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A B S T R A C T   

Seagrass meadows play a vital role for lagoon ecosystems and their biota, sustaining multiple ecosystem services. 
Their distribution and functioning are closely tied to the environmental pressures induced by global changes. 
Long-term monitoring of seagrass species and communities is, hence, important to depict their response to past 
and future scenarios. The availability of long term open-access satellite data offers a new remote sensing 
perspective for monitoring seagrass communities dynamics in shallow waters, especially when combined with 
machine learning algorithms. In this study, seasonal multispectral images (from 1999 to 2019) were collected 
from Landsat 5 Thematic Mapper and 8 Operational Land Imager satellites to map the seagrass meadows, at the 
community and species levels, within the vast Grado and Marano lagoon (Northeast Italy) using a Random Forest 
(RF) algorithm. RF models were calculated using an extensive field training dataset collected in 2010 (n = 426) 
and reached an overall accuracy of 0.92 and 0.76 for the classification at the community and species levels, 
respectively. The change detection analysis revealed an increase of 14.16 km2 (+ 39%) of the whole seagrass 
community cover over the period, at a rate of 1.59 km2year− 1. Despite the coarse spatial resolution (30 m) of the 
Landsat’s images, the classification of seagrasses at species level achieved a good overall accuracy (0.76), 
evidencing Nanozostera noltei as the species with the highest cover increase (+13.87 km2 over the time period). 
The observed expansion is likely caused by an increase of the sea water influence that is radically modifying 
Adriatic brackish water bodies, emphasizing the connection between the ongoing environmental changes and the 
rapid responses of seagrass meadows.   

1. Introduction 

Seagrasses are monocotyledonous marine angiosperms found in most 
of the worldwide coastal environments. They can form dense and 
extensive meadows and are one of the most productive coastal ecosys
tems providing several ecosystem services (Duarte and Chiscano, 1999; 
Nordlund et al., 2016). Seagrasses support biodiversity by sustaining 
trophic networks, provide oxygen in the water column, stabilize sedi
ments, regulate nutrient cycles, and represent an important sink of blue 
carbon (Boscutti et al., 2019; Duarte et al., 2005; Hemminga and Duarte, 
2000; Larkum et al., 2006). Despite their great natural value, seagrass 
meadows are among the most threatened ecosystems on Earth, 

undergoing a rapid global decline (Waycott et al., 2009). The causes of 
this decline have been mainly linked to anthropogenic drivers including 
eutrophication (Burkholder et al., 2007), alterations of coastal habitats 
(Micheli et al., 2008), climate crisis (Duarte et al., 2018) as well as the 
expansion of invasive species (Short et al., 2007). 

In contrast to the global decline, several European sites experienced a 
local expansion of seagrass communities (Barillé et al., 2010; Calleja 
et al., 2017; de los Santos et al., 2019; Reise and Kohlus, 2008; Zoffoli 
et al., 2021). These contrasting trends vary among seagrass species, time 
periods, and are often linked to site-specific characteristics (Dunic et al., 
2021; Green et al., 2021). This is particularly true for coastal lagoons 
(Garrido et al., 2013), where strong environmental gradients promote a 
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highly heterogeneous environment (Basset et al., 2013), causing the 
formation of complex ecological niches (Pérez-Ruzafa et al., 2011). As a 
result, lagoon meadows are often composed of multi-specific commu
nities (Boscutti et al., 2015), whereas most of the seagrass meadows 
within the sea domain are monospecific (Short et al., 2007). The inter
specific interactions occurring in multi-species meadows (e.g. species 
competition, see Boardman and Ruesink, 2022) can interplay with 
abiotic stressors, creating significant niche shifts (Christia et al., 2018). 

