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Abstract

Low cycle fatigue (LCF) regime was experimentally studied for a 316L steel addi-

tively manufactured by laser-powder bed fusion (L-PBF), a material widely used

in sectors that require a reliable durability analysis. Material cyclic elastoplastic

behavior is described by the Chaboche–Voce combined plasticity model, which

displayed a great degree of accuracy. The fatigue life was modeled by both invok-

ing the Manson–Coffin curve and other simplified models derived from static

properties of the material; some of which showed remarkably good accuracy. A

quantitative comparison with a wrought-processed 316L steel displayed a mark-

edly different cyclic elastoplastic response but comparable fatigue strengths.

KEYWORD S

316L stainless steel, cyclic plasticity model, laser-powder bed fusion, low cycle fatigue,
strain–life curves

Highlights

• Chaboche–Voce model is calibrated on experimental cyclic response of

laser-powder bed fusion (L-PBF) 316L stainless steel (SS).

• L-PBF 316L SS experiences higher stress than wrought material during low

cycle fatigue (LCF) loading.

• Midlife cycles of L-PBF and wrought 316L SS have similar plastic strain

energy density.

• L-PBF 316L SS has a lower fatigue strength at lower strain ranges than

wrought material.
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1 | INTRODUCTION

Additive manufacturing (AM) of metallic materials has
been sparking a growing interest in academia and many
industrial sectors.1 AM permits the achievement of unpar-
alleled design solutions in terms of geometric complexity
and shape optimization, together with rapid product devel-
opment and sustainability.2 As an example, in literature,
many studies focused on optimizing AM products for dif-
ferent purposes under various types of loading.3–5 Among
the families of developed AM techniques, one of the most
encouraging is the laser-powder bed fusion (L-PBF), dis-
tinguished by the selective melting of layers of metal pow-
der by a laser beam to produce a final 3D object.

Nowadays, many key metallic materials have been
successfully processed using L-PBF,6 enabling a wide
range of applications in several strategic industrial sec-
tors. Some examples are the Ti6Al4V titanium alloy,
largely used in the biomedical and aerospace sectors,7–9

or the AlSi10Mg aluminum alloy, which is also consid-
ered for light-weighting and optimizing structural com-
ponents in aerospace.10–12 It is worthy of note the
possibility of producing stainless steels that are among
the best choices in load-bearing applications in corrosive
environments—for instance, the AISI 316L stainless steel
that is extensively used in critical components of nuclear
reactors,13,14 pressure vessels,15 and aerospace.16

Within the families of manufacturable metallic mate-
rials by L-PBF, the structural properties of the AISI 316L
steel are yet to be comprehensively understood and mod-
eled, especially regarding its fatigue strength. Nonethe-
less, in the last years, many efforts have been put into
fully characterizing its static properties and fatigue
behavior in the high cycle fatigue (HCF) regime. In addi-
tion, accurate geometrical optimization of a structural
component can be only attained if in-depth knowledge of
the mechanical properties of the metallic material is
available. To achieve this goal, the correct choice of the
material constitutive model is of paramount importance,
along with its accurate calibration, as highlighted by Li
et al.5 These assertions are particularly valid when deal-
ing with plastic deformation in the low cycle fatigue
(LCF) regime, often experienced in critical components
employed in nuclear reactors, aerospace, pressure vessels,
and even energy absorber. In fact, only a few, and often
incomparable results, can be found in the literature for
this additively manufactured material. For instance, fun-
damental studies of the LCF performance of L-PBF AISI
316L can be found concerning the influence of: the fol-
lowing thermal treatment,17,18 specimen geometry,19

microstructure,20 coating,21 layer orientation, surface
roughness,22 process parameters,23 and high strain
ranges.24 Other further studies focused their attention on
the deformation mechanisms involved during cyclic

loading to reveal the role of the cell structure, which dis-
tinguishes the as-built microstructure of some AM alloys,
on the LCF strength.25 Nevertheless, the exploitation of
this knowledge for structural design purposes is far from
being attained. A rational selection and calibration of a
cyclic elastoplastic material response model are still
required to enable structural engineers to assess stress/
strain states and LCF performance in real engineering
applications.

The present work has a twofold objective to tackle
this outstanding issue. Firstly, it targets to describe the
cyclic plastic response of the AISI 316L stainless steel by
means of elastoplastic models suitable for being readily
implemented in finite element (FE) analysis, which are
the nonlinear Chaboche and Voce models for the kine-
matic and isotropic hardening, respectively. Secondly, it
aims to evaluate strain–life curves by simple approximate
models calibrated on static properties or hardness,
namely, Universal Slopes Equation (USE),26,27 Modified
USE,28 the Roessle–Fatemi hardness method,29 and the
Medians method.30 While the accuracy of these models is
extensively discussed in the literature for metals pro-
duced by conventional manufacturing processes, to the
best of the authors' knowledge no attempts have been
made so far concerning AM materials; a first attempt is
proposed herein. Eventually, a quantitative comparison
between L-PBF steel and wrought steel is presented in
terms of both cyclic elastoplastic behavior and LCF
strength. This comparison is of great importance to
understand how reliably AM can be used to replace the
conventionally produced AISI 316L stainless steel.

2 | MATERIAL AND
EXPERIMENTAL SETUP

LCF results and experimental dataset are the same as
those reported in an authors' previous work,31 which con-
stitutes a companion study of the present article. For the
sake of clarity, the main aspects related to the analyzed
material are briefly summarized in the following. Cylin-
drical rods of AISI 316L stainless steel were vertically
produced by L-PBF (Concept Laser M2 Cusing machine)
using the process parameters fully given in Pelegatti
et al.31 The “island” scanning strategy was adopted to
melt the powder in each layer, with a 90� rotation and
1 mm shift between successive layers. Before the removal
from the building platform, a stress relief treatment at a
temperature of 550�C for 6 h was performed on the rods.
By drawing on standard ASTM E606/E606M-21 protocol,
the cylindrical rods were turned into dog-bone speci-
mens, with a diameter of 10 mm in the gauge section and
a gauge length of 25 mm. The measured density was
higher than 99.9%, based on Archimedes' method.

