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Abstract
We prove some density results for integral points on affine open sets of Fano threefolds. For
instance, let Xo = P

3\D where D is the union of two quadrics such that their intersection
contains a smooth conic, or the union of a smooth quadric surface and two planes, or the
union of a smooth cubic surface V and a plane � such that the intersection V ∩� contains a
line. In all these cases we show that the set of integral points of Xo is potentially dense. We
apply the above results to prove that integral points are potentially dense in some log-Fano
or in some log-Calabi-Yau threefold.

Keywords Integral points · Potential density · Log Fano threefolds · Log Calabi Yau
threefolds

1 Introduction

1.1 General overview

Let X ⊂ P
n be a projective algebraic variety over the number field K and let D be a closed

algebraic subset. Set Xo := X \ D, which is a quasi projective (possibly affine) algebraic
variety. A rational point P ∈ Xo(K) is said to be integral with respect to D if for no finite
place ν of K the point P reduces to D modulo ν. More generally, if S is a finite set of places
containing the archimedean ones, a point is said to be S-integral with respect to D if the same
condition holds for every place ν not contained in S. Whenever Xo is affine, say embedded
into A

n , this set can be identified with the set of points of X whose coordinates belong to the
ring of S-integersOS ⊂ K. Hence we shall denote by Xo(OS) the set of S-integral points of
X . Note that whenever D is empty, that is Xo = X , the set Xo(OS) coincides with the set
X(K) of rational points.
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1.2 Vojta’s conjecture

A celebrated conjecture of Vojta, see: [37, Main Conjecture 3.4.3 and Proposition 4.1.2],
predicts that if X is smooth and D is a reduced effective divisor, with at most normal crossing
singularities and such that KX +D is big, where KX denotes a canonical divisor of X , then for
every ring of S-integersOS ⊂ K, the S-integral points on Xo = X \D are not Zariski-dense.
Note that the bigness assumption for KX + D turns out to be independent of the smooth
compactification of Xo, if D has at most normal crossing singularities.

1.2.1 The 1-dimensional case of Vojta’s conjecture

Vojta’s Conjecture is completely settled in the case of curves, in view of theorems of Siegel
and Faltings; moreover, in this case, a converse holds true: if for a pair (X , D), where X is
a smooth complete curve and D ⊂ X is an effective reduced divisor (a finite set), such that
KX + D is not effective then there exists a ring of S-integers (possibly in a finite extension
of the field of definition K) such that Xo(OS) is Zariski-dense (i.e. an infinite set). Actually
such pairs are necessarily of one of the following four classes: X = P

1 and |D| = 0, 1, 2 or
X a genus one curve and D = ∅. In each case Xo is a homogenous space under the action of
an algebraic group; see: c.f. [7].

1.2.2 The 2-dimensional case of Vojta’s conjecture

Already in dimension two, the conjecture is widely open. For an open set of the projective
plane,Vojta’s conjecture predicts degeneracy of integral pointswhenever the divisor at infinity
D has degree≥ 4 (and atmost normal crossing singularities). An application of the Schmidt’s
Subspace Theorem in Diophantine approximation leads to this degeneracy result whenever
D has at least four component. The same conclusion holds for the complement of four
ample divisors on any algebraic surface (proved by A. Levin [25], based on the work of U.
Zannier and the first author [9], ultimately relying on the Subspace Theorem). Several other
special cases are proved but already the case of the complement of a plane quartic with ≤ 3
components is still open.

1.2.3 Vojta’s conjecture and semi-abelian varieties

A general result, based on the work of Faltings and Vojta on the distribution of integral points
on semi-abelian varieties, proves the degeneracy of integral points on a quasi-projective vari-
ety Xo whenever its generalized Albanese variety has dimension strictly larger than dim X .
Recall that the generalized Albanese variety of Xo is a semi-abelian variety A, provided with
a morphism Xo → A factoring any other morphism from X to any semi-abelian variety.

1.2.4 Campana’ s conjecture and a converse for Vojta’s conjecture

A conjecture of Campana provides a converse for Vojta’s Conjecture: whenever a variety is
‘special’, in a sense which we shall not discuss here, its integral (or rational) points should
be potentially dense, which means that they become Zariski-dense after a finite extension of
the ground field (possibly followed by an enlargment of the finite set S).
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In the above mentioned case of the complement of a normal crossing divisor D in P
2,

a variety is special if and only if deg D ≤ 3. In these cases, potentially density of integral
points is known.

For a survey on this topic, especially for the case of dimension two, we refer to [7].

1.3 The 3-dimensional projective space

In this paper we study the problem of potential density of integral points for certain open
subsets of some rational Fano 3-folds.

1.3.1 Log Fano and of log Calabi-Yau varieties

We say that an affine variety Xo is log Fano if it can be obtained as Xo = X \ D, where
−KX − D big. We say that Xo is log Calabi-Yau if Xo = X \ D where D lies in the anti-
canonical class (so KX + D ∼ 0). In both cases, the integral points are conjectured to be
potentially dense.

In dimension two, for every log-Fano (or log del Pezzo) surface and every affine log
Calabi-Yau (or log-K3) surface potential density is proved. Clearly, the crucial case lies in
the log-K3 case, which is due to Hassett-Tschinkel [18], after the fundamental work by F.
Beukers [2], (to be precise, Hassett-Tschinkel proved potential density for a surface of the
form X \ D, where X is a del Pezzo surface and D is a smooth curve in the anti-canonical
class. As it usually happens, however, the case of a singular - possibly reducible - divisor,
still with normal crossing singularities, is easier. The details have been provided by Coccia
[5]).

1.3.2 Our results on the 3-dimensional projective space

We stress that after Siegel’s theorem on integral points on curves (see e.g. [7, Theorem 3.3.1]
or [10, Theorem 3.9]), the only affine curves admitting infinitely many integral points are
those of genus zero with one or two points at infinity (namely the log-Fano and log-Calabi-
Yau in dimension one!). Now, a way to prove density of integral points on higher dimensional
affine varieties consists in covering the variety (or a Zariski-open subset of it) with rational
curves with just one or two points at infinity. These curves might possess infinitely many
integral points, giving rise to a Zariski-dense set on the variety; see Lemma 3.2.1.

Hence, it might be interesting to describe the Hilbert scheme of lines or of conics on the
given Fano variety, where by lines (resp. conics) wemean those curves which are sent to lines
(resp. conics) under a suitable embedding. If the divisor D at infinity in such an embedding
consists on a hyperplane section (resp. the union of two hyperplane sections), then the lines
and the conics (resp. the lines only) are expected to possess infinitely many integral points.
This last fact however holds only after a suitable extension of the ground field and/or of the
set of places S.

In fact in paragraph 3.2 we shall introduce the new notion of fully integral rational curve;
these rational curves form a family of curves each possessing infinitely many integral points
over any ring of S-integers with infinitely many units. In some cases, the potential density of
integral points on Fano threefolds follows from the existence of a sufficiently large family of
fully integral curves.

Let us come back to Fano threefolds. In the particular case where X = P
3, D is a surface

(with normal crossing singularities) and Xo = P
3 \ D, it holds that Xo is log-Fano whenever
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deg D ≤ 3 and log-Calabi-Yau for deg D = 4. The case of log-Fano (deg D ≤ 3) is probably
well-known; however, in some very simple cases we know no reference for a proof; for
instance our Theorem 3.3.3 settles the case for the complement of a smooth cubic surface in
P
3 in a stronger form.
The crucial log-Calabi-Yau case, deg D = 4, is still open. We believe that when D

is smooth (in particular irreducible) it consists in a deep problem; even its analogue in
complex-analysis, namely the existence of a Zariski-dense entire curve in P

3 omitting D, is
still unknown. To have an idea of the limitations of the straight lines technique mentioned
above, consider the basic case where D is a smooth quartic surface. The integral points
on Xo = P

3 \ D correspond also (via the Chevalley-Weil Theorem—see [8] for a modern
treatment) to the integral points on the double solid X ′ branched over D with respect to a
hyperplane section D′ (the pre-image of D). The lines on X ′ correspond to the bitangents
(in P

3) to D; however, the attempt to prove the potential density of integral points on X ′ or
on X ′o := X ′ \ D′ by constructing integral points on such lines is doomed to failure, since
there exist only finitely many such lines which are defined over a given number field (this is
Theorem B in our recent work [12]).

Even the case where D is the union of two quadrics Q1, Q2 is not fully solved. In this
context we have a natural notion of bitangent line to Q1 ∪ Q2. The surface of bitangents
turns out to be the union of a Kummer surface and a ruled surface with elliptic base; in
both surfaces, rational points are proved to be Zariski-dense. However, as we shall explain
in Theorem 3.5.3, the fully integral curves are not enough to generate a Zariski-dense set
of integral points: this is proof of the fact that the method of using straight lines has strong
limitations. Nevertheless, when the two quadrics intersect in the union of two conics, then
the construction of integral points based on the family of fully integral curves does work and
leads to:

Theorem [A] Let X0 be the complement of P
3 by the union of two quadrics such that their

intersection contains a smooth conic. Then the integral points of Xo are potentially dense.

We provide two proofs of the above theorem, the first one exploiting a two-dimensional
family of conics on Xo, which turn out to be fully integral. We think quite interesting to
compare the arithmetical proof of the above Theorem [A], see the proof of Theorem 3.4.1,
which is grounded on the Beukers’ result recalled in Lemma 3.2.1, with a proof based on the
birational geometry, as the one of Theorem 4.2.2.

For the case where D has three components (necessarily a quadric and two planes) the
conjecture is settled:

Theorem [B] Let Xo be the complement of P
3 by the union of a smooth quadric surface Q

and two planes �1, �2 such that the intersection Q ∩ �1 ∩ �2 is proper (i.e. it consists of
two points). Then the integral points on Xo are potentially dense.

See: Theorem 3.3.2.
In Theorem 3.3.3 we consider a special log-Calaby-Yau case:

Theorem [C] Let Xo be the complement of P
3 by the union of a smooth cubic surface V and

a plane �, such that the intersection V ∩ � contains a line.Then the integral points on Xo

are potentially dense.