Tracing single species distribution and extension over time might, 
hence, greatly improve our understanding of coastal ecosystem pro
cesses and functioning in response to environmental changes (Garrido 
et al., 2013; Menu et al., 2021; Pérez-Ruzafa et al., 2011). This task 
requires novel effective approaches to monitor seagrass meadow dy
namics (Veettil et al., 2020). Satellite remote sensing has been proven to 
be a relevant tool for long-term monitoring of ecosystem dynamics 
(Murray et al., 2018). Compared to traditional field-based methods, 
remote sensing is highly effective due to characteristics such as low cost, 
high accuracy, temporal repeatability, and large spatial coverage (Pham 
et al., 2019b). The use of multispectral satellite platforms (e.g. Landsat 
series) provides free access to a vast historical archive, providing un
precedented retrospective time series collections. More recently, ma
chine learning algorithms have increasingly replaced simple 
classification algorithms in the remote sensing analyses (Effrosynidis 
et al., 2018; Pham et al., 2019a, 2019b). They rely on non-parametric 
approaches, increasing the effectiveness in handling noisy data, and 
the ability to extract multiple features (Maxwell et al., 2018). These 
characteristics led to a remarkable improve in classification accuracy, 
when considering mixed habitats (Pafumi et al., 2023; Pham et al., 
2019a; Veettil et al., 2020) and/or using satellite images with coarse 
spatial resolution (Ha et al., 2020). However, the application of machine 
learning in coastal waters is still in its infancy (Ha et al., 2020). Suc
cessful mapping of seagrass species distribution and dynamics were 
already performed by using high spatial resolution data, at the expense 
of a limited time span. For example, Traganos and Reinartz (2018b) and 
Ariasari et al. (2019) achieved classification overall accuracies of 94% 
and 83% respectively, using Planet’s RapidEye and PlanetScope satel
lites. Furthermore, Roelfsema et al. (2014) mapped seagrass species 
combining high spatial resolution sensors (Maxar’s WorldView-2, X 
IKONOS, and X Quickbird-2) and object-based classification approach, 
highlighting significant seasonal variations of seagrass species distri
bution. Indeed, other studies based on an intra-annual time scale have 
suggested that ignoring seasonality could lead to doubtful classifications 
(Fauzan et al., 2021; Menu et al., 2021). This is particularly relevant for 
species occupying brackish waters, which are characterized by a high 
annual species turnover (Zoffoli et al., 2020), resulting in changes in 
growth period duration, biomass peaks and seed germination (Buia and 
Marzocchi, 1995; Buia and Mazzella, 1991; Sfriso and Ghetti, 1998). All 
these population aspects are expected to significantly affect the pixel 
spectral reflectance (Fyfe, 2003). Therefore, integrating seasonal images 
into the mapping processes might provide important information to 
distinguish seagrass species. The diachronic mapping of seagrass species 
distribution still remains poorly addressed (Calleja et al., 2017; Lønborg 
et al., 2022; Veettil et al., 2020). New insights are needed to overcome 
the spatial and spectral limitations offered by historical platforms, such 
as the Landsat missions (Chen et al., 2016). In this study, we focused our 
attention on the importance to account for phenological differences 
between species in the application of machine learning algorithms 
trained on a large ground-truth dataset. This would allow for more 
effective extraction of reflectance features, enabling the acquisition of 
temporal information on the distribution of lagoon seagrass species. 

The present work combines a multi-decade (from 1999 to 2019) 
series of seasonal multispectral satellite images collected from Landsat 5 
Thematic Mapper (TM) and 8 Operational Land Imager (OLI) satellites 
(of the National Aeronautics and Space Administration and the U.S. 
Geological Survey program) and Random Forest (RF) algorithm to (i) 
obtain a classification model of presence and absence of seagrass 

meadows in the vast Grado and Marano lagoon (North East Italy), (ii) 
obtain a classification model of each seagrass species sampled in the 
study area and (iii) project the seagrass meadows and species cover 
shifts from 1999 to 2019. To achieve these goals, we first tested whether 
RF model calculated using all seasonal images allow obtaining higher 
classification accuracy, both at the community and at the species levels, 
than RF models calculated with one single seasonal image. Then, the RF 
models with the highest overall accuracy were used to classify all the 
images and to calculate the cover of the seagrass community and of each 
species over the years. This analysis allowed tracing the expansion or 
regression trends of seagrass meadows, providing detailed insights into 
of past and ongoing changes. 

2. Materials and methods 

2.1. Study area and species 

The study area covers the Grado and Marano lagoon (45◦40′40″ N 
13◦03′50″ E to 45◦46′30″ N 13◦27′20″ E), Northern Adriatic Sea (Fig. 1). 
It is the second major transitional water body of the Italian coastlines 
with a surface of approximately 160 km2. It is separated from the sea by 
six sandbars with a different stage of evolution to islands, interspersed 
with inlets, covering a coastal length of approximately 35 km. The 
average distance between sandbars and inner coastline is approximately 
5 km. It is characterized by semidiurnal tides with an average range of 
65 cm (Gatto and Marocco, 1993). The average salinity of the lagoon is 
28.5 psu (eastern basin) and 22.2 psu (western basin). It is included in 
the European coordinated ecological network of protected areas Natura 
2000 (IT3320037) as both a Special Area of Conservation (SAC) and 
Special Protection Area (SPA) encompassing a complex mosaic of pro
tected habitats. 

Three seagrass species are widespread across the lagoon (Falace 
et al., 2009): Zostera marina L., which is a temperate-boreal species; 
Nanozostera noltei (Hornem.) Toml. & Posl (= Zostera noltii Hornem.), 
occurring in European and North African waters; and Cymodocea nodosa 
(Ucria) Ascherson which shows a small range, covering Mediterranean 
and North African waters (Larkum et al., 2006). C. nodosa lives on sandy 
and muddy substrates, both in open waters and in brackish lagoons 
(Cancemi et al., 2002). It is recognized as a species with high ecological 
plasticity, being adapted to wide ranges of salinity, concentration of 
nutrients and sediments (Garrido et al., 2013). Z. marina is a sublittoral 
species that occurs on soft mud and on firm and coarse sand where the 
extension of meadows changes continually as a function of the influence 
of currents, wave action, sediment transport and seed dispersal (Fred
eriksen et al., 2004). N. noltei is widely distributed in shallow, sheltered 
and muddy subtidal habitats. It can acclimate to different environmental 
conditions including fluctuations in physical and chemical parameters 
(Loques et al., 1990). The distribution of the above species within the 
study area is determined by the presence of strong ecological gradients, 
such as salinity, water depth, pH and soil characteristics (Boscutti et al., 
2015). 