2 PELEGATTI ET AL.
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LCF tests were carried out in strain control at room
temperature and consisted of symmetrical tension–
compression loading at eight different strain amplitudes
(0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 1%, and 1.2%). For
each test, the strain rate was maintained at a constant
value of 0.004 s�1 by varying the frequency of the
imposed strain waveform. The equipment for the LCF
test consisted of an MTS 810 System servohydraulic
machine with a 100 kN load cell and an MTS 634 model
axial extensometer with 25 mm gauge length. Stress–
strain cycles were acquired at selected numbers of cycles
following a logarithmic pattern. Maximum and minimum
stress values of all cycles were also recorded throughout
each test. Indeed, stress–strain evolutions over cycles are
required to investigate the elastoplastic response of the
materials and to calibrate the parameters of cyclic plastic-
ity models. Examples of stress–strain cycles recorded at
strain amplitudes 0.3%, 0.6%, and 1.2% are depicted in
Figure 1A. It is worth reminding from the authors' previ-
ous work31 that, for each strain amplitude tested, the L-
PBF AISI 316L steel exhibits a very brief hardening
behavior followed by a continuous cyclic softening until
final failure, as shown in Figure 1B. As no material stabi-
lized state is clearly visible, the stress–strain cycles at
half-life are conventionally assumed to represent the sta-
bilized state. This assumption is a common practice
because in such situation the half-life cycles represent the

average cycling behavior, as reported by Manson and
Halford.27 Furthermore, this choice seems reasonable as
the softening rate becomes slower and slower as the
number of cycles increases and the maximum stress
approach a quasi-plateau. This last statement can be veri-
fied by replacing the logarithmic scale with a linear scale
in Figure 1B. Other materials exhibit a similar cyclic soft-
ening response with a quasi-stabilized state.32,33

Finally, for the sake of comparison with the
“wrought” variant of this steel, a perfectly comparable
dataset obtained in a recent study by the authors was
considered, using identical sample geometry and testing
conditions.34 Figure 2A,B shows the typical microstruc-
ture of additively manufactured specimens compared
with the wrought material. In the additively manufac-
tured material, it is possible to observe a microstructure
composed by an overlay of microweld beads produced by
the laser scans. The microstructure inside each weld bead
presents submicrometric sized columns of austenite con-
toured of delta ferrite as a result of micro segregation dur-
ing the solidification process. The direction of column
growth is related to the laser parameters, as scanning
speed, heat input, and beam focus. During the analysis,
some areas with cellular microstructure are evidenced
and usually are related to grain columnar growth perpen-
dicular to the analysis field. It is to highlight that the
stress relief treatment does not alter the microstructure of

FIGURE 1 Cyclic elastoplastic

behavior of laser-powder bed fusion

(L-PBF) AISI 316L for three different low

cycle fatigue (LCF) tests (strain amplitudes

of 0.3%, 0.6%, and 1.2%): (A) 1st, 5th, 20th,

100th, and 200th stress–strain cycles and

(B) maximum stress versus the number of

cycles. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 Microstructure of tested

materials: (A) optical micrograph of

laser-powder bed fusion (L-PBF) AISI

316L steel with a scanning electron

microscopy (SEM) image as a close-up

of cellular structure (BD: building

direction) and (B) optical micrographs

of wrought AISI 316L steel. [Colour

figure can be viewed at

wileyonlinelibrary.com]
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the AM material. However, the microstructure is typi-
cally produced by solidification under super-cooling con-
ditions. On the other hand, the wrought material
presents equiaxic austenite grains with some stringers of
delta ferrite usually located along some visible deforma-
tion bands. In the last case, the microstructure corre-
sponds to a material that underwent a solubilization
treatment after plastic deformation.

3 | CHABOCHE–VOCE CYCLIC
PLASTICITY MODEL

Cyclic plasticity models can simulate the elastoplastic
behavior of materials subjected to cyclic loading. In order
to properly describe the behavior of various metallic
materials, several cyclic plasticity models have been
developed and further improved over the years.35–37 For
the sake of brevity, only the main equations of the
Chaboche–Voce model are summarized in the following.

The Von Mises yield surface, which corresponds to
the boundary of the elastic region, is expressed as
follows38:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
σ0 �Xð Þ : σ0 �Xð Þ

r
�R�σy,0 ¼ 0 ð1Þ

where σ0 is the deviatoric stress tensor and σy,0 the initial
yield stress before any loading. The second-order tensor
X and the scalar value R are the variables associated to
kinematic and isotropic hardening model, respectively.

The nonlinear model proposed by Chaboche38,39 spec-
ifies the evolution of the kinematic hardening variable
(back stress), X :

X ¼
XM
i¼1

X i;dX i ¼ 2
3
Cidεpl� γiX idp with M¼ 1,2,3,… ð2Þ

The model combines M variables X i governed by the
Armstrong–Frederick model.40 In literature, M¼ 3 is sug-
gested as a satisfactory choice to model the nonlinear
stress–strain response in cycles.39,41 Each X i is controlled
by only two material parameters Ci and γi. The increment
of the kinematic hardening variable, dX i, during plastic
loading depends on the increment of the plastic strain
tensor, dεpl, and the accumulated plastic strain, dp,
defined as follows:

dp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
dεpl:dεpl

r
ð3Þ

where dp is integrated during the plastic loading history.
To calibrate the model parameters, the uniaxial

expression must be obtained upon integration38,39:

X ¼
XM
i¼1

ζ
Ci

γi
þ Xi,0�ζ

Ci

γi

� �
e�ζγi εpl�εpl,0ð Þ ð4Þ

where the coefficient ζ¼�1 depends on the direction of
plastic flow (+1 for tensile and �1 for compressive load-
ing). Variables Xi,0 and εpl,0 represent the initial values of
the back stress and plastic strain. Substituting
Equation (4) for both tensile and compressive loading
gives the following38,39:

Xa ¼
XM
i¼1

Ci

γi
tanh γiεpl,a

� � ð5Þ

relating the uniaxial back stress amplitude Xa in stabi-
lized condition to the plastic strain amplitude of εpl,a.

The isotropic hardening is described with a superposi-
tion of Z nonlinear Voce models42:

R¼
XZ
i¼1

Ri; dRi ¼ bi R∞,i�Rið Þdp with Z¼ 1,2,3,… ð6Þ

The isotropic hardening variable R is the sum of inde-
pendent variables Ri, each one governed by the same type
of incremental equation, though with different values of
speed of stabilization, bi, and saturated stress, R∞,i. Most
of the times, a single variable Ri is sufficient to model the
cyclic response of a material (i.e., Z¼ 1).