Actually the general case of the complement of a smooth cubic V and a plane � is still
unknown even if in Conjecture 3.3.4 we favor an affirmative answer.
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1.4 Other rational Fanos 3-folds

Notwithstanding the above results are special, they also provide results for open sets of other
rational Fanos. In this work we present some cases which should shed some light on the
full topic. For example, in [1, Theorem 1.1. Table 1] are collected those Fano threefolds A
obtained by blowing-up P

3 along a curve � and such that −KA is big and nef. A systematic
study on the integral points for all the Fanos obtainable in this way is beyond the aims of
this work. Actually those ones where −KA is ample and the use of Proposition 3.3.2 is quite
straightforward are studied in this work. Indeed it seems us that, at least in the case where
−KA is ample, the images of the various exceptional divisors have a degree too big to apply
successfully Proposition 3.3.2, except in those cases treated in this paper. We intend to study
some of the remaining cases, that is when −KA is big and nef, that is the case where A is a
weak Fano, in a future project.

1.4.1 The quadric threefold

The quadric threefold Q3 ⊂ P
4 has index 3. We have:

Theorem [D] The integral points in the complement of the smooth quadric threefold by three
hyperplane sections or by a quadric section are potentially dense.

See Proposition 4.2.1 and Proposition 4.1.1. Actually by projection from a point of the
smooth quadric the proof is reduced to the case of the complement of P

3 by four projective
planes which is G

3
M and in this case potential density is known. Strangely enough the proof

of the log-Fano case where D is a smooth quadric section is harder; see: Proposition 4.1.1.
The projection from a point P ∈ D reduces to the case of the complement of P

3 by the union
of a smooth cubic V and a plane � which have a line in common. As we mentioned above
we prove in Theorem [C] that the corresponding set of integral points is potentially dense.

1.4.2 Rational Fanos with Picard number 1 and index 1 or 2

Basically, we shall be interested in the following situation: given a rational Fano threefold
of index 1 and with Picard number 1 embedded in a projective space via its anti-canonical
divisor, study the integral points in the complement of one hyperplane section. Whenever
the Fano threefold has index 2, we shall consider both the complement of one hyperplane
section (log-Fano case) and the complement of two hyperplane sections (log-Calabi-Yau
case); needless to say, the proof of the potential density of integral points in the last case is
usually more difficult.

If X = Q1 ∩ Q2 ⊂ P
5 is the smooth quadric complex we fully solve the log-Fano case

and the log-Calabi-Yau one only in special cases.

Theorem [E] The set of integral points of the complement of a smooth quadric complex in
P
5 by an hyperplane section or by two hyperplane sections which share a common line is

potentially dense.

See Proposition4.3.2 and Proposition 4.3.1.
If X is the del Pezzo threefold again we can show the log-Calabi-Yau case in the special

case where the two hyperplane sections have a line in common.

Theorem [F] The set of integral points of the complement on the del Pezzo threefold in P
6 by

two hyperplane sections which have a smooth conic in common is potentially dense.
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See Theorem 4.4.1. Actually by projection from the common conic the proof is reduced to
Theorem [B]. Clearly Theorem [F] implies the log-Fano case and again we provide also an
arithmetical proof of this last case, see sub-section 3.6.3. This arithmetical proof relies on the
fact that the Hilbert scheme of lines on the del Pezzo 3-fold is P

2 and that the set of integral
points of the complement of P

2 by the algebraic closed set formed by the union of three lines
in general position and a finite set of points is potentially dense, see Lemma 3.1.1. Finally we
can show that the subset given by the integral points of the complement of a cubic threefold
with an ordinary double point by two hyperplane sections passing through the singular point
is potentially dense; see Proposition 4.5.1.

1.5 Integral points and the Hilbert scheme of lines and conics

As we saw above, in some cases we can show the density of integral points on higher
dimensional affine varieties if there are many rational curves with just one or two points at
infinity. Indeed the study of the Hilbert scheme of lines and of conics is a natural step to tackle
with our problems on the density of integral points. The first section of the paper concerns a
result, as interesting as easy to be proved, on the arithmetic of Hilbert scheme of lines and of
conics for almost all deformation classes of smooth Fano threefolds. At a first reading, the
reader can skip to read Section 1 without prejudice to his understanding of the rest. Indeed we
show by a case by case check, that, letting aside very special deformation classes, the subset
of rational points of the Hilbert schemes of lines or of conics is degenerate except in the
obvious cases. In Remark 2.5.1 we propose the new notion of K-standard Fano. This notion
is crucial to adapt to the arithmetical study of Fanos the property of a Fano X to be generic
in its deformation class when one works over C. For the Hilbert scheme of lines �(X) of
a K-standard Fano X of index 1 or 2 and Picard number ρ = 1, we show in Proposition
2.6.1 that the set of its K-rational lines is degenerate except if X is a quadric complex or
the del Pezzo 3-fold of degree 5 and in these last two cases this set is dense. Instead for the
Hilbert scheme of conics, we show in Proposition 2.10.1 that the set of its K-rational conics
is degenerate except if X is the del Pezzo 3-fold of degree 5 or X has genus 10 or 12 where
density holds. As a by-product of our review is a new problem, to our knowledge never raised
in the literature, about the size of the image of the Abel-Jacobi map, which we point out the
reader in Problem 2.9.9.

2 Hilbert schemes of lines and conics

This section is taken from [22, Sect. 4.1], [23, Sect. 2] and we have followed the presentation
of [4, Sec. 5] and [20, Subsection 3.1].

2.1 Fano threefolds

A smooth Fano threefold X is a smooth threefold with ample anti-canonical divisor. To
classify Fano threefolds means that given the values of certain biregular invariants of X then
X belongs to a class of smooth varieties which can be described in a very explicit geometrical
way.

The Fano-Iskovskikh classification relies on the following 5 biregular invariants of X :

ρ(X), g(X), ι(X), d(X), m0(X)
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where ρ(X) is the Picard rank of X . By c.f. [22, Proposition 2.1.2] Pic(X) is the torsion free
abelian group of rank ρ, g(X) is the genus and it holds:

g(X) = (−KX )3

2
+ 1 = dimC | −KX | −1 ≥ 2

The number ι(X) is called the index. It is the maximal natural number such that for the class
[−KX ] ∈ Pic(X) it holds that [−KX ] = ι(X)[H ] where H is an ample divisor; d(X) = H3

is the degree of X and finally m0(X) is the Matsusaka constant, that is the least integer such

that m0(X)[H ] is the class of a very ample divisor. Since g(X) = ι(X)3d(X)
2 + 1 then it

holds that d(X) = 2 g(X) − 2 if and only if ι(X) = 1. We remark that by Mori-Mukai’s
classification of smooth Fano threefolds of rank ρ ≥ 2 there are 87 families of such Fano
threefolds, [27–29]. As far as we know there is not an available classification of their Hilbert
schemes of lines. From now on we consider Fano threefolds with Picard rank equal to 1.

2.2 Smooth Fano threefolds with�(X) = 1

These threefolds are distributed into 17 deformation families. They can be grouped according
to the index ι(X) which is a positive natural number less than 4. If ι(X) = 4 then X = P

3

and if ι(X) = 3 then X is the smooth quadric in P
4, see c.f. [22, Theorem 3.1.14, and Propo-

sition 3.1.15]. Below we consider the cases where ι(X) = 1 or ι(X) = 2.

2.2.1 Smooth Fano threefolds with�(X) = 1 and �(X) = 2

The 5 families of Fano threefolds with ι(X) = 2 and ρ(X) = 1 are classified according to
the anticanonical degree (−KX )3 = 8d where d = 1, 2, 3, 4, 5 as follows:

(1) d = 1, X is a hypersurface in P(1, 1, 1, 2, 3) of degree 6;
(2) d = 2, X is the double cover of P

3 branched in a quartic surface;
(3) d = 3, X is a cubic hypersurface in P

4;
(4) d = 4, X is the complete intersection of two quadrics in P

5;
(5) d = 5, X = B5 is a transversal section of G(2, 5) ⊂ P

9 by a linear subspace of
codimension 3.

We stress that by a result of Iskovskikh in the case d = 5, B5 is unique (up to biregular
morphisms); see: c.f. [22, Corollary 3.4.2.].

2.2.2 Smooth Fano threefolds with�(X) = 1 and �(X) = 1

The 10 families of Fano threefolds with ι(X) = ρ(X) = 1 are classified according to the
genus g as follows:

(1) g = 2, X is a double cover of P
3 branched over a smooth sextic surface;

(2) g = 3, X ⊂ P
4 is a smooth quartic threefold, or a double cover of a smooth quadric in

P
4 branched in an intersection with a quartic;

(3) g = 4, X ⊂ P
5 is a complete intersection of a quadric and a cubic;

(4) g = 5, X ⊂ P
6 is a complete intersection of three quadrics;

(5) g = 6, X is section ofG(2, 5) ⊂ P
9 by a linear subspace of codimension 2 and a quadric,

or X is a double cover of the Fano threefold B5 branched in an anticanonical divisor;
(6) g = 7, X is section of a connected component of the orthogonal Lagrangian Grassman-

nian OG+(5, 10) ⊂ P
15 by a linear subspace of codimension 7;
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(7) g = 8, X is a section of G(2, 6) ⊂ P
14 by a linear subspace of codimension 5;

(8) g = 9, X is a section of the symplectic Lagrangian Grassmannian LG(3, 6) ⊂ P
13 by a

linear subspace of codimension 3;
(9) g = 10, X is a section of the homogeneous space G2/P ⊂ P

13 by a linear subspace of
codimension 2;

(10) g = 12, X is the zero locus of three sections of the rank-3 vector bundle
∧2 U∨ where U

is the universal subbundle on G(3, 7).

As often remarked by several authors, the two cases occurring for ρ(X) = ι(X) = 1 and g =
6 belong to the same deformation family and the same occurs for the case ρ(X) = ι(X) = 1
and g = 3.