2.2. Training data and validation distribution data 

The workflow adopted for data acquisition, preparation and to set RF 
models are summarized in Fig. 2. The field data were collected during 
the summer season in 2010 (see Boscutti et al., 2015 for details about the 
field sampling procedure). The presence or absence and the cover per
centage of the three seagrass species were recorded for each sampling 
point, by means of inspection and sampling of the seabed. To reduce the 
effects introduced by non-vegetated and mixed pixels, the points not 
falling within the region of interest (ROI) (i.e. main channels and tidal 
islands of the lagoon), and the points considered mixed (i.e. those in 
which the co-occurrence of multiple species was recorded), were 
removed. The removed mixed points represented 16.7% of the original 
data. Considering the different combinations of the three species’ co- 
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occurrence, not enough points representing each mixed class were 
available for an accurate classification (Roelfsema et al., 2014). 
Furthermore, the removal of mixed points can lead to a more precise 
characterization of the species’ spectral signatures by reducing the so- 
called “salt and pepper” effect caused by internal variability within a 
classification class, which appears as noise in the classification results 
(Zhang, 2015). The final dataset used in the RF models (see section 2.4) 
had 426 points (Fig. 1). 

Using high spatial resolution digital orthophotos available for 2003 
(0.15 m spatial resolution) and 2007 (0.5 m spatial resolution), two new 
validation point datasets were obtained. 

These datasets were used to further validate the classification per
formance of the models over the considered time period. For both years, 
a total of 155 points were randomly distributed within the lagoon. 
Through photointerpretation analysis, an ID corresponding to the 
presence/absence of seagrass meadows was assigned to each point. In 
addition, another validation dataset of 155 field training points was 
available for the year 2019 representing a subsample of the data 
collected in 2010 (unpublished data), were species occurrence was also 
recorded (Fig. 1). 

2.3. Satellite data and image preprocessing 

We used multispectral images from Landsat 5 TM and Landsat 8 OLI. 
The Landsat mission provides the longest freely available time series, 
already successfully used in the study of seagrass ecosystem (Chen et al., 
2016; Lebrasse et al., 2022). The images were downloaded from the 
Google Earth Engine platform (Gorelick et al., 2017) as a surface 
reflectance product. All available images were downloaded for an 
annual interval from 1999 to 2019. To minimize the effect of the water 
column in the classification, only the images acquired in days with tide 
height < 1 m were kept. The tide data were obtained from the historical 
archive of the tide station of Grado (www.isprambiente.it). After that, 
each image was masked by removing the pixels classified as clouds or 
cloud shadow in the Quality Assessment band and those non included in 
the ROI (i.e. main channels, salt marshes, islands and fishing valleys). 
The use of the ROI mask reduced the occurrence of possible background 
noise and elements of confusion for the subsequent classification phases 
(Zoffoli et al., 2020). Starting from all the available images, 3 seasonal 
images per year were selected. The temporal definition of the seasons 
was made by integrating information obtained from previous studies on 
the phenology of the study species in the coastal lagoons system of the 

26

Fig. 1. (a) Location of the study area in Italy, (b) lagoon of Grado and Marano (Northern Adriatic Sea). (c) Distribution of field datapoints collected in 2010 (blue 
dots) and resampled in 2019 (red dots). The region of interest (ROI) for the habitat mapping (i.e., the mask which delineates only lagoon tidal flats) is contoured with 
gray line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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northern Adriatic (Buia and Marzocchi, 1995; Guidetti et al., 2001; 
Sfriso and Ghetti, 1998). The identified seasonal intervals were: (i) 
March 15th – June 15th (spring season); (ii) June 16th – September 1st 
(summer season); (iii) September 1st – December 31st (autumn season). 
Due to the limited temporal resolution of Landsat (i.e., 16 days) together 
with the presence of images with high cloud cover, no images were 
available for 2002, 2008, 2015. A total of 51 images covering 17 years 
were obtained. A radiometric normalization was carried out on each 
image using the IR-MAD (Canty, 2014) algorithm through the plugin 
ArrNorm for QGIS software (QGIS Development Team, 2023). The 
Landsat 5TM image collected on July 3, 2010 was used as a reference 
due to its quality and proximity of field sampling period. Differences in 
the Landsat sensors used were mitigated by the use of surface reflectance 
products whose correction algorithms are consistently optimized to 
make the end products of the different sensors comparable (Koehler 
et al., 2022; Vogelmann et al., 2016). It is also considered that factors 
such as intra- and inter-annual differences in phenology are likely to 
have a greater impact on spectral signals than differences related to 
sensor characteristics over time (Vogelmann et al., 2016). 

