Therefore, implicit modeling us-
ing GAN framework within the network is a suitable choice
to synthesize more practical degradations.

3. Proposed Method

3.1. Problem Formulation

By referencing to the Eq. (1), the recovery of x from
y mostly relies on the variational approach for combining
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Figure 2: The generator architecture of proposed LR learning stage. The C denotes the output feature channels. Inside the
Sine layer, ω0 (hyperparameter) is the scalar frequency factor, W are the learnable sine weights, and f are the Conv layer
feature maps (refer to section 3.2 for more details of Sine layer).

the observation and prior knowledge, and is given by the
following objective function:

x∗ = argmin
x

1

2σ2
‖y − (H⊗ x) ↓s ‖22 + λφ(x), (2)

where, 1
2σ2 ‖y − (H ⊗ x) ↓s ‖22 is the data fidelity (also

known as log-likelihood) term that measures the closeness
of the solution to the observations, φ(x) is the regularization
term that encodes the image prior knowledge, and λ is the
trade-off parameter that governs the compromise between
the data fidelity and the regularizer term. Interestingly, the
variational approach has a direct link to the Bayesian ap-
proach and the derived solutions can be described either as
penalized maximum likelihood or as maximum a posteriori
(MAP) estimates [1, 2]. Thanks to the recent advances of
deep learning, the regularizer (i.e., φ(x)) is employed by the
SRResCGAN [19] generator structure that is inspired by a
powerful image regularization and large-scale optimization
techniques to solve the real-world SISR task.

3.2. Residual Network (Resnet) with adaptive Sinu-
soidal non-linearities

Over the past decades, numerous works have investi-
gated a variety of possible activation functions, such as
sigmoid, ReLU, Tanh, PReLU, RBF, and many more to
model the natural images. The preferred choice that has
emerged over the years is the ReLU activation unit due
to promoting sparsity of the feature maps and the faster
training of very deep networks. The continuous and piece-
wise linear functions have proven as a universal approxi-
mation of complex signals such as natural images. Recent
works have demonstrated the potential to robustly outper-
form ReLU and other non-linearities by using alternative
activation functions for image reconstruction / restoration
tasks, such as deep spline activations [26] and periodic non-
linearities like sinusoidal [22]. Motivated by the continuous

and differentiable periodic nonlinearities (i.e., sinusoidal)
that are capable of representing complex and fine details of
signals better than the ReLU and others, we exploit the sinu-
soidal nonlinearities incorporated in the modified structure
of deep residual network (Resnet).

We describe the overall explicit compositional structure
of the L-layer deep residual network (Resnet) with the fol-
lowing formulation:

fresnet(x) = ((fL ◦ σL ◦ fL−1) (xL−1) + xL−1) ◦ · · · ◦
((f2 ◦ σ1 ◦ f1) (x) + x) ,

(3)

Here, f is the affine transformation (i.e., Conv layer) defined
by the weight matrix W and the biases b applied to the
input as:

f(x) = W ∗ x+ b (4)

And, followed by the sine nonlinearity [22] σ applied to the
resulting vector f as:

σ(f) = sin (ω0.Wf) (5)

where, ω0 is the scalar frequency factor, which is a hyper-
parameter. The derivative of the sine is a cosine (i.e., the
phase-shifted sine) for the backpropagation. The weights
of the Sine layer are updated during the training via the
stochastic gradient descent steps by minimization of the loss
function. To initialize the weights (W) of the Sine layer, we
use the same initialization technique as done in [22], where
we draw the weights with Wi ∼ U(−

√
6/n,

√
6/n) which

ensures that the input to each sine activation is normal dis-
tributed with a unit standard deviation.

4. LR Learning Model
In the LR learning phase, we train the model (GLR) in a

GAN framework as shown in Fig. 2. In the next sections
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Figure 3: The generator architecture of proposed SR learning stage. The C denotes the output feature channels. The Sine
layer denotes sinusoidal nonlinearities (refer to Fig. 2 and section 3.2 for more details). The σ is the trainable projection layer
parameter.

4.1, 4.2, and 4.3, we describe the network architectures,
training losses, and other training details.