2.3 Restrictions

By [23, Lemma 2.1.1], see also [23, Remark 2.1.2] in order to avoid pathologies in the
shape of the Hilbert schemes, in this work we will restrict our considerations mainly to those
deformation families where 2H is very ample in the case of lines and to the case where H
is very ample in the case of conics. In other words, for the Hilbert schemes of lines we will
not consider the case where ρ(X) = 1, ι(X) = 2 and X is a hypersurface in P(1, 1, 1, 2, 3)
of degree 6 and ι(X) = 2) nor the case where ρ(X) = ι(X) = 1 and X is a double cover of
P
3 branched over a smooth sextic surface.
For the Hilbert scheme of conics, we will exclude both the cases where ρ(X) = 1 and

ι(X) = 2 and X is a hypersurface in P(1, 1, 1, 2, 3) of degree 6 or X is the double cover of
P
3 branched in a quartic surface than the cases where ρ(X) = ι(X) = 1 and X is a double

cover of P
3 branched over a smooth sextic surface or X is a double cover of a smooth quadric

in P
4 branched in an intersection with a quartic.

2.4 Hilbert schemes of lines where�(X) = 1 and �(X) = 2

We recall that if ι(X) = 4 then X = P
3 and the Hilbert scheme of lines is the Grasmannian

G(2, 4) which is realised as the Klein quadric inside P
5, while if ι(X) = 3 then X = Q3 is

a smooth quadric in P
4 and the Hilbert scheme of lines is P

3; see c.f. [35, Section 6].
We also recall that if ρ(X) = 1, ι(X) = 2 and d = 1, the first multiple of H to be very

ample is 3H : this gives rise to an extra component in moduli. Hilbert scheme Hilb(X , t + 1)
has two irreducible components M1 and M2, parametrizing smooth lines and genus 1 curves
union a point, respectively, see: [31, Theorem 3.7]. We do not study this case.

For the remaining cases, d(X) = 2, 3, 4, 5, it holds that 2H is very ample. We can split
our description in two subcases: d(X) = 2, that is the case where X is a quartic double solid,
and the case where d(X) ≥ 3.

Proposition 2.4.1 If X is a quartic double solid branched over a quartic surface which
contains no lines then�(X) is a smooth surface of general type with the following invariants:
q(�(X)) = 10, pg(�(X)) = 101, h1(�(X),�1

�(X)) = 220, c2(�(X)) = 384.

Proof See [38, Cohomological study pp. 41–45]. See also [36], and [11]. �
If d ≥ 3 we have:

Proposition 2.4.2 Let X be a smooth Fano threefold with ρ(X) = 1, ι(X) = 2 and d(X) ≥ 3.
Then the Fano scheme of lines σ(X) is a smooth irreducible surface. In particular,
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(1) If d = 3 then�(X) is a minimal surface of general type with q(�(X)) = 5, pg(�(X)) =
10, and K 2

�(X) = 45;
(2) If d = 4 then �(X) is an abelian surface;
(3) If d = 5 then �(X) = P

2.

Proof See c.f. [23, Thm. 1.1.1]. �

2.5 Hilbert schemes of lines where�(X) = 1 and �(X) = 1

If g ≥ 4 or g = 3 and X is a quartic threefold then the anticanonical divisor is very ample, and
the linear system | −KX | defines an embedding of X onto a projectively normal threefold of
degree 2g − 2 see c.f. [4]. By [23, Lemma 2.2.3] we know that every irreducible component
of �(X) is one dimensional and that if X is general in its deformation class then �(X) is a
smooth curve of positive genus see: [22, Theorem 4.2.7].

If g = 2 or g = 3 and | KX | defines a double cover over a smooth quadric threefold
Q ⊂ P

4 ramified along a smooth surface S ⊂ Q of degree 8 then 2H is not very ample and
we do not study here these cases.

The following remark is crucial.

Remark 2.5.1 In many cases�(X) can havemore than an irreducible component and in some
cases everywhere nonreduced components occur. On the other hand by the very construction
of Fano 3-folds and of their Hilbert schemes it holds that the description of �(X), and as
well of S(X), obtained for the general X in the corresponding deformation family works
perfectly for a dense set in this family given by Fanos defined over Q or on a number field
K. Hence from now on, when we will consider Fanos defined over K we will always refer
to those ones for which the associated Hilbert schemes behave as in the general case of the
corresponding deformation family. We refer to these Fanos over K as K-standard Fanos.

2.6 Basic arithmetic on the Hilbert schemes of lines where�(X) = �(X) = 1 or
�(X) = 1, �(X) = 2

If X is a K-standard Fano threefold, a K-rational line is simply a K-rational point of �(X).
The following Proposition is our first result about the arithmetic of Fanos.

Proposition 2.6.1 Let X be a smooth K-standard Fano threefold. Assume that ρ(X) = 1 =
ι(X) = 1 and g ≥ 4 or g = 3 and X is a quartic threefold or ρ(X) = 1, ι(X) = 2
and 2 ≤ d(X) ≤ 3. Then the set of K-rational lines in the Fano scheme of lines �(X) is
degenerate. If ρ(X) = 1, ι(X) = 2 and d = 4 then it is dense. If ρ(X) = 1, ι(X) = 2 and
d = 5 then it is dense.

Proof If ρ(X) = 1 = ι(X) = 1 and g ≥ 4 or g = 3 and X is a quartic threefold then�(X) is
a smooth curve of general type. Hence the claim follows by Faltings’ theorem. If ρ(X) = 1,
ι(X) = 2 and d = 2 then X is a quartic double solid and the finiteness of the rational points
on the corresponding surface�X is the main result of [12]. If ρ(X) = 1, ι(X) = 2 and d = 4
then �(X) is an abelian variety, hence its rational points are potentially dense (simply take
any algebraic point generating a Zariski-dense subgroup). If ρ(X) = 1, ι(X) = 2 and d = 5
then �(X) = P

2. �
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2.7 Hilbert schemes of conics

We turn our attention to the Hilbert scheme of conics S(X). We follow the standard partition
among the families of Fanos.

2.8 Hilbert schemes of conics where�(X) = 1, �(X) = 2 and H is very ample

For the case ρ(X) = 1, ι(X) = 2 and d = 2, that is the case of quartic double solid π : X →
P
3, where H is not very ample, we know that S(X) has a morphism over the dual of P

3 whose
general fiber is a disjoint union of 126 rational curves: [17, Lemma 2.5. and the full Section 2].
The arithmetic question of the denisty of rational points in this four-fold is left open.

For the remaining case it holds:

Proposition 2.8.1 Let X be a smooth Fano threefold with ρ(X) = 1, ι(X) = 2 and H is very
ample. Then for the Fano scheme S(X) of conics it holds:

(1) If d = 3 then S(X) is P
2-bundle over �(X);

(2) If d = 4 then S(X) is a P
3-bundle over a curve of genus 2;

(3) If d = 5 then S(X) is isomorphic to P
4.

Proof For the case d = 3 see [15, Proposition 3.3]. See c.f.[23, Proposition 2.3.8]. �

2.9 Hilbert schemes of conics where�(X) = �(X) = 1

As we were reviewing the literature on S(X) it seemed to us that the behaviour of the Abel-
Jacobi map from S(X) to the intermediate Jacobian J (X) of X is still not fully described.
We do not need to clarify this point for our aims in this work. Nevertheless we consider it
appropriate to point out the reader that for ρ(X) = ι(X) = 1 it makes sense to consider four
subcases: 3 ≤ g ≤ 5, g = 6, g = 9, g ≥ 7 and g �= 9, as far as the Abel-Jacobi map it
concerns.

2.9.1 The case g=3

The description and the geometry of S(X) is given in [6].

Proposition 2.9.1 If X ⊂ P
4 is a smooth quartic threefold then S(X) is a surface of general

type with the following invariants:

K 2
S(X) = 341040, c2(S(X) = 172704, pg(SX ) = 42841, q(SX ) = 30.

2.9.2 The case g=4

A Fano threefold of genus four is the complete intersection X = Q ∩ W of a quadric Q
and a cubic hypersurface W in P

5. Let T be the rank three tautological vector bundle on
G(3, 6). The Hilbert scheme H2 of conics in P

5 is the total space of the projective bundle
P(Sym2T∨) → G(3, 6). On H2 we have the tautological sequence

0 → OH2 → π�Sym2T∨ → Q → 0
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and the equation fQ , of Q defines a section σQ of Q whose zero-locus is the set of conics
contained in Q. By the exact sequence

0 → OH2(−1) ⊗ π�T∨ → π�Sym3T∨ → M → 0

it remains defined the vector bundleM and the equation fW gives a section σW ofMwhose
zero locus is the set of conics contained in W . Since Q ⊕ M is globally generated and
σQ ⊕ σW is a sufficiently general section, by Bertini’s theorem �(X) is a smooth surface.
More precisely:

Proposition 2.9.2 If X is a general complete intersection X = Q ∩ W of a smooth quadric
Q and a smooth cubic hypersurface W in P

5 then S(X) is a surface of general type with the
following invariants:

K 2
S(X) = 23355, c2(S(X)) = 11961, pg(S(X)) = 2942, q(S(X)) = 20.

Proof See [21, Corollary 10]. �

2.9.3 The case g = 5

If X is a general complete intersection of three quadrics a direct proof about the smoothness
of S(X) is in [30].

Proposition 2.9.3 If X is a complete intersection X = Q1 ∩ Q2 ∩ Q3 of three quadrics in
P
5 then S(X) is a surface of general type with the following invariants:

K 2
S(X) = 3376, c2(S(X)) = 1760, pg(S(X)) = 441, q(S(X)) = 14.

Proof See c.f. [20, p.p. 7, 8]. �

2.9.4 Abel-Jacobi map in the case 3 ≤ g ≤ 5

Theorem 2.9.4 Let X be aK standard Fano threefold whit ρ(X) = ι(X) = 1 and 3 ≤ g ≤ 5.
Then the Abel-Jacobi map from S(X) to the intermediate Jacobian of X is generically finite
onto the image.

Proof See [24, Theorem 7.1 and Lemma 7.2] and Remark 2.5.1. �

2.9.5 The case g = 6

Fano threefolds X of genus 6 are intersection of the Grassmannian varietyG(2, 5) ⊂ P
9 with

a linear subspace of dimension 7 and a quadric. In other words X = G(2, 5) ∩ H1 ∩ H2 ∩ Q
where [H1], [H2] ∈ P

9∨
and Q is a quadric. We assume that G4 := G(2, 5) ∩ H1 ∩ H2 is

smooth.