2.4. Statistical analysis 

2.4.1. Random forest classification 
Random Forest is a machine learning method combining decision 

trees and bootstrapping. Developed by Breiman (2001), RF has been 
found to be insensitive to overtraining, small or noisy datasets. Every 
decision tree in the implemented RF algorithm is trained with a boot
strapped sample of the training data and, at every split node, a subset of 
randomly selected features is utilized. Then for each pixel, the final 
classification is obtained by a majority vote. RF has proven to be an 
effective tool for mapping coastal and seagrass habitats (Fauzan et al., 
2021; Traganos and Reinartz, 2018b; Wicaksono et al., 2019). Two sets 
of RF models were performed using the multispectral images retrieved in 
2010. In the first set, the response variable was the presence/absence of 
the total seagrass meadows (hereafter identified as seagrass meadows), 
where areas with <20% seagrass cover were considered absence (Valle 
et al., 2015; Zoffoli et al., 2020). In the second set, the response variable 
was the training dataset divided in 4 classes according to the species 
present, namely (1) Z. marina, (2) N. noltei, (3) C. nodosa, (4) absence 
(hereafter indicated as species meadows). The species presence was 
considered if its cover was >20% (Buia et al., 2004). For each dataset, 4 

different RF models were generated starting from (i) the images for each 
season (n images = 1, n bands = 6, n predictors = 6) and (ii) from all the 
seasonal images (n images = 3, n bands = 6, n predictors = 18). This 
allowed us to understand which combination of input variables gener
ated the best classification performance. The predictors used as input 
variables for all the performed models were each 30 m spatial resolution 
band of each image used (Table S1). The available 2010 field data (n =
426) were split into 70% for the training dataset (n = 303) and 30% for 
the validation dataset (n = 123). The training dataset was further split 
into 80% training and 20% testing for RF performance evaluation. The 
optimization of the hyper-parameters was done by choosing 1000 trees 
to run the model for presence/absence classification, and 500 trees to 
run all RF for species discrimination as they featured the best results out 
of a plethora of runs with different number of trees (Probst et al., 2019). 
For the best split selection measurement, the Gini Index was used 
(Breiman, 2001). The number of variables used for each node (mtry) 
were automatically selected by using repeated cross validations per
formed with 10 folds and 10 repetitions for the seagrass meadow 
models, while 5 folds and 5 repetitions were used for species meadow 
models. The available validation dataset was used to create a confusion 
matrix for image classifications. Based on the confusion matrix, metrics 
as overall (O.A.), producer (P.A.) and user (U.A.) accuracy for each 
classified class were calculated (Congalton, 1991). O.A. represents the 
proportion of correctly classified validation samples (found along the 
diagonal in the error matrix) to the total number of validation samples, 
irrespective of class. P.A. quantifies the proportion of accurately clas
sified validation samples within a specific class against the total number 
of validation samples belonging to that class. U.A. calculates the ratio of 
correctly identified validation samples within a particular class to the 
total number of validation samples claiming to be in that class. Finally, 
the two best RF models (i.e. highest O.A.) for presence/absence mapping 
and for single species mapping were selected and applied for the 
time-series analysis from 1999 to 2019. RF models were performed 
using the caret (Kuhn et al., 2023) package of the R software (v. 4.3.1, R 
Core Team, 2023). The multi-year classification was also validated with 
the independent datasets expressed as seagrass presence/absence (years 
2003 and 2007) and both seagrass and species presence/absence (year 
2019). 

2.4.2. Change detection and trend analysis 
The total area of the seagrass meadows and of each species was 

Traning dataLandsat 5TM / Landsat 8OLI
multispectral images (1999-2019)

Tide filtering
ROI selection
seasonal image selection

Pre-processed input images

Images 2010
Random forest
classification model

Validation data

Accuracy
assessment

Images 
1999 - 2019

Random forest
classification model

Validation data
Accuracy
assessment

Distribution 
maps

Seagrass distribution
over time

Spring Summer Autumn

Machine learning 
seagrass detection

Image collection 
and pre-processing

(i) (ii)

(iii)

Fig. 2. Workflow of the methodology adopted in this work. Here are represented (i) the image pre-processing phase to obtain the input variables for the RF 
classification models; (ii) the construction of the model based on the 2010 field survey and multispectral data and (iii) the multi-decade classification phase, its 
validation, and the change detection step. 
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calculated for each year using the images classified as explained above. 
The presence of positive or negative monotonic trends of seagrass dis
tribution over the twenty-year period was investigated using the 
modified Mann–Kendall nonparametric trend test for temporally auto
correlated data, using the Hamed and Ramachandra Rao (1998) vari
ance correction approach (Kendall, 1948; Mann, 1945) with the trend R 
package (Pohlert, 2023). The Mann-Kendall test is typically used to 
detect trends in time series. The null hypothesis determines whether a 
time series does not have a monotonic trend, while the alternative hy
pothesis confirms a significant monotonic trend (p-value <0.05). This 
analysis has two main outputs, the z-score and Mann-Kendall tau (τ). 
The Mann-Kendall tau (τ) option estimates the correlation coefficient 
and ranges from − 1 to +1, where 1 means a continuously increasing 
trend, − 1 continuously decreasing trend, and 0 no trend. The z-score 
with a mean of 0 and a variance of 1 follows the standard normal dis
tribution. Its positive values show uptrends in a time series and the 
negative values show downtrends. For significant tests, the Sen’s slope 
(Sen, 1968) was calculated. This test is used to calculate the magnitude 
of trends in the long-term temporal data. Moreover, we used the single 
species maps obtained through the best RF to obtain the spectral 
reflectance values of each spectral bands for each species. Due to the 
violation of linear assumptions, the differences between species of each 
spectral bands were tested using the non-parametric Kruskal-Wallis test 
(Gibbons, 1974) through stats R package (R Core Team, 2023). Pairwise 
differences were then calculated using the Dunn’s post hoc test, dunn.test 
package (Dinno, 2017; Dunn, 1961; R Core Team, 2023). 