4.1. Network Architectures

The modified LR generator network (GLR) (as shown
in Fig. 2) consists of 8 Resnet blocks. Each residual block
contains the Sine (i.e., sinusoidal nonlinearities) layer that
is sandwiched between two Conv layers. All Conv layers
have 3 × 3 kernel support with 64 feature maps. Finally,
sigmoid nonlinearity is applied on the output of the GLR

network. While, the LR discriminator network (Dy) con-
sists of a three-layer convolutional network that operates on
a patch level [6, 11]. All Conv layers have 5 × 5 kernel
support with feature maps from 64 to 256 and also applied
Batch Normalization and Leaky ReLU (LReLU) activations
after each Conv layer except the last Conv layer that maps
256 to 1 features. It is trained to discriminate the real LR
images (y) from the fake LR images (x̂) generated by the
GLR.

4.2. Network Losses

To learn the degradation/corruptions from the LR do-
main (y) images, we train the modified network GLR in
a GAN framework [4] with the following loss functions:

LGLR
= Lcolor + 0.005 · Ltex + 0.01 · Lper (6)

where, these loss functions are defined as follows:
Color loss (Lcolor): It is basically the L1 loss which fo-
cuses on the low frequencies of the image.

Lcolor =
1

N

N∑
i=1

∥∥∥wL ∗GLR(x
(i))−wL ∗ x(i) ↓s

∥∥∥
1

(7)

Here, wL is the low-pass filter, N is the mini-batch size,
and ↓s is the downscaling factor.
Texture loss (Ltex): It focuses on the high frequencies of
the image.

Ltex =
1

N

N∑
i=1

mean
(
logDy

(
wH ∗GLR(x

(i))
))

(8)

Here, wH is the high-pass filter.
Perceptual loss (Lper): It focuses on the perceptual quality
of the output image and is defined as:

Lper =
1

N

N∑
i=1

LVGG =
1

N

N∑
i=1

‖φ(GLR(x
(i)))−φ(x(i) ↓s)‖1

(9)
where, φ is the feature extracted from the pretrained VGG
network as done in DSGAN [3].

4.3. Training description

We train the GLR network with image patches 512×512,
which are bicubically downsampled with MATLAB imre-
size function. We randomly crop the LR domain images (y)
by 128×128 as done in [3]. We set the ω0 = 30 for the Sine
layer. We train the network for 300 epochs with a batch size
of 16 using Adam optimizer [8] with parameters β1 = 0.5,
β2 = 0.999, and ε = 10−8 without weight decay for both
generator and discriminator to minimize the loss in (6). The
learning rate is initially set to 2.10−4 for the first 150 epochs
and then linearly decayed to zero after the remaining (i.e.,
150) epochs as done in [3].

5. SR Learning Model
In the SR learning phase, we train the model (GSR) in a

GAN framework as shown in Fig. 3. In the next sections
5.1, 5.2, and 5.3, we describe the network architectures,
training losses, and other training details.

5.1. Network Architectures

We use the SR generator GSR network (as shown in
Fig. 3) which is an Encoder-Resnet-Decoder like structure
as done in SRResCGAN [19] with the modified Resnet
structure by incorporating the sinusoidal nonlinearities. In
the GSR network, both Encoder and Decoder layers have
64 convolutional feature maps of 5 × 5 kernel size with
C × H ×W tensors, where C is the number of channels
of the input image. Inside the Encoder, LR image is up-
sampled by the Bicubic kernel with Upsample layer. Resnet



consists of 5 residual blocks with two Pre-activation Conv
layers, each of 64 feature maps with kernel support 3 × 3,
and the preactivition is the Sine layer with 64 output feature
channels. The trainable projection layer [10] inside the De-
coder computes the proximal map with the estimated noise
standard deviation σ and handles the data fidelity and prior
terms. The noise realization is estimated in the intermediate
Resnet that is sandwiched between Encoder and Decoder.
The estimated residual image after Decoder is subtracted
from the LR input image. Finally, the clipping layer incor-
porates our prior knowledge about the valid range of image
intensities and enforces the pixel values of the reconstructed
image to lie in the range [0, 255]. The reflection padding is
also used before all Conv layers to ensure slowly varying
changes at the boundaries of the input images.

The SR discriminator network (Dx) is trained to dis-
criminate the real HR images (x) from the fake HR images
(ŷ) generated by the GSR. The raw discriminator network
contains 10 convolutional layers with kernels that support
3 × 3 and 4 × 4 of increasing feature maps from 64 to 512
followed by Batch Normalization and leaky ReLU as done
in SRGAN [9].