The incremental Equation (6) can be integrated and
yields the following:

R¼
XZ
i¼1

Ri ¼
XZ
i¼1

R∞,i 1� e�bip
� � ð7Þ

which is a sum of exponential equations. The parameter
bi controls the speed at which Ri reaches the saturated
value R∞,i, while the accumulated plastic strain increases
during plastic loading. If the material is cycled under uni-
axial constant strain amplitude, the accumulated plastic
strain after N cycles can be approximated as pffi 2Δεpl N ,
where Δεpl is the plastic strain range in the stabilized
cycle.

4 | CALIBRATION OF MATERIAL
PARAMETERS FROM
EXPERIMENTAL DATA

4.1 | Elastic response and initial yield
stress

At the beginning of each LCF test, the material was
loaded from zero stress and strain to a predefined preset
value of the strain, describing a monotonic tensile curve.

4 PELEGATTI ET AL.
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This curve was then analyzed to estimate the elastic mod-
ulus E1 and the initial yield stress σy,0.

The elastic modulus was obtained from the linear
portion of the monotonic curve through linear regression,
whereas the initial yield stress was estimated by consider-
ing a plastic strain offset of 0.0025%, the same value
adopted in Zhou et al.43 The estimated values for each
test were used to calculate the mean, standard deviation,
and coefficient of variation (defined as the ratio between
the standard deviation and the mean). The mean values
of E1 and σy,0 are equal to 198,134 and 380MPa, respec-
tively. The coefficient of variation for both parameters is
lower than 3%.

The elastic modulus was also estimated from the
stabilized stress–strain cycles. In fact, at each strain
reversal, linear elastic unloading occurs with a slope
equal to the elastic modulus. The estimated values from
the tensile-going and compressive-going branches of a
stabilized cycle are named Est and Esc, respectively,
whereas their average is denoted as Es. These values are
required to calibrate the kinematic hardening model. The
mean value, standard deviation, and coefficient of varia-
tion were also obtained for all the estimates Est, Esc, and
Es. The mean value of Es is 190,513MPa, with a coeffi-
cient of variation of 3.15%. It should be noted that the
mean value of Es estimated in the stabilized cycles is 4%
lower than the mean value E1 obtained from the mono-
tonic curve (ANOVA test gave a p-value of 0.0122). Hales
et al. indicated that this difference can be considered
acceptable if it is lower than 10%.44 Since a single value is
needed to simulate the elastic response of the material,
an average value of 194,323MPa between the mean of E1

and Es is selected. Similarly, other authors adopted an
average value among all the stress–strain cycles.43 On the
other hand, the mean value of the initial yield stress,
which is equal to 380MPa, can be directly taken in the
simulation.

4.2 | Chaboche kinematic hardening
model

Parameters of the kinematic hardening model were cali-
brated by adopting the same procedure used in Pelegatti
et al.,34 which had given satisfying results. The principal
steps are outlined.

In a single stress–strain cycle, the contribution of the
isotropic hardening can be considered negligible because
the change in accumulated plastic strain appears to be
small. Furthermore, the isotropic hardening model has
already reached a saturated condition in the stabilized
cycles. For these reasons, the nonlinear trend of the stress
in a stress-plastic strain cycle is mainly governed by the
kinematic hardening model in Equation (4).

Parameters Ci and γi in the equation can be estimated
by fitting Equation (4) to the tensile-going or the
compressive-going branch of an experimental stress-plastic
strain cycle. In particular, the stabilized cycle at strain
amplitude 1.2% was chosen because it provides parameters
also suitable for lower strain amplitudes.41 As already
mentioned in Section 2, the cycle at Nf =2 was considered
representative of the material stabilized condition.

From a practical point of view, the experimental
compressive-going branch of the stress-plastic strain cycle
was translated to the origin and mirrored to positive
values. The resulting equation, which interpolates the
compressive-going branch of the cycle, is as follows:

� σþσmax �2σy,sc ffiX

¼ 2
XM
i¼1

Ci

γi

1� e�γiεpl

1þ e�γiΔεpl
for �σþσmax �2σy,sc

� �
≥ 0

ð8Þ

where σ and εpl are the stress and plastic strain values at
which the fitting is applied; σmax is the experimental
maximum stress and Δεpl is the plastic strain range; σy,sc
denotes the yield stress in the compressive-going branch
of the half-life cycle, corresponding to a plastic strain off-
set of 0.01%.

After conducting the fitting procedure, the following
parameters were obtained: C1 = 320,000MPa, γ1 = 5500,
C2 = 97,000MPa, γ2 = 1000, C3 = 25,000MPa, and
γ3 = 150. In a stabilized cycle, the first variable X1

describes the high initial hardening modulus at yielding,
the second X2 models the nonlinear transition at interme-
diate strain amplitude, and finally, X3 controls the small
slope at high strain amplitude. Their values were input in
Equation (5) to check whether the fitted curve passes close
to the experimental points; see Figure 3A. The experimen-
tal points εpl,a;Xa ¼ σa�σy,s

� �
are derived from the cycles

at Nf =2 for different strain amplitudes. In the figure, σy,s is
the average yield stress between the tensile-going and
compressive-going branches of the half-life cycles.

Finally, good accuracy in simulating the monotonic
curve is also expected. Again, in this case, the isotropic
hardening contribution is neglected, and the monotonic
curve was drawn using solely the kinematic hardening
model. An analytical expression for the monotonic
stress–strain curve can be derived from Equation (4) with
Xi,0 ¼ 0 and εpl,0 = 0:

σ¼ σy,0þ
XM
i¼1

Ci

γi
1� e�γiεplð Þ ð9Þ

Figure 3B compares the experimental monotonic
stress–strain curves for different strain amplitudes
(εa¼ 0:3%�1:2%) to the calculated one with

PELEGATTI ET AL. 5
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Equation (9). A discrepancy between the simulated and
experimental curves can be noted, mainly at higher strain
values. The challenge in simulating both the stress–strain
cycles and the monotonic curve using the same kine-
matic hardening parameters has been already reported in
the literature.45–47 Despite that, the estimated parameters
in the present work can be considered sufficiently accu-
rate for design purposes.