3. Results 

3.1. The role of seasonality for an accurate image classification 

The RF models using all the seasonal images exhibited the best 
performance (O.A. of 0.92 for seagrass meadows and 0.76 for species 
meadows) when compared to RF models separately performed with 
images of a single season (i.e., model spring, summer, autumn) 
(Table 1). Among the single season RF models, the best performance was 
obtained by using the spring images, with an O.A. similar to the overall 
images model both for seagrass and species meadow classification 
(Table 1). The RF models calculated with the autumn image achieved 
the lowest classification accuracy for seagrass meadows (O.A. = 0.84) 
and intermediate performances for species meadow classification (O.A. 
= 0.69). The RF models performed with the summer image showed in
termediate performances for seagrass meadow mapping (O.A. = 0.88) 
and the lowest performance for species meadow classification (O.A. =
0.61). 

According to the mean decrease Gini index, for both seasonal image 
models the blue band of the summer image was the most important for 
the split between trees in the RF model and therefore explains most of 
the variance in seagrass cover, followed by the green bands of the 

summer and spring images (Fig. S1). 

3.2. Seagrass and species meadows RF classification and validation 

The best seagrass meadow model was trained with all seasonal im
ages of 2010 (O.A. = 0.92) and showed a U.A. of 0.91 for both the 
presence and absence pixels. The model predicted seagrass presence (P. 
A. = 0.94) with greater accuracy than absence (P.A. = 0.88). The O.A. 
calculated on the independent validation dataset resulted high, with 
values of 0.90 for 2003, 0.91 for 2007, and 0.86 for 2019. Both U.A. and 
P.A. of the presence and absence classes remained high (> 0.75) over the 
different years of validated classification (see Table 2 and Table S3). 

The best model for species meadows classification trained with all 
seasonal images of 2010 obtained an O.A. of 0.76. The class that pre
sented the greatest reliability (i.e., the relative frequency of true 
occurrence in the field of each class) was Z. marina (U.A. 1.00). How
ever, Z. marina was the species predicted with lowest accuracy by the 
model (P.A. = 0.45). The absence class was the class predicted with 
highest accuracy (P.A. = 0.94) and presented the highest reliability in 
the classification output (U.A. = 0.88) (Table 2). The class N. noltei was 
predicted with a low accuracy (P.A. = 0.50) (Table 2) related to a 
confusion with the class C. nodosa (Table S3). However, N. noltei 
exhibited an acceptable U.A. (0.70). C. nodosa showed the lowest U.A. 
(0.59) but it was second class better predicted by the model (P.A. =

Table 1 
Performance comparison (expressed as overall accuracy, O.A.) of the different RF models generated for the classification of presence/absence of seagrasses (seagrass 
meadows) and species classification (4 classes, species meadows) for 2010. The images date column reports the acquisition date of the image from Landsat 5TM on the 
study area. Input variables indicates the number of multispectral bands (6 each image) used by the model to generate the classification. Mtry represents the number of 
variables to randomly sample as candidates at each split.  

Output map Model ID Image date Input variables Number of classes Mtry O.A. 

seagrass meadows        
RF seasonal images all dates 18 2 2 0.92  
RF spring 01/06/2010 6 2 2 0.90  
RF summer 03/07/2010 6 2 2 0.88  
RF autumn 21/09/2010 6 2 2 0.84 

species meadows        
RF seasonal images all dates 18 4 10 0.76  
RF spring 01/06/2010 6 4 2 0.70  
RF summer 03/07/2010 6 4 2 0.61  
RF autumn 21/09/2010 6 4 4 0.69  

Table 2 
Classification performances calculated on the confusion matrices (expressed as 
overall, user, producer accuracy) of seagrass meadows and species meadows 
mapping. 2010 (*) is the reference year for model, 2003 and 2007 are validated 
with photointerpretation data while 2019 with field data.  

Seagrass meadows      

Year  2003 2007 2010* 2019 
Overall accuracy  0.90 0.91 0.92 0.86 
User accuracy Absence 0.83 0.88 0.91 0.88  

Presence 0.98 0.93 0.91 0.84 
Producer accuracy Absence 0.98 0.90 0.88 0.76  

Presence 0.82 0.92 0.94 0.92   

Species meadows      

Year  2003 2007 2010* 2019 
Overall accuracy  – – 0.76 0.60 
User accuracy Z. marina – – 1.00 0.83  

N. noltei – – 0.70 0.56  
C. nodosa – – 0.59 0.52  
Absence – – 0.88 0.78 

Producer accuracy Z. marina – – 0.45 0.26  
N. noltei – – 0.50 0.38  
C. nodosa – – 0.78 0.57  
Absence – – 0.94 0.78  
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0.78) followed by the absence class (P.A. = 0.88), the N. noltei class (P.A. 
= 0.79) and C. nodosa (P.A. = 0.59). The O.A. obtained using the in
dependent validation dataset for 2019 was 0.60 (Table 2, Table S3). 