5.2. Network Losses

To learn the image super-resolution for the HR domain
(x) images, we train the modified network GSR in a GAN
framework with the following loss functions:

LGSR
= Lper + LGAN + Ltv + 10 · L1 (10)

where, these loss functions are defined as follows:
Perceptual loss (Lper): It focuses on the perceptual quality
of the output image and is defined as:

Lper =
1

N

N∑
i=1

LVGG =
1

N

N∑
i=1

‖φ(GSR(x̂
(i)))−φ(x(i))‖1

(11)
where, φ is the feature extracted from the pretrained VGG-
19 network as done in ESRGAN [28].
GAN loss (LGAN): It focuses on the high frequencies of
the output image and it is defined as:

Dx(x, ŷ)(C) = σ(C(x)− E[C(ŷ)]) (12)

Here, C is the raw discriminator output and σ is the sigmoid
function. By using the relativistic discriminator [28], we
have:

LGAN = LRaGAN =− Ex [log (1−Dx(x,GSR(x̂)))]

− Eŷ [log (Dx(GSR(x̂),x))]

(13)

where, Ex and Eŷ represent the operations of taking aver-
age for all real HR (x) images and fake HR (ŷ) images in

the mini-batches, respectively.
TV (total-variation) loss (Ltv): It focuses to minimize the
gradient discrepancy and produces sharpness in the output
SR image, and it is defined as:

Ltv =
1

N

N∑
i=1

(
‖∇hGSR(x̂

(i))−∇h(x(i))‖1+∥∥∥∇vGSR(x̂
(i))−∇v(x(i))‖1

)
.

(14)

Here, ∇h and ∇v denote the operators calculating the im-
age directional derivatives in the horizontal and vertical di-
rections, respectively.
Content loss (L1): It is defined as:

L1 =
1

N

N∑
i=1

‖GSR(x̂
(i))− x(i)‖1 (15)

where, N represents the size of mini-batch.

5.3. Training description

During the training phase, we set the input LR patch size
as 32 × 32. We train the network for 51000 training iter-
ations with a batch size of 16 using Adam optimizer with
parameters β1 = 0.9, β2 = 0.999, and ε = 10−8 without
weight decay for both generator and discriminator to min-
imize the loss in (10). We set the ω0 = 30 for the Sine
layer. The learning rate is initially set to 10−4 and then
multiplies by 0.5 after 5K, 10K, 20K, and 30K iterations.
The projection layer parameter σ is estimated according to
[15] from the input LR image. We initialize the projection
layer parameter α on a log-scale values from αmax = 2 to
αmin = 1 and then further fine-tune during the training via
back-propagation.

6. Experimental Results
6.1. Training data preparation

We use the LR domain images (y: 2650 HR images)
that are corrupted with unknown degradation, e.g., sensor
noise, compression artifacts, sharpening artifacts, etc., and
HR domain images (x: 800 clean HR images), provided
in the NTIRE-2020 Real-World Super-resolution (RWSR)
Challenge [17]. The LR domain images contain synthetic
visible corruptions that are similar to the induced corrup-
tions by the current camera devices. We use the LR and HR
domain data to train the GLR network to learn the domain
degradation/corruptions. Then, we train the GSR network
by synthesizing the realistic LR/HR paired training data.

6.2. Data augmentation

We take the LR/HR patches due to the network training
efficiency and we also assume that the patch based degrada-



Dataset (LR/HR pairs) SR methods #Params PSNR↑ SSIM↑ LPIPS↓

sensor noise (σ = 8)
Bicubic EDSR [14] 43M 24.48 0.53 0.6800
Bicubic ESRGAN [28] 16.7M 17.39 0.19 0.9400
CycleGAN [16] ESRGAN-FT [16] 16.7M 22.42 0.55 0.3645
DSGAN [3] ESRGAN-FS [3] 16.7M 22.52 0.52 0.3300
DSGAN [3] SRResCGAN [19] 380K 25.46 0.67 0.3604
DSSinGAN (ours) SRResCSinGAN (ours) 380K 25.50 0.69 0.3750