4.3 | Nonlinear isotropic hardening
model

The evolution of the experimental stress amplitudes up to
Nf =2 forms the basis for calibrating the isotropic harden-
ing model. As described in a previous work,34 the proce-
dure to estimate the isotropic model parameters requires
that the kinematic hardening contribution (computed
with the parameters estimated previously) is removed
from the experimental cyclic stress response. Essentially,
the fitting procedure explained below is based not only
on the experimental data but also on the simulation pro-
cess. The uniaxial response was simulated by the algo-
rithm described in Pelegatti et al.34

In the first step, the saturated stress R∞ is determined
for each strain amplitude as the difference between the
experimental stress amplitudes σa,s and the stress ampli-
tudes σkina, s calculated by considering only the kinematic
model:

σa,s�σkina, s ffiR∞ ð10Þ

where subscript s indicates that the quantity is evaluated
at Nf =2.

In a second step, the speed of stabilization b is esti-
mated through curve fitting:

σa,i�σkina,i

σa,s�σkina,s
ffi R
R∞

¼ 1� e�bp
� � ð11Þ

where σa,i and σkina,i are the quantities explained before
referred to the i-th cycle and p is the accumulated plastic
strain evaluated from experimental data. Figure 4
exemplifies the procedure for the test at 0.7% strain ampli-
tude. In Figure 4A, the open black markers represent the
difference σa,s�σkina, s defined above. Figure 4B illustrates
the curve fitting of Equation (11). In theory, the initial
value of R should be zero, which does not yet occur—see
the first black markers in Figure 4B. This shortcoming
comes from the fact that the kinematic hardening contri-
bution slightly overestimates the stress response in the
first few cycles; see, for example, the monotonic curve in
Figure 3B. If the alternative fitting procedure proposed in
Lemaitre and Chaboche's book38—which is usually fol-
lowed in literature—had been adopted, a higher stress
amplitude would result in the stabilized cycle and thus
the isotropic hardening parameters should be refined at a
later time. On the contrary, the procedure proposed here
avoids the second recalibration.

FIGURE 3 (A) Contribution of the

kinematic hardening model evaluated with

Equation (5) compared with cyclic

experimental points: (εpl,a,σa).

(B) Computed monotonic curve with

Equation (9) compared with experimental

monotonic curves for all the tested strain

amplitudes: εa ¼ 0:3%�1:2% (open

red dots). [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 4 Example of fitting

procedure to estimate isotropic model

parameters on the experimental test at the

strain amplitude of 0.7%: (A) isotropic

hardening contribution identified from the

difference between experimental stress

amplitudes and kinematic hardening

contribution and (B) calibration of b with

the curve fitting using Equation (11).

[Colour figure can be viewed at

wileyonlinelibrary.com]
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In order to further improve the accuracy of the
modeling, the cyclic stress response was finally simulated
using both the kinematic and isotropic hardening model
with the estimated parameters. The optimal parameters
R∞ and b were then refined by minimizing the difference
between the experimental and simulated cyclic stress
response. Usually, it is not necessary to iterate this step
more than one time.

The estimated parameters R∞ and b are listed in
Table 1. Since their values do not exhibit a large scatter
across the tested strain amplitudes, it appears reasonable

to describe the material behavior by the mean value for
both R∞ and b; see Table 1. To this end, R∞ was averaged
over the values of each strain amplitude, whereas b was
estimated by fitting Equation (11) on all experimental
data pooled together.

4.4 | Simulated and experimental cyclic
response: A comparison

An exhaustive comparison between experimental behav-
ior and simulations is conducted by considering com-
bined kinematic and isotropic hardening models.
Simulation inputs are the elastic modulus 194,323 MPa,
the initial yield stress 380 MPa, the kinematic hardening
parameters in the last column of Table 1, and the average
R∞ and b for the isotropic hardening model.

The 1st and 700th simulated and experimental stress–
strain cycles at εa = 0.7% are compared in Figure 5A,
whereas Figure 5B compares the experimental and simu-
lated cyclic stress response for several εa. Although the
simulated maximum stresses are not very accurate in the
first few cycles and the following experimental softening
seems not well represented by the exponential law in
Equation (7), the experimental and simulated cycle at
half-life shows quite similar values of the maximum
stress, as it can be appreciated in Figure 6A,B. The simu-
lation accuracy of each investigated strain amplitude can
be quantified by the mean absolute percentage error

TABLE 1 Kinematic and isotropic hardening model

parameters estimated from experimental results.

εa Isotropic model Kinematic model

R∞ (MPa) b C1 = 320,000MPa
γ1 = 5500
C2 = 97,000MPa
γ2 = 1000
C3 = 25,000MPa
γ3 = 150

0.3% �90 0.1528

0.4% �137 0.2216

0.5% �148 0.3815

0.6% �156 0.6393

0.7% �143 0.846

0.8% �152 0.7362

1% �149 0.7731

1.2% �148 1.1617

Mean value �140 0.6128a

aValue obtained by fitting Equation (11) to all experimental data pooled
together.

FIGURE 5 Comparison between

experimental and simulated cyclic plasticity

behavior: (A) 1st and 700th stress–strain
cycle at εa ¼ 0.7%; (B) maximum stress

versus number of cycles up to Nf =2 for four

different strain amplitudes. [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 6 Comparison between

experimental and simulated cycles at Nf =2:

(A) 0.4%, 0.6%, 0.8% and 1%; (B) 0.3%, 0.5%,

0.7%, and 1.2%. [Colour figure can be

viewed at wileyonlinelibrary.com]
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(MAPE) on the maximum stresses of each considered
cycle:

MAPE¼ 100
l

Xl

i¼1

����σsimmax,i�σexpmax,i

σexpmax,i

���� ð12Þ

where l is the total number of cycles taken into
consideration to calculate the index for a single strain
amplitude, σexpmax,i is the i-th experimental maximum
stress, and σsimmax,i is the i-th simulated maximum stress.
Note that only few cycles are considered for a single
strain amplitude and the index i is not coincident with
the number of the cycle N .

In addition to MAPE index, Table 2 also lists the
absolute percentage error (APE) of the first and last
simulated value of maximum stress (i.e., at N ¼ 1 and
N ¼Nf =2) for each strain amplitude. The highest per-
centage error is less than 10% and is found for the first
maximum stress at the strain amplitude εa ¼ 1:2%.

With the identified parameters of the kinematic
hardening model, the shape of experimental cycles at
Nf =2 is described precisely. Figure 6A,B confirms that
the simulated stress–strain cycles (continuous lines) for
each strain amplitude almost overlap with the
experimental data (markers). This assures that also the
simulated plastic strain energy density per cycle—a
parameter used later on—corresponds with the experi-
mental value.