Proposition 2.9.5 Let X be a smooth Fano threefold with ρ(X) = ι(X) = 1 and genus
g(X) = 6. Up to a codimension 1 loci in the moduli space of X, the Fano scheme of conics
S(X) is a smooth irreducible surface of general type which is the blow-up of a surface S with
q(S) = 10, pg(S) = 101, h1(S,�1

S) = 220, c2(S) = 384.

Proof See [26, Prop 0.1, Prop. 0.5]. �
Remark 2.9.6 Wedo not know if theAbel-Jacobimap from S(X) to the intermediate Jacobian
of X can be factorised through a curve for some loci in the deformation class of these Fanos.
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2.9.6 The case g ≥ 7

As far as the Abel-Jacobi map it concerns definitely for the case g = 9 S(X) cannot be
mapped generically finitely on the intermediate Jacobian of X . It holds:

Proposition 2.9.7 Let X be a smooth Fano threefold with ρ(X) = ι(X) = 1 and genus
g = g(X) ≥ 7. Then the Fano scheme of conics S(X) is a smooth irreducible surface. More
precisely,

(1) If g = 7 then S(X) is the symmetric square of a smooth curve of genus 7;
(2) If g = 8 then S(X) is a minimal surface of general type with q(X) = 5, pg(X) = 10,

and K 2
X = 45;

(3) If g = 9 then S(X) is a ruled surface isomorphic to the projectivization of a simple rank
2 vector bundle on a smooth curve of genus 3;

(4) If g = 10 then S(X) is an abelian surface;
(5) If g = 12 then S(X) is isomorphic to P

2.

Remark 2.9.8 To know the relation between S(X) and the intermediate Jacobian of X in the
case 2 ≤ g ≤ 12, g �= 11 see [20, Section 3.1] and the literature quoted therein.

We think that the following is an open problem:

Problem 2.9.9 For each deformation families find the loci (it could be empty) where S(X)

maps to a curve of the intermediate Jacobian of X via the Abel-Jacobi map.

2.10 Basic arithmetic on the Hilbert schemes of conics

If X is a K-standard Fano threefold, a K-rational conic is simply a K-rational point of S(X).

Proposition 2.10.1 Let X be a K-standard Fano threefold. If ρ(X) = 1 = ι(X) = 1 and
4 ≤ g ≤ 9 (g �= 11) or g = 3 and X is a quartic threefold or if ρ(X) = 1, ι(X) = 2 and
3 ≤ d(X) ≤ 4 then the set of K-rational conics in the Fano scheme of conics in S(X) is
degenerate. If ρ(X) = 1, ι(X) = 2 and d = 5 or ρ(X) = 1 = ι(X) = 1 and g = 10 or
g = 12 the set of K-rational conics is dense in S(X)

Proof It is a standard case to case analysis which used the same results used to show Propo-
sition 2.6.1. �

We think that notwithstanding its proof is rather easy, Proposition 2.10.1 and Proposition
2.6.1 constitute an important first step in understanding the arithmetic of Fano threefolds.
Moreover they show clearly that to study potentially density of integral points by a brute use
of Hilbert schemes seems to be of little help in almost all the cases.

3 Density of integral points on certain varieties

We recall the formal definitions of integral and potential density of integral/rational points.
Let X be a projective variety (already embedded in a projective space), D ⊂ X a proper
Zariski-closed subset, both defined over a number field K. Let S be a finite set of places of
K, containing the archimedean ones.
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Definition 3.0.2 We say that a rational point x ∈ (X \ D)(K) is S-integral if for no place of
K outside S it reduces to a point in D.

Definition 3.0.3 We say that the rational points are potentially dense if there exists a finite
extension F of K such that X(F) is Zariski-dense.

Definition 3.0.4 We say that the integral points are potentially dense if there exists a number
field- F as before and a finite set S′ containing all the places above those of S sucht that the
S′-integral points on X \ D are Zariski-dense.

3.1 Integral points and the puncturing conjecture

Closely related to the construction of integral points on affine varieties is the following
conjecture proposed by B. Hassett and Yu. Tschinkel [18], which we name ‘the puncturing
conjecture’:

Conjecture [The puncturing conjecture]. Let X be a smooth projective variety
over a number field K such that the set X(K) of rational points is Zariski-dense. Let Y ⊂ X
be a closed sub-variety of codimension ≥ 2. Then the integral points of X \Y are potentially
dense.

The first instance of this conjecture is represented by the case of a surface X and a finite
set Y , hence the name we propose for the conjecture.

The above conjecture does not concern directly affine varieties, since the complement of a
higher codimensional closed set in a projective variety is never affine: however, its application
to varieties obtained as Hilbert schemes of lines (or of conics) on Fano threefolds will provide
density results on integral points on affine open sets of such threefolds.

The result is elementary for X = P
2, and Y an arbitrary finite set (we give a proof below

for lack of a reference). As mentioned by Hassett and Tschinkel, this is known to hold also
for products of elliptic curves, but is still unknown for simple abelian varieties (even in the
case where Y is a single point). Here is a result strenghtening the puncturing conjecture for
X = P

2:

Lemma 3.1.1 Let Y ⊂ P
2 be the algebraic closed set formed by the union of three lines in

general position and a finite set of points outisde the three lines. Then the integral points on
X0 := P

2 \ Y are potentially dense.

Clearly this lemma implies the puncturing conjecture for the plane.

Proof We can enlarge the field of definition K so that we have that each line and each point
in the relevant finite set is K-rational; also we can choose coordinates in P

2 so that one of
the three lines lies at infinity and the other two are expressed, in affine coordinates x, y,
by the equations x = 0 and y = 0. Then the integral points on P

2 with respect to the
three lines are represented, in these affine coordinates, by pairs of units (α, β) ∈ O∗

S × O∗
S .

Let P1 = (a1, b1), . . . , Pn = (an, bn) be a finite set of points in G
2
m(K). After a suitable

enlargement of S we shall construct a Zariski-dense set of points (α, β) ∈ O∗
S × O∗

S which
are integral with respect to P1, . . . , Pn . We first enlarge S so that the ai and the b j are S-units.
Now, the integrality of a point (α, β) ∈ O∗

s ×O∗
S with respect to P1, . . . , Pn just means that

there is no prime ideal inOS containing both α − ai and β − bi for some i ∈ {1, . . . , n}. We
now enlarge S so that the group O∗

S is infinite and admits two elements α, β of infinite order
with α integral with respect ot a1, . . . , an and β integral with respect to b1, . . . , bn . Take
any power αm of α distinct from any of the a1, . . . , an (in the case some of the ai belongs

123



P. Corvaja, F. Zucconi

to the group generated by α); this unit αm can be congruent to one of the ai only modulo a
finite number of places. Let I be the product of the prime ideals modulo which some of the
ai is congruent to αm . Since β is a unit, it does not belong to I, hence has finite order, say
k ≥ 1, modulo I; then the points βkn+1, for n = 1, 2, . . ., are all congruent to β modulo I,
so in particular they are not congruent to any of the bi , i = 1, . . . , n. Then clearly the points
(αm, βnk+1) do not reduce to any of the points (ai , bi ) modulo any valuation of S. �

Note that this proof extends verbatim to any pair (X , Y ) where X is a product of semi-
abelian varieties, for instance to the product of two elliptic curves, or of an elliptic curve by
a torus, and Y a finite set.

3.2 The fully integral curves

We follow ideas of F. Beukers, further developped byB.Hassett andYu.Tschinkel [18], aimed
at constructing dense sets of integral points on higher dimensional varieties. The starting point
will be Lemma 3.2.1 below.

3.2.1 The notion of S-integral point with respect to the divisor D

We fix a projective algebraic variety X ⊂ P
N embedded once for all in a projective space,

defined over a number field K. We assume D ⊂ X to be a closed proper sub-variety, also
defined over K. We fix a finite set of places S of K and denote byOS the corresponding ring
of S-integers.

Recall that a rational point x ∈ Xo := X \ D is said to be S-integral with respect to D if
for no prime ideal P of OS the point x reduces modulo P to a point of D. Whenever D = y
is a point, we say that x and y are coprime if x is integral with respect to y. Note that this is
a symmetrical condition.

We take an algebraic variety X of dimension n ≥ 2 (usually the dimension will be 3 in
this work) and we are interested in constructing integral points on Xo by finding in Xo a
n − 1-dimensional family of curves each admitting infinitely many integral points.

3.2.2 Beukers Lemma

As we said, whenever L is a rational curve with one or two points at infinity, its integral
points are potentially dense. However, in our construction we need that for a given ring of
S-integers, infinitely many of the curves we consider have infinitely many S-integral points.
The main tool to search S-integral points is represented by the following:

Lemma 3.2.1 Let L ⊂ X be a smooth rational curve which does not reduce to a curve in D
modulo any place outside S.

(a) If L ∩ D consists in a single point then the set L(OS) of S-integral points of L is infinite.
(b) If L ∩ D consists in a pair of coprime rational points A, B and the group of S-units O∗

is infinite, then L(OS) is infinite.
(c) If L ∩ D consists in a pair of non-coprime rational points A, B and the group of S-units

O∗ is infinite, then L(OS) is infinite if and only if it is non-empty.
(d) If L ∩ D consists in a pair of (conjugate) quadratic points over K, then L(OS) is infinite

if and only if it is non-empty.

For a proof, see [2].
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3.2.3 Case study for Beukers’ Lemma

Let us explain the significance of the above lemma via a concrete examples for each of the
four different cases.

(a) Suppose X is the projective plane and D a line (viewed as the line at infinity, so that
X \ D = A

2). To simplify, suppose that OS = Z. Let ax + by = c be an equation of the
affine line L \ (L ∩ D), where a, b, c are integers with no common factor. The condition that
L does not reduce to the line at infinity D modulo any prime amounts to saying that no prime
divides both a and b. In that case, the Diophantine equation ax + by = c is knwon to admit
infinitely many integral solutions.