JPEG compression (quality=30)
Bicubic EDSR [14] 43M 23.75 0.62 0.5400
Bicubic ESRGAN [28] 16.7M 22.43 0.58 0.5300
CycleGAN [16] ESRGAN-FT [16] 16.7M 22.80 0.57 0.3729
DSGAN [3] ESRGAN-FS [3] 16.7M 20.39 0.50 0.4200
DSGAN [3] SRResCGAN [19] 380K 23.34 0.59 0.4431
DSSinGAN (ours) SRResCSinGAN (ours) 380K 23.70 0.63 0.4258

unknown (validset) [17]
DSGAN [3] SRResCGAN [19] 380K 25.05 0.67 0.3357
DSSinGAN (ours) SRResCSinGAN (ours) 380K 25.58 0.69 0.3610
DSSinGAN (ours) SRResCSinGAN+ (ours) 380K 25.89 0.71 0.3769

Table 1: ×4 SR quantitative results comparison of our method over the DIV2K validation-set (100 images) with added two
known degradations i.e., sensor noise (σ = 8) and JPEG compression (quality = 30) artifacts. Bottom section: ×4 SR
results comparison with the unknown corruptions in the RWSR challenge series (validation-set) [17]. The arrows indicate if
high ↑ or low ↓ values are desired. The best performance is shown in red and the second best performance is shown in blue.

tion is same as in the whole image. We augment the train-
ing data with random vertical and horizontal flipping, and
90◦ rotations. Moreover, we also consider another effective
data augmentation technique, called mixture of augmenta-
tion (MOA) [29] strategy. In the MOA, a data augmentation
(DA) method, among i.e., Blend, RGB permutation, Mixup,
Cutout, Cutmix, Cutmixup, and CutBlur is randomly se-
lected then applied on the inputs. This MOA technique en-
courages the network to acquire more generalization power
by partially blocking or corrupting the training sample.

6.3. Evaluation metrics

We evaluate the trained model under the Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity (SSIM), and
LPIPS metrics. The PSNR and SSIM are distortion-based
measures that correlate poorly with actual perceived simi-
larity, while LPIPS better correlates with human perception
than the distortion-based/handcrafted measures. As LPIPS
is based on the features of pretrained neural networks, so
we use it for the quantitative evaluation with features of
AlexNet. The quantitative SR results are evaluated on the
RGB color space. To further enhance the fidelity, we use a
self-ensemble strategy [23] (denoted as SRResCSinGAN+)
at the test time, where the LR inputs are flipped/rotated and
the SR results are aligned and averaged for enhanced pre-
diction.

6.4. Comparison with state-of-the-art SR methods

We compare our method with other state-of-art SR
methods including EDSR [14], ESRGAN [28], ESRGAN-
FT [16], and ESRGAN-FS [3] and SRResCGAN [19],
whose source codes are available online. The two degra-

dation settings (i.e., sensor noise, JPEG compression) have
been considered under the same experimental situations for
all methods. We run all original source codes and trained
models by the default parameters settings for comparison.

The EDSR is trained without perceptual loss (only L1)
by a deep SR residual network using bicubic supervision.
The ESRGAN is trained with the Lperceptual, LGAN, and
L1 by a deep SR network using bicubic supervision. The
ESRGAN-FT and ESRGAN-FS apply the same SR archi-
tecture and perceptual losses as in the ESRGAN using the
two known degradation supervisions. The SRResCGAN is
trained with the similar losses combination as done in the
ESRGAN using the two known degradation supervisions.
We train the proposed SRResCSinGAN with the similar
losses combination as done in the ESRGAN and SRResC-
GAN with the modified Resnet structure by the sine nonlin-
earities.

Table 1 shows the quantitative results comparison of our
method over the DIV2K validation-set (100 images) with
two known degradations (i.e., sensor noise, JPEG compres-
sion) as well as the unknown degradation in the RWSR
challenge dataset [17]. In the case of sensor noise, our
method has better PSNR/SSIM values compared to all ex-
isting SR methods, while we have comparable LPIPS value.
Since these are the contradicted measures (PSNR/SSIM vs.
LPIPS), our objective is to achieve a good PSNR/SSIM
score, while getting the satisfactory LPIPS value. In the
case of jpeg compression artifacts, our proposed method
has better PSNR/SSIM values except the EDSR, which is
slightly better PSNR, but low LPIPS value and it has a very
deep network with 43M parameters, while our model has
only 380K parameters. Finally, in the case of unknown
corruptions, our method has better SR results in terms of



PSNR and SSIM, while we have comparable LPIPS value
with others.