5 | STRAIN–LIFE CURVE:
MANSON–COFFIN MODEL AND
SOME PRACTICAL
APPROXIMATIONS

In the authors' previous study,31 the experimental strain
amplitude-life data were used to estimate the Manson–
Coffin model48:

εa ¼ εel,aþ εpl,a¼ σf 0

E
2Nf
� �b0 þ εf

0 2Nf
� �c0 ð13Þ

where εel,a and εpl,a are the elastic and plastic strain
amplitudes. In Equation (13), the elastic part is ruled by
the fatigue strength coefficient σf 0 and exponent b0 and
the plastic part by the fatigue ductility coefficient εf 0 and
exponent c0. The estimated parameters are reported in
Table 3.

When experimental fatigue data are not available to
calibrate the Manson–Coffin equation (as it often hap-
pens in early design phases), the literature offers approxi-
mate methods for correlating fatigue strength to
monotonic tensile properties or hardness. These methods,
though approximate, are really attractive since they do
not require expensive and time-consuming fatigue tests.
In the sixties, Manson and Hirschberg26,27 were the first
who thought about the possibility to use these simplified
methods; they proposed a method called Universal Slopes

TABLE 2 Model accuracy,

expressed by mean absolute percentage

error (MAPE) and absolute percentage

error (APE) index, in predicting the

maximum stresses.

εa MAPE APE (first cycle, N ¼ 1) APE (last cycle, N ¼Nf =2)

0.3% 5.25% 3.59% 6.65%

0.4% 2.80% 0.391% 2.17%

0.5% 2.52% 1.79% 0.759%

0.6% 2.69% 3.87% 0.719%

0.7% 2.52% 3.89% 1.59%

0.8% 1.88% 3.72% 0.204%

1% 1.81% 3.93% 0.388%

1.2% 4.11% 8.69% 0.582%

Mean value 2.95% 3.73% 1.63%

TABLE 3 Parameters of the

Manson–Coffin model and some

approximated models for L-PBF AISI

316L steel.
Strain–life equation

Parameters of strain–life equation Goodness of fit

σf 0=E b0 εf 0 c0 R2 ea

Manson-Coffin48 0.005242 �0.0845 0.66849 �0.5965 0.9167 0.7793

USE26 0.006321 �0.12 0.92194 �0.6 0.8601 0.5077

Modified USE28 0.005401 �0.09 0.424395 �0.56 0.8811 0.9148

Hardness method29 0.00553 �0.09 0.526058 �0.56 0.9123 0.8243

Medians method30 0.004986 �0.09 0.45 �0.59 0.6644 0.8775

Abbreviations: L-PBF, laser-powder bed fusion; USE, universal slopes equation.
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Equation (“USE”). The method owes its name to the con-
stant exponents (�0.12 and �0.6) assumed for the strain–
life equation, regardless of material type. Although the
USE method was originally correlated to fatigue data for
29 ferrous and nonferrous materials, it turned out to be
approximately correct for a variety of metallic materials,
including some stainless steels. The analytical expression
of the USE model is directly reported here in terms of
strain amplitudes and the number of reversals to failure:

εa ¼ 1:9018
UTS
E

2Nf
� ��0:12þ0:7579D0:6 2Nf

� ��0:6 ð14Þ

The strain–life equation is defined by the following
static material properties: ultimate tensile strength UTS,
elastic modulus E, and ductility D. Ductility is defined as
D¼ ln 100= 100�%Zð Þ½ �, in which %Z is the area reduc-
tion in the specimen cross-section. The USE model
assumes that the HCF behavior of the material is driven
by its static properties, while the LCF behavior is gov-
erned by ductility.

After nearly 20 years, Muralidharan and Manson28

tested additional 50 different materials with the intention
of re-examining and improving the USE model accuracy;
eventually, the following expression was obtained:

εa ¼ 0:623
UTS
E

� �0:832

2Nf
� ��0:09

þ0:0196 Dð Þ0:155 UTS
E

� ��0:53

2Nf
� ��0:56 ð15Þ

named as “Modified USE”. Compared with the USE
model, the two exponents have slightly changed to �0.09
and �0.53, whereas the second term representing the
plastic component now depends on static properties, too.

More recently, other methods were proposed for
obtaining a first approximation of the strain–life curve of
steels. Among them, in 2000, Roessle and Fatemi29 sug-
gested using the same exponents as the Modified USE,
but they expressed the Manson–Coffin coefficients as a
function of the sole Brinell hardness HB:

εa ¼ 4:25 HBð Þþ225
E

2Nf
� ��0:09

þ0:32 HBð Þ2�487 HBð Þþ191000
E

2Nf
� ��0:56 ð16Þ

Finally, Meggiolaro and Castro30 devised an equation
for steels in which the four coefficients of Equation (13)
are approximated by the medians evaluated on a large
dataset of 724 steels, which lead to the name Medians
method. The only exception is the fatigue strength coeffi-
cient σf 0, which due to its high correlation with ultimate

tensile strength was replaced by the median of the ratio
σf 0=UTS:

εa¼ 1:5
UTS
E

� �
2Nf
� ��0:09þ0:45 2Nf

� ��0:59 ð17Þ

Nevertheless, the authors' literature survey has
revealed that the above approximate strain–life models
were mainly applied to conventional metallic materials;
to the best of the authors' knowledge, nobody has neither
attempted to employ them nor to develop new approxi-
mate models for estimating the fatigue strength of AM
metallic materials from static tensile properties.

The results that follow then represent a first
attempt applied to the L-PBF AISI 316L steel studied in
this work; its strain–life curve was assessed directly
from static tensile properties: E= 198,562MPa,
UTS= 660MPa, and %Z= 75%, or the measured Vickers
hardness HV = 215, which was converted into
Brinell hardness HB= 205 by the relationship49:
HV ¼ 8:716þ0:963 HBð Þþ0:0002 HBð Þ2.