The pixels classified in the three species by the species meadows 
model (year 2010) were significantly spectrally separated (Kruskall- 
Wallis test p-value <0.001, df = 2) (Fig. 3, Table S4) considering the 
reflectance values of the Landsat 5TM bands in 2010. In the green band, 
however, no significant difference was found between the pixels clas
sified as N. noltei and C. nodosa (Dunn test p-value >0.05), while 
Z. marina was spectrally separated from the two other species (p-value 
<0.05). 

3.3. Projecting seagrass and species meadow distribution changes over 
time 

The spatiotemporal distribution of seagrass and species meadows in 
the study area over the period from 1999 to 2019 is presented in Fig. 4. 
In 2010 (i.e., the reference year for the best model), seagrass meadows 
occupied 35% of the total tidal flat surface, extending 39.22 km2. Among 
the three seagrass species, C. nodosa covered 72% of the total surface 
area, being homogeneously distributed throughout the lagoon. Nineteen 
percent of the total seagrass meadows were occupied by N. noltei, mainly 
distributed in the shallow waters along the inner coastline, behind the 
sandbars. Z. marina represented 9% of the total seagrass cover, mainly 
occurring in continuous formations near the main lagoon inlets. The 
year with the lowest recorded cover was 2004, with a total seagrass 
meadow cover of 21.34 km2 equal to 19.02% of the lagoon tidal flats. 
The maximum seagrass meadows cover was estimated in 2014 (56.69 
km2 corresponding to 50.61% of the lagoon tidal flats). The interannual 
classification showed significant movements of the meadows, resulting 
in an inward expansion. In the western part of the lagoon, the meadows 
that expanded in 1999–2007 have started to recede in the last decades 
(Fig. 4). This resulted in a complete regression of the meadows in the 
western basin of the lagoon over the 20 years analyzed (Fig. S2). 

The seagrass meadow distribution showed a statistically significant 
increase from 1999 to 2019, with a growth rate of 1.59 km2 year− 1. The 
single-species distribution estimated in the same period depicted wide 
fluctuations. Specifically, a statistically significant positive trend was 
found for N. noltei, which showed an increase rate of 0.97 km2 year− 1 (p- 
value = 0.009), whereas the trend calculated for C. nodosa and Z. marina 
was not significant (p-value >0.05) (Fig. 5, Table S2). 

4. Discussion 

This study demonstrated the high efficiency of using Landsat satellite 
imagery together with RF machine learning algorithm for the detection 
in change over time of seagrass distribution in lagoon systems. We 
showed that using multiple seasonal images per year improves classifi
cation accuracy, especially when classifying species distribution occur
ring in dynamics transitional water bodies. Seagrass trend detection 
allowed to identify a pulse expansion of the overall seagrass meadow in 
the study area, mainly due to the fluctuations and expansion of N. noltei. 

4.1. Including seasonality in the classification process 

Including seasonal images as input variables for machine learning 
classification models was found as the most effective approach to 
maximize the classification accuracy in many environments, such as 
forests (Praticò et al., 2021; Zhu and Liu, 2014), grasslands (Esch et al., 
2014) and Mediterranean rural areas (Senf et al., 2015). Previous studies 
analyzing the intra-annual variations in seagrass meadows distribution 
suggested that these communities display large fluctuations in biomass 
and species cover over seasons (Fauzan et al., 2021; Menu et al., 2021; 
Roelfsema et al., 2013; Zoffoli et al., 2020). Therefore, the inclusion of 
the seasonality might greatly improve the accuracy of seagrass in clas
sification models. This translates into a probable reduction of the clas
sification noise due to other environmental factors (e.g., algae blooms, 
water turbidity) (Acquavita et al., 2015; Christia et al., 2018; Lønborg 
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Fig. 4. Time series of seagrass meadow mapping from 1999 to 2019 (a). Species meadow classification maps for the first year under analysis (i.e. 1999), the reference 
year of the model (i.e. 2010) and the last validated year (i.e. 2019, O.A. 60%), respectively (b), are also shown. 
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et al., 2022), often ephemeral over time (Karez et al., 2004). In our 
study, the inclusion of seasonal images greatly improved seagrass spe
cies classification (6% increase in performance, Table 1). Probably, this 
is because it allows accounting for phenology, partially overcoming the 
limits of Landsat spectral resolution (Sun et al., 2023). Indeed, several 
studies reported that the study species have distinct phenology in the 
Mediterranean area (Kraemer and Mazzella, 1999; Marbà et al., 1996), 
with species-specific periods of seed germination (Buia and Mazzella, 
1991), and vegetative turnover, introducing variation in the spectral 
signature of individual species over the seasons (Fyfe, 2003). Our results 
showed that, among the single image RF models, the best performances 
were achieved with the spring image (Table 1). The phenological pat
terns of the three species considered have been well characterized in the 
northern Adriatic coastal systems, highlighting that the most important 
differentiation between species occurs in the initial phase of the growth 
period (i.e., from March to June) (Sfriso and Ghetti, 1998), consistently 
to our results. Despite that, the species meadows classification has 
shown a reduction in performance over years (Table 2). This may be 
linked to a possible inherent model bias related to the seasonality 
approach. On an intra-annual timescale, the variations in the specific 
spectral signature could be also affected by several aquatic environment 
factors such as depth, turbidity, and the presence of leaf epiphytes 
(Bannari et al., 2022; Fyfe, 2003; Veettil et al., 2020). These factors are 
part of the strong environmental dynamics characterizing lagoon eco
systems, which can exhibit significant year-to-year changes (Christia 
et al., 2018). For future improving the seagrass species detection this 
would require (i) the use of fixed image dates (or narrower seasonal 

intervals) between years by making the years as uniform as possible or 
(ii) by developing of a methodological approach that allows the annual 
characterization of seasonal intervals. 