Regarding the visual quality, Fig. 4 shows the qualitative
comparison of our method with the other SR methods on×4
upscaling factor (validation-set). In contrast to the existing
state-of-art methods, our proposed method produces excel-
lent SR results that are reflected in the PSNR/SSIM/LPIPS
values, as well as the visual quality of the reconstructed im-
ages with almost no visible corruptions.

'0815' image from DIV2K val-set

GT EDSR ESRGAN ESRGAN-FS

SRResCGAN SRResCSinGAN SRResCSinGAN+

'0896' image from DIV2K val-set

GT EDSR ESRGAN ESRGAN-FS

SRResCGAN SRResCSinGAN SRResCSinGAN+

Figure 4: Visual SR comparison of our method with the
other state-of-art methods on the DIV2K validation set at
the ×4 upscaling factor.

Dataset (LR/HR pairs) SR method PSNR↑ SSIM↑ LPIPS↓

Bicubic SRResCGAN 24.13 0.57 0.4853
Bicubic SRResCSinGAN 24.78 0.62 0.4365

DSGAN SRResCGAN 25.05 0.67 0.3357
DSGAN SRResCSinGAN 25.53 0.69 0.3792

DSSinGAN SRResCSinGAN 25.58 0.69 0.3610
DSSinGAN SRResCSinGAN+ 25.89 0.71 0.3769

Table 2: The quantitative SR results comparison of our
method with others over the DIV2K validation set (100 im-
ages) with unknown degradation for our ablation study. The
arrows indicate if high ↑ or low ↓ values are desired. The
best performance is shown in red and the second best per-
formance is shown in blue.

6.5. Ablation Study

For our ablation study, we generated different LR/HR
pair data to train the SR models. We reached the bet-
ter PSNR/SSIM score, while achieving good LPIPS for
its better visual correlation with human perception. Ta-
ble 2 shows the quantitative results of our method over the
DIV2K validation-set (100 images) with unknown degrada-
tion [17].

In the top section of the table, we trained the SRResC-
GAN [19] method with and without sine nonlinearities with
the bicubic downsampled data (refer to section 5 for the

SR learning training). The SRResCGAN with sine non-
linearities (i.e., SRResCSinGAN) has achieved better re-
sults in terms of PSNR, SSIM, and LPIPS.

In the middle section, we generated the LR data from the
DSGAN [3] as done in SRResCGAN [19] and then trained
the two variants of our SR model with the generated LR/HR
pairs. The SRResCSinGAN has better SR results in terms
of PSNR and SSIM, while satisfactory LPIPS value com-
pared to the SRResCGAN.

In the bottom section, we generated the LR data from
the DSGAN with sine nonlinearities (denoted as DSSin-
GAN, refer to section 4 for the LR learning) and then fi-
nally train our proposed SRResCSinGAN method with the
generated LR/HR pairs. The SRResCSinGAN has better
PSNR and LPIPS values, while the same SSIM value. To
further enhance the performance, we used the self-ensemble
strategy [23] at the test time, denoted as SRResCSinGAN+.
It suggests that better generation of the LR images instead
of the traditional bicubic downscaling gives the better per-
formance gain and also incooperating the sinusoidal non-
linearites instead of ReLU/PReLU activation in the resnet
structure gives the improvement in the reconstruction qual-
ity.

7. Conclusion
We proposed a deep SRResCSinGAN method for real

image super-resolution by following the real-world settings.
The proposed method solves the real image SR problem
by implicitly modeling the degradation process within the
network. The proposed approach first synthesize the re-
alistic paired training data with a more practical corrup-
tions/degradations, instead of using the traditional bicubic
downsampling or the existing deep learning based meth-
ods. Secondly, the proposed approach use the synthesized
LR/HR paired data to train the generalized SR model to
super-resolve the real LR images. The proposed approach
incorporate the sinusoidal nonlinearities in the LR and HR
model process to better representing the underlying com-
plex signals in natural images. Our method achieves better
SR results in terms of PSNR/SSIM values and comparable
LPIPS values as well as visual quality compared to the ex-
isting state-of-art methods.
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