The estimated parameters for these models are
reported in Table 3, along with those of the Manson–
Coffin model. The last two columns of the table report
two metrics adopted to quantify the accuracy of the
approximated models. The first metric is the coefficient
of determination50:

R2 ¼ 1�
Pn

i¼1 yi�byið Þ2Pn
i¼1 yi� yð Þ2 ð18Þ

where yi ¼ log 2Nf ,i
� �

and byi ¼ log 2bNf ,i

� 	
are the loga-

rithm of the experimental and estimated number of
reversals to failure, whereas y is the sample mean of yi
and n the number of experimental data. The best model
has the smallest error sum of squares:

Pn
i¼1 yi�byið Þ2 and

thus the highest R2.
The second metric is the error measure proposed by

Park and Song51:

ea ¼ 1�jθ1jð Þþ 1�j1�θ2jð Þþ 1�j1�θ1�θ2jð Þþ 1�j1� rjð Þ
4

ð19Þ

where θ1 and θ2 define a linear regression line
log 2Nf ,p

� �¼ θ1þθ2 log 2Nf
� �

used to fit the relationship
between the predicted and experimental number of rever-
sals to failure, 2Nf ,p and 2Nf , respectively. Parameter r is
the correlation coefficient returned by the regression
analysis. Metric ea measures the “average” difference of
2Nf ,p from 2Nf . An ideally exact strain–life model would
give prediction values 2Nf ,p lying on a 45� line in a plane
2Nf ,p�2Nf , so that the linear regression line would have

PELEGATTI ET AL. 9
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θ1 ¼ 0, θ2 ¼ 1, and r¼ 1, and thus, ea¼ 1. Any prediction
error in the model would make ea decrease below unity.

The various models are also compared against experi-
mental data in Figure 7A, while Figure 7B plots the pre-
dicted fatigue lives against the experimental ones. In the
same figure, the abovementioned 45� line of perfect pre-
diction, along with the scatter bands defined for a life fac-
tor of �2 and �3, is also reported.

The Manson–Coffin model has the highest R2, which
is not surprising considering that the model follows a
least square fitting procedure from the real fatigue data.
Besides the Manson–Coffin model, the Hardness method
has the highest coefficient of determination R2, whereas
the Medians method has the lowest—it also provides the
most conservative estimates; see Figure 7A. However,
care must be paid when interpreting the R2 values, since
it is, by definition, unable to discriminate whether a
strain–life model provides overconservative or undercon-
servative fatigue life predictions. For example, it is inter-
esting to note that the case of USE and Modified USE
models, which in spite of having comparable R2 values,
are placed almost symmetrically around the Manson–
Coffin model and thus have different levels of safety in
their predicted lives—in fact, the USE model is noncon-
servative, the Modified USE conservative. Similar consid-
erations also apply to ea. By examining the value of ea,
the best method surprisingly becomes the Modified USE,
whereas the USE method gives a rather low value. Never-
theless, at least of the data presented here, parameter ea
seems to be not totally adequate to properly quantify the
relative accuracy of strain–life models; striking is the
example of the Manson–Coffin model that, based to its ea
metric, should be classified as less accurate than other
approximate methods.

This apparent contradiction may follow from the least
square fitting used to estimate the Manson–Coffin model,
which is only reflected in R2 but not in ea. It has indeed
to be reminded that the Manson–Coffin model is directly
estimated from experimental data, representing by defini-
tion the most accurate model taken as a reference (high-
est R2), even though it is true that the least square fitting

was performed on the elastic and plastic part of
Equation (13) separately and not on the total strain
amplitude.

For the reasons highlighted above, a visual inspec-
tion of strain–life models is also recommended to draw
a conclusion on their accuracy. As can be seen, the
number of reversals to failure predicted by all the
methods falls inside the �3 scatter band. By contrast,
the Medians and USE method predict some fatigue lives
outside the �2 scatter band, although the former has
the advantage to give conservative fatigue life predic-
tions, while the latter does not. Overall, the most appro-
priate model seems the Modified USE: not only it has a
high value of both R2 and ea but it also provides slightly
conservative estimates.

6 | COMPARISON OF
MECHANICAL BEHAVIOR OF L-PBF
AND WROUGHT AISI 316L STEELS

6.1 | Cyclic plasticity model comparison

In this section, the cyclic elastoplastic response of L-PBF
AISI 316L steel is compared with that of its wrought
counterpart obtained by a conventional manufacturing
process. In each subsection, a single aspect of the experi-
mental behavior is considered: cyclic stress response,
monotonic stress–strain curve, and stress–strain cycles.
These aspects are first examined from a phenomenologi-
cal point of view and then the implications of the experi-
mental behavior on the modeling are discussed since the
considered cyclic plasticity models are phenomenological
in nature.

6.1.1 | Cyclic stress response

According to Figure 8, a marked difference is observed in
the cyclic stress response of L-PBF and wrought AISI
316L steels when subjected to identical LCF loadings.

FIGURE 7 Comparison between

Manson–Coffin model and approximated

models: (A) strain–life curves and
experimental data; (B) prediction of fatigue

life by different models. [Colour figure can

be viewed at wileyonlinelibrary.com]
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Figure 8 compares the cyclic response of tests at strain
amplitudes 0.3%, 0.7%, and 1.2%. The L-PBF steel pre-
sents a softening behavior after a brief moderate harden-
ing, whereas the wrought steel exhibits also a secondary
hardening stage that is not as moderate as the hardening
in the first cycles. The same differences in experimental
behaviors are also highlighted in Yu et al.19 As reported
by the authors, from a microstructural perspective, the
secondary hardening seems related to the austenite–
martensite transformation caused by an intensive
mechanical strain. This possible explanation was already
suggested in the past.52 However, in other works, this
behavior was related to a particular dislocation arrange-
ment, instead of a deformation induced martensite.53

Compared with its wrought version, the L-PBF steel pre-
sents indeed a different microstructure, given its biphasic
nature consisting of small columns of austenite with the
presence of delta ferrite at grain boundaries. In this
regard, and as also reported by other studies,54–56 the aus-
tenite phase of L-PBF steel has a higher stability and
tends to prevent secondary hardening to appear. Likely,
the presence of both delta ferrite at grain boundaries and
small-sized columns of austenite hinders the martensitic
transformation of the austenite.

Surprisingly, the behavior of the studied AM stainless
steel is similar to the wrought material subjected to cold-
working,57 although the last material presents a high
amount of transformed martensite. It is evident that both
materials show a higher yield strength compared with
the annealed wrought material, and this initial condition
seems to influence the cyclic stress response.

From a design and modeling point of view, the sec-
ondary hardening exhibited by the wrought material

inevitably calls for the use of more sophisticated material
models. For example, some authors58,59 make use of a
new contribution in either the isotropic or kinematic
hardening part. It is also worth mentioning that the sec-
ondary hardening is usually characterized by a strain
range dependence, which further complicates the model-
ing with the introduction of a memory surface. Addi-
tional difficulties would arise as, for instance, a less
obvious interpretation and handling of simulation results
in the design phase or a more elaborated calibration
phase that requires one to handle a significant quantity
of data to estimate the model parameters. Instead, the
cyclic elastoplastic response of L-PBF AISI 316L steel is
more predictable even by a standard nonlinear Voce
model.