(b,c) Suppose again that X is the projective plane and D a line, but now L is a conic, not
tangent to D, so that L ∩ D consists of two points. Suppose these points are rational. The
affine conic will be a hyperbola of equation

(ax + by)(cx + dy) = n

for some S-integers a, b, c, d and non-zero integer n. If ad − bc is a unit in O∗
S , every pair

of integers (ξ, η) can be written in the form ξ = ax + by and η = cx + dy; then, to every
factorization of n = ξ · η (and there exist infinitely many such factorizations if the groupO∗

S
is infinite) there corresponds an S-integral points on the hyperbola. Note that the condition
that ad − bc ∈ O∗

S is equivalent to requiring that the two points at infinity do not coincide
modulo any prime of OS . However, the simple example of the equation (x + y)(x − y) = 2
over Z, or even over Z[1/3] whose group of units is infinite, shows that there might exist no
solutions at all. On the contrary, the example of the equation x2−y2 = 3 over the ringZ[1/3],
or Z[1/n] for any integer n > 1, shows that there might exist infinitely many solutions.

(d) The case of quadratic integral points at infinity leads to Pell-like equations, of the form

x2 − dy2 = n, (3.1)

where d ∈ OS is a non-square. When n = 1 (Pell’s equation) the solutions correspond to
the elements of norm 1 in the ring OS[

√
d] and there are always infinitely many of them. In

some cases (e.g. d = 3, n = 2 and OS = Z) Eq.3.1 admits no solutions. If, however, there
exists one solution, then there exist infinitely many others, since the set of solutions is acted
on by the infinite group of linear transformations defined over the integers conserving the
quadratic form on the left-hand of equation (3.1). The infinitude of this group corresponds
to the infinitude of the set of solutions for n = 1.

3.2.4 The notion of fully integral rational curve

Hence, under the provisio that the group O∗
S is infinite, the cases where we can conclude

that the curve L contains infinitely many integral points without checking the presence of
a single integral point are cases (a) and (b). We agree to call fully integral a rational curve
which never reduces to a curve at infinity and satisfies the property (a) or (b) of Beukers’
Theorem, that is our Lemma 3.2.1 above.

A smooth rational curve on a variety Xo = X \ D which merely satisfies the condition of
having at most two points at infinity and not reducing to a curve in D modulo any prime is
called integral. We stress that integral lines could give infinite S-integral points with respect
to D if for some extra reasons one could show that condition c) or condition d) holds for
(some of) them. We like to think that this quest on the geometry of (X , D) in order to gain
condition c) or condition d) of Beukers Lemma 3.2.1 will be able to revitalize the study of
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delicate questions of classical projective geometry. We point out the reader that whenever
O∗

S is infinite, the set L(OS) is infinite whenever it is non-empty, for any rational integral
curve L .

3.3 The complement in P
3 of the union of two quadrics

In this subsection we shall consider the integral points on the complement of two quadrics
in P

3, whose union has normal crossing singularities.

3.3.1 The case of a smooth quadric and two planes

We first treat the easy case where one of the two quadrics is reducible, i.e. the union of two
planes:

Lemma 3.3.1 Let Q ⊂ P
3 be a smooth quadric and let h1, h2 be two smooth hyperplane

sections intersecting properly (i.e. in two points). Let lq , rq be the two lines lying on Q
passing through one of the two intersection points in h1 ∩ h2. Then the integral points on
Qo := Q \ (lq ∪ rq ∪ h1 ∪ h2) are potentially dense.

Proof Let q ∈ h1 ∩ h2 and let lq , rq be the two lines in Q through q . Let f : S → Q be
the blow up at q , E the −1-curve above q and h′

1, h
′
2, l

′
q , r

′
q the strict transform of h1 and,

respectively h2, lq , rq . Let f ′ : S → P
2 be the contraction of the two −1 curves l ′q , r ′

q . The
composition f ′ ◦ f −1 is a well defined isomorphism g : Qo → P

2 \ (L ∪ L1 ∪ L2) where
L := f ′(E), Li := f ′(h′

i ), i = 1, 2 are lines in general position. By Lemma 3.1.1 the claim
follows. �
Theorem 3.3.2 Let Q be a smooth quadric surface. Let H1, H2 be two planes whose inter-
sections with Q are smooth conics intersecting properly (i.e. in two points). Then the integral
points on Xo := P

3 \ (Q ∪ H1 ∪ H2) are potentially dense.

Proof Set, for i = 1, 2, hi := Hi ∩ Q. Let {q, q̂} := h1 ∩ h2. Let lq , rq be the lines on Q
passing through q . Enlarge the ring of S-integers so that the integral points on Q with respect
to h1 ∪ h2 ∪ lq ∪ rq are Zariski-dense and the group of units is infinite.

Let p be an integral points on Q\(h1 ∪ h2 ∪ lq ∪ rq) and let s = s(p) be the line joining q
to p. We claim that s does not reduce to any line on Q nor to a line on H1 ∪ H2. Indeed, since
q ∈ s, the only lines on Q wich might be congruent to s modulo some prime are lq , rq , but
this is excluded by the fact that p is integral with respect to these lines. Since p is integral
also with respect to H1, H2, the line s cannot reduce to H1 ∪ H2.

Now, s is fully integral with respect to D := Q ∪ H1 ∪ H2 since it does not reduce to a
line on D and D ∩ s is given by the two coprime points q, p. By Lemma 3.2.1, s contains
infinitely many S-integral points.

Since p varies in a two-dimesional set, and any two distinct such lines s(p1), s(p2) always
intersect only at q , the union of such lines is Zariski-dense on P

3 and the result follows. �

3.3.2 Interlude: the case of a smooth cubic and a plane

Let us consider still another quartic case, the union of a smooth cubic surface and a plane;
however, to provide the sought density result for integral points we shall need that their
intersection contains a line:
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Theorem 3.3.3 Let D ⊂ P
3 be the union of a smooth cubic surface V and a plane H.

Suppose that the intersection V ∩ H contains a line L. Then the integral points on P
3 \ D

are potentially dense.

Proof Let H ∩V = L ∪CH where L ∩CH = {a, b}. The plane H is tangent to V at the two
points a, b ∈ L . We can enlarge the set S so that L contains infinitely many integral points
with respect to a and b and that O∗

S is infinite. Let L
′ be any tri-tangent line to V of V ∩ H ,

not contained in D; enlarge again S so that L ′ does not reduce to a line of D modulo any
prime. We set {pL ′ } := L ′ ∩ V .

Let x ∈ L be a point of L which is integral with respect to a, b. The tangent plane TxV
to V at X contains L . Then the intersection TxV ∩ V is the union of a conic Cx and the line
L . It holds that C ∩ L := {x, x ′} where x ′ is another point of C . Since x is integral with
respect to a, b then TxV does not reduce to H = TaV = TbV modulo any prime. Now we
set L ′ ∩ TxV := {y}. Note that L ′ ∩ L = ∅. We claim that the pointy y does not reduce to
D for any prime outside S. Indeed if y ∈ L ′ reduces to D = V ∪ H then y reduces to pL ′
since L ′ ∩ (H ∪ V ) = {pL ′ }. Then L ′ becomes tritangent to y and y reduces to L ∪ Cx .
Hence TxV becomes the unique plane which contains L and pL ′ ; but this plane is H . Then
TxV reduces to H . Thus TxV reduces to TaV or to TbV . In particular x reduces to a or b:
a contradiction. Since the point y of the plane TxV does not reduce to D it does not reduce
to D|Tx V = L ∪ Cx . Now we consider the line Lx,y through the points x and y. This line
intersects D in the point x and in another point z ∈ Cx , but it never reduces to D. Moreover
it contains the point y which is integral with respect to x and z. There are two sub-cases. If
x and z are coprime, by Lemma 3.2.1 (b) then Lx,y contains infinite many integral points
with respect to D. If x and z are not coprime, nevertheless Lx,y contains the point y which is
integral with respect to “the two points at infinite”x and z, and so by Lemma 3.2.1 (c), even
in this case Lx,y contains infinite many integral points with respect to D.

Finally moving the point x among the integral points of L \ {A, B}, that is, moving the
planeW = TxV in the pencil of planes containing the line L , we construct a one-dimensional
family of surfaces each with a Zariski-dense set of integral points with respect to D. This
implies our claim. �

We propose the following:

Conjecture 3.3.4 Let D = �∪�where� and� are respectively a plane and a cubic surface
in P

3. Suppose that D has normal crossing singularities. Then the integral points on P
3 with

respect to D is potentially dense.

3.4 The case of the union of two quadrics with reducible intersection

Let Q1, Q2 ⊂ P
3 be two smooth quadric surfaces, defined over a number field, such that

their intersection is the union of two smooth conics. The complement X0 := P
3 \ (Q1 ∪ Q2)

is log-CY; we can prove in this case the potential density of integral points on Xo:

Theorem 3.4.1 Let Xo = P
3 \ (Q1 ∪Q2) as above. The integral points on Xo are potentially

dense.

Proof We construct a Zariski-dense set of fully integral conics. Let C1,C2 be the two conics
whose union gives Q1∩Q2, H1, H2 be the corresponding planes (i.e. Hi ∩Q1 = Hi ∩Q2 =
Ci ) and set {q, q̂} = C1 ∩ C2. Consider the pencil of planes generated by H1, H2 (i.e the
pencil of planes containing {q, q̂}). Each plane H in the pencil intersects Q1 ∪ Q2 in a pair
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of bitangent conics CH
1 ,CH

2 (which coincide precisely in the two cases when the plane H
equals H1 or H2). Now, in the mentioned pencil of planes there are infinitely many integral
points with respect to H1, H2; choose one such point H , i.e. a plane which never reduces to
H1 nor to H2. Then the two conics CH

1 ,CH
2 do not reduce to each other modulo any prime.