4.2. Random Forest as a tool for seagrasses monitoring: Potential and 
caveats 

Our results confirmed that machine learning is a promising approach 
to detect the seagrass changes over time, adding important information 
in the understanding of ecological and marine science issues (Bessinger 
et al., 2022; Widya et al., 2023). The accuracies obtained for the pres
ence/absence classification model are comparable to previous studies 
(Ha et al., 2023; Traganos and Reinartz, 2018b), exceeding the perfor
mance obtained in other works concerning the mapping of these habitats 
(Luo, 2018; Wabnitz et al., 2008). In addition, in this study it has been 
possible to assess the accuracy on change detection analysis, overcoming 
a major limitation reported for studies using a multi-year time span (Ball 
et al., 2014; Hossain et al., 2015). Most of the previous studies classified 
seagrass communities at the community level, and only few attempted of 
classification at the species level, primarily due to the lack of 
ground-level data on single species (Ha et al., 2021; Sebastian et al., 
2023). In addition, previous studies that have classified individual 
species were successful due to the use of platforms with high spatial 
resolution, but available over a short time-period (see for instance 
Traganos and Reinartz, 2018a, 2018b; Ariasari et al., 2019). Even if 
poorly addressed, mapping individual species is fundamental since the 
diversity of seagrasses controls productivity, trophic transfers and 

Fig. 5. Trends of seagrass and species meadow cover (km2) between 1999 and 2019. The plot displays data points representing the estimated area for the years under 
analysis obtained from the RF classifier. The plot includes a line showing the significative estimated Sen’s slope whose value reported in the legend. The stars denote 
the significance level of the test for each specie (*p-value ≤0.05; ** p-value ≤0.01; ***p-value ≤0.001). 
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habitat suitability for the whole coastal biodiversity (Dekker et al., 2005; 
Larkum et al., 2006). To our knowledge, we here present a first attempt 
for the distinction of individual species using Landsat seasonal images 
and machine learning approach in a lagoon environment. 

As hypothesized, significant differences between species were 
observed for most of the spectral bands (Fig. 5), and this probably 
explain the ability of RF in species classification, partially overcoming 
objective limitations due to the use of medium spatial resolution data. In 
the green band, no significant differences between N. noltei and 
C. nodosa species were observed. This outcome is further highlighted in 
the confusion matrix metrics of N. noltei class (Table 2, Table S3) which 
were mainly affected by confusion with C. nodosa class. In general, 
C. nodosa proved to be the most challenging class for classification. This 
is likely attributed to its broader ecological and phenotypic plasticity 
(Mascaró et al., 2009), as suggested in another study conducted in the 
same study area (Boscutti et al., 2015). Boscutti et al. (2015) reported 
that the populations of C. nodosa growing in brackish exhibit a wide 
phenotypic plasticity in relation to environmental variations, increasing 
its morphological and phenological resemblance to other species (e.g., 
N. noltei, Kraemer and Mazzella, 1999; Marbà et al., 1996). The same 
species has also posed classification challenges in other machine 
learning-based classification studies (Ivajnšič et al., 2022), suggesting 
that further investigation is needed to model its space-time dynamics 
(Traganos and Reinartz, 2018a, 2018b). The confusion induced by 
C. nodosa likely occurred primarily in the reflectance values of the green 
band, which is particularly important in coastal lagoons as it provides 
greater light penetration in waters with higher concentrations of sus
pended and dissolved materials (Kirk, 1994). To solve such limitations, a 
combination of multi-type and multi-source data has already been sug
gested as a promising tool (Veettil et al., 2020). Further efforts could also 
be directed towards promising upscaling approaches to extend the ca
pabilities of analyses conducted at small spatial scales (e.g., unoccupied 
aerial vehicles, underwater photography, and videography) to larger 
spatial scales (Veettil et al., 2020; Vuerich et al., 2024; Zoffoli et al., 
2021). 

4.3. Long-term change 

In the study area, the seagrass meadow cover increased 1.59 km2 per 
year in the two decades considered. This expansion is contrasting with 
the observed global decline of marine seagrasses (Dunic et al., 2021; 
Orth et al., 2006; Waycott et al., 2009; Xu et al., 2021). However, this 
trend is consistent with other European marine seagrass meadows, that 
showed similar rates of change in the past decades (de los Santos et al., 
2019; Sousa et al., 2019; Zoffoli et al., 2021). In these sites, the increase 
of seagrass extension has been related to the improvement in water 
quality, reduction in anthropogenic impacts along the coasts, and 
habitat conservation efforts (de los Santos et al., 2019). This might 
suggest that also in the Grado and Marano lagoon the national and 
regional conservation strategies significantly improved the habitat 
suitability for seagrass species. On the other hand, it is plausible that an 
increase of sea influence in the lagoon, due to a reduction of freshwater 
incoming and the ongoing sea level rise, has led to a shift in the physi
cochemical characteristics of the water, making the environmental 
conditions more favorable for marine seagrasses (Boscutti et al., 2015; 
Fontolan et al., 2012). The increase of sea influence in coastal lagoons 
has been proven to produce radical modification of the ecosystem’s 
characteristics and functioning (Antonioli et al., 2017; Rova et al., 
2023). 