6.1.2 | Monotonic tensile curve and stress–
strain cycles

The monotonic tensile curves at the beginning of the test
distinctively differ for the two types of materials. Figure 9
shows that, at the same level of imposed strain, the L-
PBF AISI 316L steel bears a stress level double that of
wrought steel. This behavior is explained mainly by dif-
ferent initial yield stress, σy,0. Another characteristic is
the unconventional shape of the compressive-going
branch at the first loading inversion for the L-PBF mate-
rial. Compared with wrought material, the elastoplastic
transition in the branch is less gradual and occurs in two
steps. After an initial linear unloading with slope equal
to the elastic modulus, the curve keeps nearly linear but

FIGURE 8 Cyclic stress response of laser-powder bed fusion

(L-PBF) and wrought AISI 316L stainless steel at strain amplitude

of 0.3%, 0.7%, and 1.2%. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 Monotonic tensile part and first load inversion at

the beginning of low cycle fatigue (LCF) tests at 0.3%, 0.5%, 0.7%,

and 1.2% strain amplitude, for both laser-powder bed fusion (L-

PBF) and wrought AISI 316L steel. [Colour figure can be viewed at

wileyonlinelibrary.com]
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with a sudden decrease in slope, until a condition resem-
bling a complete saturation is reached; in fact, the last
portion of the compressive-going branch is almost flat.
This peculiar shape of the compressive-going branch is
not retained in the following cycles. Apart from the diffi-
culty in simulating this aspect with the Chaboche–Voce
plasticity model, this aspect is not so relevant in the over-
all modeling because it only affects the first compressive-
going branch and disappears in the following cycles.

Figure 10 compares the half-life stress–strain cycles at
three different strain amplitudes for the wrought and L-
PBF steel. For the wrought material, the cycles corre-
spond to the secondary hardening phase of the cyclic
response. Compared with its wrought counterpart, the L-
PBF steel presents higher maximum and minimum stres-
ses at strain amplitudes of 0.3% and 0.7% but similar
stresses at 1.2% strain amplitude. Looking at Figure 10A
is possible to understand if the wrought and L-PBF 316L
steel exhibit Masing behavior. For the sake of clarity, a
material displays Masing behavior if the branches of sta-
bilized stress–strain cycles at different strain amplitudes
follow the same curve.60 Mathematically, the stabilized
stress–strain cycles can be obtained homothetically from
the cyclic stress–strain curve. A common practice sug-
gests translating the stabilized stress–strain cycles at dif-
ferent strain amplitudes to the origin, with the lower tips
being tied together. Then, if the tensile-going branches of
all the stabilized cycles follow a single curve, the material
has a Masing-like behavior. Figure 10B brings out the
non-Masing behavior of the wrought steel, which most
likely depends upon the same phenomenon that makes
the secondary hardening depend upon the strain ampli-
tude. This unusual behavior, as reported in Section 6.1.1,
leads to different parameters R∞ and b for each strain
amplitude. By contrast, Figure 10B shows that the L-PBF
steel follows quite nicely a Masing-like behavior.

As it is well-known, the material response in the
monotonic tensile curve and stress–strain cycles can be
described by the kinematic hardening model
(Equation (2)). Following the suggestion of the

literature,39,41 a combination of three independent Xi was
adopted for modeling the L-PBF AISI 316L steel. For the
wrought steel, two Xi were used because only the strain
amplitudes from 0.3% to 0.7% were considered, and thus,
the third component X3, which describes the linear slope
at high strain, can be neglected without loss of accuracy.
The strain amplitudes higher than 0.7% were not consid-
ered in the modeling due to the predominant secondary
hardening phase. A direct comparison of kinematic hard-
ening model parameters for L-PBF and wrought steel is
thus not possible.

For that reason, a comparison of the experimental
stress–strain cycles is made through another parameter,
that is, the plastic strain energy density, wpl. Considering
a single strain amplitude for the two materials,
Figure 10B shows clearly that a higher stress range gives
rise to a lower plastic strain range in a cycle. Plastic strain
energy density, wpl, was evaluated from the experimental
data, and the values are listed in Table 4. Despite the dif-
ference in stress range between L-PBF and wrought AISI
316L steel, the plastic strain energy density, wpl, is similar
for the cycles at Nf =2. This result suggests a different
shape of the stress–strain cycles for the two materials. In
fact, a similar plastic strain energy density in a cycle,
though corresponding to different stress and plastic strain
range, can be attributed to a difference in yield stress and
strain hardening (the slope of the stress-plastic strain
relationship loosely speaking). This observation on strain
hardening is further confirmed by looking at the values
taken by the loop shape parameter, VH

61:

VH ¼ wpl

4σaεpl,a
ð20Þ

An elastic perfectly plastic material has VH ¼ 1 for
each cycle, whereas a material with an infinitely high
strain hardening (intended here as a high ratio σa=σy)
has a value approaching VH ¼ 0. Clearly, VH depends
also on the nonlinearity of the strain hardening. In fact, a

FIGURE 10 Comparison of

experimental cycles at Nf =2: (A) stress–
strain cycles and (B) stress-plastic strain

cycles translated to the origin. [Colour

figure can be viewed at wileyonlinelibrary.

com]
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material with linear strain hardening has a lower VH

value than a material with nonlinear behavior.
In Table 4, the values of VH are reported for the

cycles at Nf =2 for both the L-PBF and wrought 316L
steel. At each strain amplitude, the AM material presents
higher values (caused by a lower strain hardening) than
the wrought counterpart.

6.2 | Strain–life curves

As discussed in Section 6.1, L-PBF and wrought AISI
316L steels present marked differences in their cyclic
elastoplastic behavior. The question is whether such dif-
ferences also reflect in the LCF strength. Figure 11

compares the Manson–Coffin curves fitted on the experi-
mental data for L-PBF and wrought AISI 316L steel. The
strain–life curves for the wrought material were esti-
mated in a previous work.34

The two Manson–Coffin curves intersect each other
at high strain amplitudes, then descend with two slightly
different slopes. Despite that, the experimental number
of cycles to failure is similar for the L-PBF and wrought
AISI 316L steel, with the only noticeable deviation exist-
ing at the smallest tested strain amplitudes. In fact, the L-
PBF AISI 316L steel shows a number of reversals to fail-
ure nearly 10 times lower at a strain amplitude of 0.3%.