Then the pencil of conics on H generated byCH
1 ,CH

2 contains infitelymany points which are
integral toCH

1 andCH
2 ; all such conics, even the reducible ones, are fully integral curves with

respect to Q1 ∪ Q2. Their union being Zariski-dense in H , and by varying H Zariski-dense
in P

3, we construct a Zariski-dense set of integral points, still exploiting Lemma 3.2.1. �

3.5 The case of the union of two quadrics which intersect properly

Let Q1, Q2 ⊂ P
3 be two smooth quadric surfaces, defined over a number field such that their

intersection is a smooth curve E = Q1 ∩ Q2 of genus one.
We say that a line is bitangent to D = Q1 ∩ Q2 if it touches D with multiplicity ≥ 2 at

each of its intersection points. These bitangent lines can be of two types:

(1) The bisecants to E = Q1∩Q2 intersect D only at singular points, so they are bitangents.
They form a surface, which can be described as the symmetric square of E . It is a ruled
surface with base E .

(2) The lines which are tangent to both Q1 and Q2. These are the proper bitangents. They
form a surface which we denote �.

The two families, viewed as sub-varieties of the GrasmannianG(2, 4), intersect in a curve,
denoted by Ẽ which is formed by the quadritangents.

Let � be the set of lines in P
3 which are tangent to both Q1, Q2. This variety is a surface,

which is naturally embedded into the Grasmannian G(2, 4) parametrizing lines in P
3. As

mentioned, the surface � contains a curve, denoted by Ẽ and isomorphic to E , consisting
of the lines which are tangents to both Q1 and Q2 at one of their intersection points. Note
that Ẽ contains sixteen ‘special’points, corresponding to the eight lines (four for each ruling)
contained in Q1 and tangent to Q2 and the four lines contained in Q2 and tangent to Q1.

In the dual projective space, parametrizing the planes in P
3, the points corresponding to

the bitangent planes form the intersection of two smooth quadric surfaces, namely the duals
to Q1 and Q2. This is again a genus one curve. Denote by E ′ its image in Q1 (to each
bitangent plane associate its point of tangency with Q1).

We shall prove the follwing:

Lemma 3.5.1 The surface � is a (Kummer) K3-surface.

Proof Let us consider variety S′ of pairs (p, [l]) ∈ Q1 × � such that p ∈ [l]. The canonical
projection S′ → � has degree one and has eight one-dimensional fibers, namely the points
[l] such that l is included in Q1 (and tangent to Q2). Now, the natural projection S′ → Q1

has degree 2. It ramifies over E ∪ E ′. These curves are both smooth of bidegree (2, 2) and
intersects at eight distinct points; then S′ → Q1 � P

1 × P
1 is the (unique) double cover

ramified over E ∪ E ′; it has singularities over the intersection E ∩ E ′; a simple calculation
of its canonial divisor shows that it is birational to a K3-surface with eight singularities. It
can be desingularized by blowing-up the eight points of E ∩ E ′ and replacing S′ by the
corresponding degree-2 cover of this blown-up surface.
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We finally obtain a diagram

S −→ S′ −→ �

↓ ↓
P̂1 × P1 −→ Q1

(3.2)

where the arrow P̂1 × P1 → Q1 denotes the blow-up of Q1 � P
1 × P

1 at the eight points
of E ∩ E ′. �

The surface S is a smooth K3-surface, and is birational to the surface of bitangents �.
Concretely, it can be defined as a set of triples

S = {(P1, P2, [l]) ∈ Q1 × Q2 × � : P1 ∈ l ∩ Q1, P2 ∈ l ∩ Q2}. (3.3)

Generically, l determines both P1 and P2, with sixsteen exceptions, corresponding to the
singularities of � and giving rise to sixsteen (−2)-curves on S.

We now construct an elliptic fibration on S. The two curves E, E ′ ⊂ Q1 have the same
bidegree, precisely (2, 2), hence they are linearly equivalent. Namely, they generate a pencil,
whose base locus ismade of thementioned eight points. Given a rational function f ∈ K(Q1)

whose divisor is E − E ′, a model for S is given by the equation y2 = f (x), where x ∈ Q1.
Every curve in the pencil has a reducible pre-image in S, whose components have arithmetic
genus 1; generically, these components are smooth. Clearly, E and E ′ are fibers of f , viewing
f as a morphism S → P

1. This morphism admits a Stein factorization

S → P
1 → P

1

where the lastmorphismhas degree 2 and ramifies over f (E), f (E ′); the first one h : S → P
1

has connected fibers. It fits in a diagram

S

h

P̂1 × P1

P
1 z→z2

P
1 = 〈[E], [E ′]〉

(3.4)

where the second vertical arrow is the morphism induced on P̂1 × P1 by the pencil generated
by E, E ′ over Q1 � P

1 × P
1. The fibration h : S → P

1 has general fiber of genus 1 and it
admits eight sections, corresponding to the eight points of intersections E ∩ E ′. Taking one
of them for the origin, we obtain a fibration in elliptic curves (i.e. genus one curves with a
marked point).

Theorem 3.5.2 The rational points on � (hence on S, S′) are potentially dense.

Proof The fact that ellitpic K3 surfaces always admit a potential dense set of integral points
is a theorem of Bogomolov and Tschinkel [3, Theorem 1.1]. Moreover, in this special case
it can be proved that the above elliptic surface has positive Mordell-Weil rank, leading to a
simple way of producing a Zariski-dense set of rational points.

We provide another argument: the surface S projects to both Q1 and Q2 with morphisms
of degree 2. These morphisms are associated to involutions τ1, τ2, which can be described
as follows: take a point s = (P1, P2, l) ∈ S (using the description (3.3) for the surface S)
and associate the point τ1(s) = (P1, P ′

2, [l ′]) where [l ′] is the other bi-tangent that can be
drawed from P1 and P ′

2 is the intersection point of l ′ with Q2. Analogously one defines τ2.
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The group generated by τ1, τ2 is infinite, turning S into a “Markov-like K3-surface’, as first
studied by J. Silverman [32]. (The name derives from the affine cubic surface of equation
x2 + y2 + z2 = 3xyz, a Diophantine equation first considered by Markov; this surface
is endowed with a discrete group of automorphisms, generated by the three involutions
corresponding to the degree-two projections on two coordinates).

The orbit of a generic point under this group is dense, so one can construct in this way a
dense set of rational points.

Still another argument derives from the fact that S is a Kummer surface, quotient of an
abelian surface, where rational points are clearly Zariski-dense. �

The fact that S is covered by an abelian surface derives from the theory of ellipsoidal
billiard. Given a shot in an ellipsoidal billiard Q, i.e. a segment joining two (real) points on
the surface Q, there exist two other confocal quadrics Q1, Q2 -named caustics - such that
each other segment of the billiard trajectory defined by the first shot is tangent to both Q1

and Q2. In chapter 7 of the book by V. Dragovic and M. Radnovic [13] it is explained that
ordered segments of trajectories corresponding to two given caustics are parametrized by an
abelian surface; our surface S is the quotient obtained by forgetting the order of the segments.

As we said, it would be natural to try to construct integral points on P
3 \ D, where

D = Q1 ∪ Q2, by considering the family of fully integral bitangents to D. However, we
have the following negative result:

Theorem 3.5.3 Let D ⊂ P
3 be as above the divisor D := Q1 ∪ Q2. The set of bitangents to

D which are fully integral is degenerate.

Proof Let us first consider the family of bisecants to E ; denote this surface �; it is obtained
as the symmetric square of E . In order that one such line be fully integral, it must neither
reduce to one that is included in Q1 or Q2, nor reduce to a quadrisecant, that is to an element
of Ẽ . While the first condition is almost harmless, boiling down to an integrality condition
with respect to a finite set in�, the second one is an integrality with respect to a curve Ẽ ⊂ �.

Now � admits a ruling over E in the following way: choose a point e ∈ E giving E
the structure of algebraic group; to every un-ordered pair {x, y} ⊂ E we associate its sum
x + y ∈ E obtaining a morphism � → E . Its fibers are all isomorphic to P

1. The curve Ẽ
corresponds to a quadri-section. After the ètale cover of the base [2] : E → E (multiplication
by 2-map), this quadrisection becomes the union of four disjoint rational sections of a fibration
�′ → E .

Now, by the already mentioned Chevalley-Weil theorem the set of integral points of �

with respect to Ẽ lifts (after finite extension of the field of definition) to a set of integral
points on �′ with respect to the four sections. But the complement of the four sections on �′
is isomorphic to the product E × P

1 \ {4 points), so by Siegel’s theorem is degenerate.
Let us consider now the other component of the family of bitangent. We denoted it by �.

Recall that it has sixteen singular points, corresponding to the sixteen bitangents completely
contained in one of the two quadrics. It also contains a genus-one curve, isomorphic to E
and passing through these singular points, parametrizing the quadritangent lines.

Recall that we are looking for bitangent lines which do not reduce modulo any prime to
lines contained in Q1 ∪ Q2 and which do not reduce to any quadritangent line. Hence we
are interested in rational points on � which do not reduce modulo any prime neither to a
singular point nor to the mentioned genus-one curve, which we denote again as E .

Now, under the birational isomorphism S → � the sixteen singular points correspond to
sixteen (−2) curves on the smooth surface S. Hence, the complement in � of these singular
points is isomorphic, as a quasi-projective surface, to the complement of these curves on
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S. The genus-one curve E on � lifts to a curve on S intersecting each one of the above
mentioned sixteen (−2)-curves on S.

We claim that the integral points with respect to this seventeen component divisor in S
form a finite set. Indeed, recalling that S is a Kummer surface, we can consider the degree-two
cover Â → S, where Â → A is the blow-up of an abelian surface at its 2-torsion points.
By Chevalley-Weil theorem again, the rational points on S which are integral with respect
to the sixteen mentioned (−2)-curves lift to rational points on Â (after enlarging the number
field in question). If these points are also integral with respect to ES , they lift to points on Â
which are integral with respect to the pre-image of ES on Â. Pushing to A, we obtain rational
points on A which are integral with respect to a curve EA, obtained as a double cover of a
genus-one curve ramified over sixteen points. By Hurwitz formula, this curve EA has genus
nine and so is (the support of) an ample divisor on A. By Faltings’ theorem [14] the rational
points on an abelian variety which are integral with respect to an ample divisor are finite in
number. �

If we are just interested in the bitangent lines to Q1, Q2 which do not reduce to one of the
sixteen bitangent lines contained in Q1, Q2, i.e. the integral - but not fully integral - bitangent
lines, we have the following

Theorem 3.5.4 Under thePuncturingConjecture, the set of integral bitangent lines is Zariski-
dense in S.