Despite the overall increase trend, some areas of the lagoon showed 
local regression and extinction dynamics (Fig. S 2) revealing the 
complexity of the system response to environmental changes. This was 
observed in the western part of the lagoon (i.e. Marano basin) where the 
seagrass patches occurring in 1999 were lost. Here, the sediment bud
gets and the lack of channel dredging altered the influence of the sea in 
this part of the lagoon, favoring a fresh/sea water stratification (Bosa 

et al., 2021; Fontolan et al., 2012; Petti et al., 2018), changing the 
suitability of seabed for seagrasses. On the other hand, the local increase 
in the extent of the N. noltei species (+ 13.87 km2 between 1999 and 
2019) could be linked to the increasing water salinity and more gener
ally to the increase of sea water influence, as previously indicated in 
other studies (Boscutti et al., 2015; Sousa et al., 2017). Although 
Z. marina and C. nodosa did not show significant trends over the decades, 
their distributions showed important fluctuations with remarkable 
minimum and maximum extensions. Substantial temporal fluctuations 
of seagrass species have been already observed both in terms of exten
sion/density and time span (few days, seasonal, or annual) (Calleja 
et al., 2017; Lønborg et al., 2022; Philippart and Dijkema, 1995; Reise 
and Kohlus, 2008; Valle et al., 2013; Zoffoli et al., 2021). Looking at the 
general picture, many of the areas modified over the years have been 
abandoned and recolonized creating remarkable fluctuation in distri
bution and cover similarly to what observed in other terrestrial eco
systems (e.g., the carousel model, van der Maarel and Sykes, 1993). This 
temporal variation might be, hence, the result of a series of successions 
of communities that have shifted their habitats in response to cyclic/ 
contingent micro and macro environmental changes occurred over time 
(Boardman and Ruesink, 2022). A striking example of this process could 
be observed in the sudden regression period recorded for seagrass cover 
after the summer of 2003 in the whole study area. This seems to coincide 
with trend reported in other studies that investigated a massive die-off 
event in various seagrass meadows in Europe due to the extreme sum
mer heatwave in 2003 (Ehlers et al., 2008; Reusch et al., 2005; Zipperle 
et al., 2009). This suggests a possible analogous impact within the 
Marano and Grado Lagoon with a rapid recovery in the following years, 
which requires further investigation. 

Besides the long-term perspective, the classification at the species 
level has provided valuable insights into the spatial structure of seagrass 
meadows, including the identification of large persistent patches (i.e., 
core areas). These meadows likely coincide with areas characterized by 
greater bathymetric uniformity and stability (Dolch et al., 2013), where 
wave motion and turbidity are attenuated (Ferrarin et al., 2010; Inglis, 
1999). These areas may serve as propagule sources during periods of 
regression, potentially improving the resilience of the communities 
(Dolch et al., 2013). In conclusion, although the absolute increase in 
seagrass area may appear as a promising trend, it conceals signals of 
rapid changes within the lagoon. The expansion of seagrasses in a semi- 
closed environment may indicate a future dramatic habitat modification 
(Silva et al., 2020), as the lowering and simplification of lagoon bottoms 
caused by marine transgression will lead to the rapid narrowing of 
suitable areas for these species. 

5. Conclusion 

The results of this study highlighted the potential of conducting a 
multi-decadal analysis of seagrass meadows in the shallow waters of 
lagoon environments using multispectral satellite images from the 
Landsat series. The implementation of the RF machine learning algo
rithm within a framework that encompasses an extensive ground truth 
dataset, as well as the inclusion of seasonal imagery, has proven suc
cessful in mapping the entire habitat and extending the analysis over the 
long term. This study also demonstrated the potential of using multi
spectral imagery at limited spatial resolutions to discriminate individual 
seagrass species, despite the inherent challenges posed by the substan
tial environmental fluctuations experienced in lagoon ecosystems and 
the difficulty in characterizing the spectral signature of seagrasses. The 
primary limitations were evident in distinguishing C. nodosa and future 
improvements in discriminative capabilities of supervised classification 
algorithms may result from the inclusion of multisource data, such as 
environmental data that characterize the ecology of these species or 
other remote sensing sources. 

Finally, the preliminary change detection conducted using the clas
sified maps obtained in this study has shed light on several ecosystem 
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dynamics, both at the species-specific and community levels. This will 
require more targeted future studies to understand the driving forces 
shaping the habitats, using historical time series of physicochemical 
data recorded in the lagoon. Focusing future efforts on understanding 
the most effective methodologies for mapping seagrass meadows with 
satellite imagery holds the potential to characterize their extensive 
community dynamics and disentangle the interconnections they have 
with the responses of lagoon ecosystems to current global changes. 
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