The different scatter in fatigue lives is revealed by the
different widths of the 95% scatter band of Manson-
Coffin curves, see Figure 11. The scatter band is bounded
by a lower and upper curve (dashed lines in Figure 11),
referred to a 2.5% and 97.5% failure probability, respec-
tively. At each strain amplitude, the scatter band is estab-
lished to contain a 95% proportion of specimen failures.
From a practical point of view, the scatter band was
obtained by translating the elastic and plastic part of
Equation (13) by 1.96 times the standard deviation esti-
mated during linear regression. The definition corre-
sponds to the so-called “deterministic method” and is
explained in Pelegatti et al.34 It is essential to remind that
the deterministic method neglects the statistical variabil-
ity of estimated regression parameters.

First, the L-PBF AISI 316L steel has a broader scatter
band than the wrought material. This can be surely
attributed to a larger scatter of fatigue lives coming from
the larger amount of defects typical of additive manufac-
tured products, as reported in Pelegatti et al.31 Secondly,
the two scatter bands are mostly overlapped in the tested
range of strain amplitudes. At high strain amplitudes,
each scatter band for one material includes almost all
fatigue data of the other material, except the L-PBF test

TABLE 4 Plastic strain energy density and loop shape parameter of the cycle at Nf =2 for each strain amplitude, calculated for L-PBF

and wrought 316L steel.

Plastic strain energy, wpl (MJ=m3) Loop shape parameter, VH

Strain amplitude, εa L-PBF AISI 316L Wrought AISI 316L L-PBF AISI 316L Wrought AISI 316L

0.3% 1.096 1.097 0.7518 0.6578

0.4% 2.315 1.949 0.7555 0.6913

0.5% 3.680 2.887 0.7633 0.6779

0.6% 5.141 4.100 0.7729 0.6924

0.7% 6.809 5.446 0.7769 0.7085

0.8% 8.304 7.333 0.7888 0.6907

1% 12.02 10.80 0.8076 0.7322

1.2% 16.28 13.58 0.8238 0.7502

Abbreviations: LCF, low cycle fatigue; L-PBF, laser-powder bed fusion.

FIGURE 11 Comparison between the Manson–Coffin curves

and experimental data for the L-PBF and wrought AISI 316L. The

two 95% scatter bands are highlighted by transparent colors.

[Colour figure can be viewed at wileyonlinelibrary.com]
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at 0.7% strain amplitude. This conclusion is not true for
the test results at 0.4% and 0.3% strain amplitude that fall
outside the scatter bands of the other material. This
observation suggests once more that a difference in the
mechanical behavior between the two materials is more
noticeable at low strain amplitudes, where the elastic
contribution is predominant, and the influence of fabrica-
tion defects and other localized inhomogeneities is more
pronounced, such as residual stress, material texture, and
surface finish.62,63

7 | CONCLUSION

In this work, the cyclic plasticity behavior of a L-PBF
AISI 316L steel was described by a combined nonlinear
kinematic (Chaboche) and isotropic (Voce) model. The
median strain–life curves were estimated by the Manson–
Coffin relationship and some approximated models cali-
brated on static material properties. The results obtained
for the L-PBF AISI 316L steel were compared with those
of the same alloy in the wrought state. The following con-
clusions can be drawn:

• The kinematic model correctly predicts the shape of
the stress–strain cycles of the L-PBF AISI 316L. Only a
minor discrepancy is found in the initial tensile mono-
tonic loading and the first compressive-going branch,
where the stresses are slightly overpredicted. At the
same time, the isotropic model allows the maximum
stress value at half-life Nf =2 to be predicted correctly.
However, the isotropic model relies on an exponential
relationship that introduced a minor mismatch when
describing the cyclic softening observed in
experiments.

• The approximated strain–life models calibrated on
static mechanical properties show a good matching
with the LCF experimental data of the L-PBF AISI
316L. Among the considered models, the Modified
USE method gives the best result in terms of predicted
fatigue lives, whereas the Medians method deviates
significantly from the experimental data. This attempt
to extend the applicability of these simplified models
to an AM material seems promising and it deserves to
be investigated more extensively.

• The cyclic elastoplastic response of the wrought AISI
316L presents a secondary hardening and a depen-
dence on the strain amplitude. On the other hand, the
L-PBF AISI 316L response at Nf =2 could be approxi-
mated by a Masing behavior and no secondary harden-
ing is revealed, even at higher strain amplitude.

• L-PBF and wrought AISI 316L steels exhibit compara-
ble fatigue lives for specimens tested in the range of
strain amplitudes from 0.3% to 1.2%. However, at lower
strain amplitudes, the 95% scatter bands based on the
Manson–Coffin curve highlight a reduced fatigue
strength for the L-PBF AISI 316L compared with the
wrought material.

NOMENCLATURE
AM Additive manufacturing
APE Absolute percentage error
b0 Fatigue strength exponent
b Speed of stabilization
c0 Fatigue ductility exponent
C Kinematic hardening: linear parameter
D Ductility
ea Error metric for strain–life models
E Elastic modulus
E1 Elastic modulus at first monotonic loading
Es Elastic modulus at stabilized cycle
FE Finite element
HB Brinell hardness
HCF High cycle fatigue
HV Vickers hardness
LCF Low cycle fatigue
L-PBF Laser-powder bed fusion
MAPE Mean absolute percentage error
N Number of cycles
Nf Number of cycles to failure
p Accumulated plastic strain
R Isotropic hardening variable
R∞ Saturated stress of isotropic variable
R2 Coefficient of determination
r Correlation coefficient
USE Universal slope equation
UTS Ultimate tensile strength
VH Shape loop parameter
wpl Plastic strain energy density
X Back stress tensor
Xa Back stress amplitude
γ Kinematic hardening: nonlinear

parameter
Δεpl Plastic strain range
σ0 Deviatoric stress tensor
σ Stress
σa Stress amplitude
σa,s Stress amplitude in the stabilized cycle
σf 0 Fatigue strength coefficient
σmax Maximum stress
σy,0 Initial yield stress
ε, εel, εpl Strain (total, elastic, plastic)
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εa, εel,a, εpl,a Strain amplitude (total, elastic, plastic)
εf 0 Fatigue ductility coefficient
2Nf Reversals to failure
%Z Tensile test area reduction
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