Proof Consider the degree-two cover Â → S of the Kummer surface S, where again Â is
the blow-up of the abelian variety A over the 2-torsion. Under the mentioned conjecture, the
set of integral points of Â with respect to the exceptional divisors is Zariski-dense. These
integral points give rise to points on S which correspond to integral bitangent lines. �

3.6 Other Fano threefolds

We shall briefly discuss some other cases.

3.6.1 The double solid case

Let us consider the double solid branched over a smooth quartic surface and the related
problem of producing integral points on the complement of such a surface. The variety of
lines on the double solid is parametrized by an étale double cover of the variety of bitangent
lines to the quartic surface. Now, in [12] the authors proved that if the given quartic surface
contains no line there are only finitely many rational points on such a surface, which amounts
to the existence of only finitely many bitangents which can be defined over a given number
field. Hence, the method of using such lines to produce integral points cannot work.

3.6.2 The hypercubic case

The case of a cubic hypersurface in P
4 can be handled to prove the density of integral points

on the complement of one hyperplane sections. The reasoning is similar to the one used to
prove the density of integral points on P

3 \ V , where V is a cubic surface. The same holds,
and is even easier, in higher dimensions.
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3.6.3 The del Pezzo’s threefold case

Let us consider the case of the unique (up to birational isomorphism) Fano threefold B(5)
obtained as a transversal section of G(2, 5) ⊂ P

9 by a linear subspace of codimension 3. We
prove that its integral points with respect to one hyperplane sections are Zariski-dense. Let H
be a hyperplane and Xo = B(5)\ (H ∩ B(5)). Since the scheme of lines contained in B(5) is
isomorphic to P

2 and the set of lines in H ∩ B(5) is finite, we deduce from Lemma 3.1.1 the
existense of a Zariski-dense set of fully integral lines. Hence the density of integral points
on Xo. We will provide another proof of this fact in Proposition 4.4.2. We will treat also the
case of two hyperplane sections but we are able to get the results only in some special cases,
which, nevertheless are still normal crossing; see: Proposition 4.4.1.

4 Blow-ups and integral points

To understand S-integral points of a variety X with respect to a divisor D is about the log
geometry of X ; ultimately it is a problem which concerns the birational class of X .

In this section we study some birational maneuvers on a K-standard smooth rational fano
threefold X that allow us to use the results of the previous section to study the (potential)
density of integral points on X with respect to a boundary D such that (X , D) is log-Fano or
log-(Calabi-Yau).

4.1 Smooth quadric: the log-Fano case

Proposition 4.1.1 Let Q3 ⊂ P
4 be a smooth quadric and let H Q3

1 and HQ3
2 be two hyperplane

sections and Q a smooth quadric section. Then the subset of the integral points with respect
to D = HQ3

1 , or D = HQ3
1 ∪ HQ3

2 or D = Q is (potentially) dense.

Proof The case of one or two hyperplane sections follows by Proposition 4.2.1. Hence we
treat only the case of the smooth quadric section.

Consider the projection from a point P ∈ Q and denote by TP := TP Q3 ∩ Q3 the
hyperplane section given by the projective tangent space to Q3 at the point P . This projection
can be factorised in the following way:

A
f

A
f ′

Q3 P
3,

(4.1)

where f : A → Q3 is the blow-up at P and f ′ : A → P
3 is the contraction of the strict

transform HP of TP . Let E := f −1(P). By standard theory E � P
2 andOE (E) � OP2(−1).

On the other side we see that f ′(HP ) = C is a conic of P
3 and letting E ′ = f

′−1(C) we
can write E ′ = HP . Let H and L be the f -pull-back and the f ′-pull-back of the hyperplane
section of Q3 and respectively of P

3. Clearly f ′ is given by the linear system |H − E | while
f is given by |2L − E ′|, that is L = H − E and H = 2L − E ′. We stress that f ′(E)

is easily seen to be the plane � spanned by C . The strict transform Q′ of Q belongs to
|2H − E | = |4L − 2E ′ − E | = |3L − E ′|. That is V = f ′(Q′) is trivially seen to be a
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smooth cubic containing the conic C . We consider the bijective morphism

g : Q3 \ ((TP Q3 ∩ Q3) ∪ Q) → P
3 \ (� ∪ V ) (4.2)

induced by f ′ ◦ f −1. By Theorem 3.3.3 it follows that the set of rational points of Q3

which are ((TP Q3 ∩ Q3) ∪ Q)-integral is potentially dense. Then a fortiori those which are
Q-integral are potentially dense. �

4.2 Smooth quadric: the log-Calabi Yau case

We recall that if Gm = P
1 \ {0,∞} then the subset of the integral points is potentially dense,

but we recall that if OS = Z or the ring of integers of an imaginary quadratic field then
Gm(OS) is finite; see e.g. [7].

Proposition 4.2.1 Let Q3 ⊂ P
4 be a smooth quadric and let H Q3

1 and HQ3
2 , H Q3

3 be three

hyperplane sections. Then the subset of the integral points with respect to HQ3
1 ∪HQ3

2 ∪HQ3
3

is (potentially) dense.

Proof By generality there exist two points P, P ′ ∈ Q3 such that HQ3
1 ∩ HQ3

2 ∩ HQ3
3 =

{P, P ′}. We consider the projection from P ∈ HQ3
1 and we use notations as in the proof of

Proposition 4.1.1. It remains defined an injective morphism

g : Q3 \ ((TP Q3 ∩ Q3) ∪ HQ3
1 ∪ HQ3

2 ∪ HQ3
3 ) → P

3 \ (�1 ∪ �2 ∪ �3 ∪ C)

We denote by �4〈C〉 the plane spanned by a conic. Since P
3 \ (�1 ∪ �2 ∪ �3 ∪ �4) is G

3
m ,

the claim follows. �

Now we show that Theorem 3.4.1 follows by Proposition 4.2.1 and it should be viewed as
a typical example where birational geometry and arithmetic are strongly intertwingled. For
reader’s benefit we restate Theorem 3.4.1:

Theorem 4.2.2 Let D = Q′
1 ∪ Q′

2 where Q′
1 and Q′

2 are two quadrics in P
3 which contain

a conic C. Then the set of the integral points of P
3 with respect to D is potentially dense.

Proof Weperform the inverse birational maneuver of the one done in the proof of Proposition
4.1.1. This time we denote by f : A → P

3 the blow-up along C . We have that Pic(A) is
free of rank 2 and by standard two ray game theory we know that there exists a birational
divisorial contraction f ′ : A → Q3 which contracts the f -strict transform E ′ of the plane�C

containing C to a point P ∈ Q3. We set E := f −1(C). Let H and L be the f -pull-back and
the f ′-pull-back of the hyperplane section ofP3 and respectively of Q3. Clearly f ′ : A → Q3

is given by the linear system |2H − E |, that is L = 2H − E while f : A → P
3 is given by

|L − E ′|, that is H = L − E ′. We denote by Zi the f ′-image of the f -strict transform of
Q′

i , where i = 1, 2. Moreover f ′(E) is the tangent hyperplane section TP Q3 ∩ Q3, where
P = f ′(E ′). It remains defined a bijective morphism

g : P
3 \ (�C ∪ D) → Q3 \ ((TP Q3 ∩ Q3) ∪ Z1 ∪ Z2)

and by Equation (4.2) in the proof of Proposition 4.1.1, we conclude that the set of integral
points in the last affine variety is potentially dense. �
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4.3 The complement of the quadric complex by a hyperplane section

The quadric complex X = Q1 ∩ Q2 ⊂ P
5 is a smooth intersection of two quadrics Q1, Q2

in P
5. It is a rational threefold of index 2. According to Vojta’s conjecture we expect that if

D ∈ |i HX | where i = 1 or i = 2, and HX is an hyperplane section of X , then the set of
integral points with respect to D is potentially dense.

4.3.1 Smooth quadric complex: the log-Fano case

We are able to solve the log-Fano case thanks to Proposition 3.3.2.

Proposition 4.3.1 Let X = Q1 ∩ Q2 ⊂ P
5 be a smooth quadric complex. Then the subset

given by the integral points with respect to a smooth hyperplane section is potentially dense.

Proof Fix a general hyperplane section HX
1 ∈ |HX |. It is a del-Pezzo surface od degree 4.

We consider the projection from a line l ⊂ HX
1 . It can be factorised in the following way:

A
f

A
f ′

X P
3,

(4.3)

where f : A → X is the blow-up at l and f ′ : A → P
3 is the contraction of the strict transform

E ′ of the loci Dl swept by lines in X which intersect l.It is well-known that Dl ∈ |2HX |.
Let H and L be the f -pull-back and the f ′-pull-back of the hyperplane section of X and
respectively of P

3. Then f is given by the linear system |H − E |. Following Tacheuchi’s
method see [34, Section 2 Projections of V from a point or a conic] it can be shown that
−KA = H + L . Then since −KA is also linearly equivalent to 2H − E and to 4L − E ′ it
follows that L = H − E and that H = 3L − E ′. Moreover f ′ contracts E ′ onto a genus
2 curve C of degree 5. In more geometrical terms it is easy to see that E = P(Nl/X ) is
isomorphic to P

1 × P
1, that f ′|E : E → Q ⊂ P

3 is induced by the natural embedding of

P
1 × P

1 into P
3 and that C ⊂ Q is an element of |(2, 3)|. Moreover E ′ ∈ |2H − 3E |. Now

since l ⊂ HX
1 the f ′-image of the f -strict transform of HX

1 is a plane �.
We consider the bjective morphism

g : X \ (Dl ∪ HX
1 ) → P

3 \ (� ∪ Q)

induced by f ′ ◦ f −1.
By Proposition 3.3.2 it follows that the set of points of X which are Dl ∪ HX

1 -integral is
potentially dense. Then a fortiori those which are HX

1 -integral is potentially dense. �

4.3.2 Smooth quadric complex: a special case of the log-CY case

We are able to solve the log-CY case thanks to Proposition 3.3.2 in the case where the two
hyperplane sections contain a common line.

Proposition 4.3.2 Let X = Q1∩Q2 ⊂ P
5 be a smooth quadric complex. Let D = HX

1 ∪HX
2

where H X
1 and H X

2 are two hyperplane sections such that there exists a line l ⊂ HX
1 ∩ HX

2 .
Then the subset given by the integral points with respect to D is potentially dense.
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Proof As in the proof of Proposition 4.3.1 we consider the projection from the common line
l ⊂ HX

1 ∩ HX
2 and by the same argument used there we can show that there exists a bijective

morphism

g : X \ (Dl ∪ HX
1 ∪ HX

2 ) → P
3 \ (Q ∪ �1 ∪ �2)

where �1, �2 are respectively the f ′-image of the f -strict transform of HX
1 , HX

2 and Q
is the f ′-image of the f -exceptional divisor. By Proposition 3.3.2 it follows that the set of
rational points of X which are Dl ∪ HX

1 ∪ HX
2 -integral is potentially dense. Then a fortiori

those which are HX
1 ∪ HX

2 -integral is potentially dense.

Remark 4.3.3 We stress that the same method used in the proof of Proposition 4.3.2 cannot
be applied in the case of a general smooth hyperquadric section Yof X and even in the case
where the Y contains a line, we are reduced to the study of integral points of the complement
of P

3 by the union of a quadric and a quartic whose intersection contains a conic.

4.4 The del Pezzo threefold

The del Pezzo threefold B5 ⊂ P
6 is another rational threefold. Vojta’s conjecture predicts

that if D ∈ |i HB5 | where i = 1 or i = 2, and HB5 is an hyperplane section of B5, then the
integral points with respect to D is potentially dense.

4.4.1 A special case of the log-CY case for the del Pezzo threefold

We can treat with our method the case where the intersection of the two hyperplane sections
contains a smooth conic.

Proposition 4.4.1 Let B5 be a del Pezzo threefold. Let D = HB5
1 ∪HB5

2 where H B5
1 and H B5

2
are two hyperplane sections which contain a smooth conic q. Then the subset given by the
integral points with respect to D is dense.

Proof We denote by HB5 the hyperplane section of B5 and we consider the projection from
a conic q ⊂ HB5

1 ∩ H . It can be factorised in the following way:

A
f

A
f ′

B5 P
3,

(4.4)

where f : A → B5 is the blow-up at q and f ′ : A → P
3 is the contraction of the strict

transform E ′ of the loci Dq swept by lines in B5 which intersect q . By c.f. [33, Proposi-
tion 2.1.3, Proposition 2.2.2] we know that E = P(Nl/X ) is isomorphic to P

1 × P
1 and

that, Dp ∈ |2 HB5 |. Let H and L be the f -pull-back and the f ′-pull-back of the hyperplane
section of B5 and respectively of P

3. Following Tacheuchi’s method see [34, Section 2 Pro-
jections of V from a point or a conic] it can be shown that −KA = H + L . Then since
−KA is also linearly equivalent to 2H − E and to 4L − E ′ it follows that L = H − E and
that H = 3L − E ′. Moreover f ′ contracts E ′ onto a rational curve C of degree 4 and by
adjunction f|E : E → Q is the natural embedding of P

1 × P
1 into P

3. Finally C ⊂ Q is
an element of |(1, 3)| and E ′ ∈ |2H − 3E |. Now since q ⊂ HX

1 ∩ H2
X the f ′-image of the

f -strict transform of HX
1 and HX

2 is the plane �1 and respectively the plane �2, ( while
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the f ′-image of the f -strict transform of the general hyperplane section is a smooth cubic
surface containing the curve C).

We consider the bijective morphism

g : X \ (Dq ∪ HX
1 ∪ HX

2 ) → P
3 \ (Q ∪ �1 ∪ �2)

induced by f ′ ◦ f −1. By Proposition 3.3.2 it follows that the set of K points of X which
are Dq ∪ HX

1 ∪ HX
2 -integral is dense. Then a fortiori those which are HX

1 ∪ HX
2 -integral is

dense. �

We point out the reader that Proposition 4.4.1 obviously implies the log-Fano case. This
case has been already studied above in Subsection 3.6.3. Finally we provide here a third proof
of the log-Fano case only to show the reader the differences between our various methods:

Proposition 4.4.2 Let B5 be a del Pezzo threefold. Then the subset given by the integral points
with respect to a hyperplane section is potentially dense.

Proof The hyperplane section HB5 is a del Pezzo surface of degree 5. Consider the projection
from a line l ⊂ HB5

1 . It can be factorised in the following way:

A
f

A
f ′

B5 Q
3,

(4.5)

where f : A → B5 is the blow-up at l and f ′ : A → P
3 is the contraction of the strict

transform E ′ of the loci Dl swept by lines in B5 which intersect l to a (rational) twisted
cubic �. Indeed by [16, Sec. 2] and [19, sec. 1], c.f. see: [33, Proposition 2.1.3] we know
that E = P(Nl/X ) is isomorphic to F1 and that, Dl ∈ |HB5 |. Let H and L be the f -pull-
back and the f ′-pull-back of the hyperplane section of B5 and respectively of P

3. Following
Tacheuchi’s method see [34, Section 2 Projections of V from a point or a conic], it can be
shown that −KA = H + L . Then since −KA is also linearly equivalent to 2H − E and to
3L − E ′ it follows that L = H − E and that H = 2L − E ′. Since l ⊂ HB5

1 the f ′-image

of the f -strict transform of HB5
1 is an hyperplane HQ3

1 of Q3. It is now easy to show that
f ′ contracts E ′ onto � and by adjunction f ′|E : E → Q3 ⊂ P

4 is the natural embedding of

P
1 × P

1 into the hyperplane P
3 spanned by �. We set f ′|E (E) = HQ3

2 . Finally � ⊂ Q3 is an

element of |(1, 3)| in HQ3
2 ; we stress that HQ3

2 ⊂ P
3 ∩ Q3 ⊂ P

4. We consider the bijective
morphism

g : X \ (Dl ∪ HB5
1 ) → Q3 \ (HQ3

1 ∪ HQ3
2 )

induced by f ′ ◦ f −1. By Proposition 4.2.1 it follows that the set of rational points of B5

which are Dl ∪ HB5
1 -integral is dense. Then a fortiori those which are HB5

1 -integral is dense.
�

Remark 4.4.3 Although the statement of Proposition 4.4.2 has perhaps even simpler proofs,
its proof shows how through a chain of suitable birational moves it is possible to obtain results
on the density of integer points.
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4.5 The complement of the singular cubic threefold by two hyperplanes

The following case is a bit different since it deals with a singular rational variety. Moreover
we need to assume that both the two hyperplane sections passes through the singular point.

Proposition 4.5.1 Let B(3) be a cubic threefold with a O.D.P. Let D = HB(3)
1 ∪ HB(3)

2

where H B(3)
1 , H B(3)

2 are two hyperplane sections passing through the singular point. Then
the subset given by the integral points with respect to D is potentially dense.

Proof Weconsider the point P ∈ P
4 where B(3) is singular. Letπ : P = P(OP3 ⊕OP3(1)) →

P
4 be the blow-up of P ∈ P

4 at P . We denote by A the strict transform of B(3). Let
π ′ : P → P

3 be the natural projection and let H , L be the pull-back of the hyperplane section
of respectively P

4, P
3. Note that H is a section of the tautological line bundle OP(1). Let

w∞ ∈ H0(P,OP(1)⊗POP(−L)). It is an easy check to verify that A is a smooth element of
|H + 2L|. More precisely if P

4 = Proj(C[u0, u1, u2, u3, u4]), P3 = Proj(C[x0, x1, x2, x3]),
P = [0 : 0 : 0 : 0 : 1]) then
π : ([w∞, w], [x0, x1, x2, x3]) �→ [w∞x0, w∞x1, w∞x2, w∞x3, w] = [u0, u1, u2, u3, u4]
while π ′ : ([w∞, w], [x0, x1, x2, x3]) �→ [x0, x1, x2, x3]. In particular we can assume
B(3) = (u4 f2(u0, u1, u2, u3) + f3(u0, u1, u2, u3) = 0) where f2, f3 are general homo-
geneous polynomial in the variables u0, u1, u2, u3 o degree 2 and respectively 3 and

A = w f2(x0, x1, x2, x3) + w∞ f3(x0, x1, x2, x3) = 0

where w ∈ H0(P,OP(1)). We consider the following diagram

A
f

A
f ′

B(3) P
3,

(4.6)

where f : A → B(3) is the blow-up of B(3) at P (and it is induced by π) while f ′ : A → P
3

is the restriction of π ′ to A. By adjunction it holds that −KA = H + L where, by abuse of
notation, we still denote by H , L the pull-back of the hyperplane sections of respectively
B(3) and P

3. Let E := (w∞ = 0)|A be the exceptional divisor of f , which is easily
seen to be a quadric and let E ′ be π

′−1(C) where C ⊂ P
3 is the smooth genus-4 curve

given by f2(x0, x1, x2, x3) = f3(x0, x1, x2, x3) = 0. Clearly E ′ is the unique divisor on A
which is contracted by f ′. Moreover f ′ is the blow-up at C . A simple computation shows
that L = H − E and H = 3L − E ′. In particular HQ3

1 and and HQ3
2 are transformed

into the planes �1 and respectively �2 while f ′(E) = Q is obviously the quadric Q :=
( f2(x0, x1, x2, x3) = 0) ⊂ P

3. We set T := f (E ′). We have the bijective morphism

g : B(3) \ (T ∪ HB(3)
1 ∪ HB(3)

2 ) → P
3 \ (�1 ∪ �2 ∪ Q)

induced by f ′ ◦ f −1. By Proposition 3.3.2 it follows that the set of rational points of B(3)
which are (T ∪ HQ3

1 ∪ QQ3
2 )-integral is potentially dense. Then a fortiori those which are

HQ3
1 ∪ QQ3

2 -integral is potentially dense. �
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