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Abstract

Synchronous motors are now widely used in various applications, such as household appli-

ances and automotive applications, as the technology to control these kinds of machines has

become more affordable. The controlling of these motor play important role to improve the

performance of them. Thus, it is important to research effective control methods, particu-

larly for automotive applications where the improvement of the range of electric vehicles is

a current issue for all automotive producers. There are different magnetic structures of syn-

chronous machines, but the Internal Permanent Magnet Synchronous Machines (IPMSMs)

and Synchronous Reluctance Machines (SynRMs) are the two most popular kinds. In Syn-

chronous Reluctance Machines since torque is only produced by the variable reluctance, while

Internal Permanent Magnet Synchronous Machines typically have higher torque density,

since they produce torque with contributions from both the permanent magnets (electro-

dynamical principle) and variable reluctance. According to the application, the motors can

be selected based on the topology. The behavior of ŕux linkages for both of these machines

is substantially nonlinear due to their magnetic structure, which means that the value of the

parameters depends on the operating point. It is usual practice to use Maximum Torque per

Ampere (MTPA) to optimize the copper losses, i.e. the stator Joule-effect losses. By ap-

plying MTPA, based on the motor parameters, the correct angle that ensures the maximum

torque output is chosen for a speciőc magnitude of current vector. The correct angle must

be determined and adjusted according to the desired torque and in different operating speed

ranges, i.e., below and above base speed. Real Signal Injection (RSI) and Virtual Signal

Injection (VSI) are two MTPA tracking methods that are examined and assessed on IPMSM

and SynRM in the őrst part of the thesis. In order to balance the dynamics of the tracking

loop as a function of the torque operating point, a gain compensation is used for the Virtual

Signal Injection. The two algorithms are applied to the controller of IPMSM. An analytical

model is used instead of non-linear model of a Synchronous Reluctance Machine (SynRM)

in order to assess accuracy and performance. By doing this, potential measuring mistakes

in the real machine ŕux maps can be eliminated. It is suggested a novel method to correct

steady-state MTPA tracking errors by non-linear ŕux maps, enhancing the VSI’s accuracy

even when the machine ŕux maps are known with only raw quantization. The proposed

contributions are validated after implementing the algorithm in a microcontroller and their

performances are assessed on an IPMSM and SynRM motor drive.

Furthermore, the operation of IPMSM machine is studied in wide range speed. In this case

there are MTPA, ŕux-weakening and MTPV regions. The obtained equation to control the

torque is a quartic equation that make it difficult to őnd the roots. However, the analytical

solutions that are used for minimizing stator current are complex and the computation time

is higher than other methods, but they are more accurate. In this thesis, a novel analytical

solution is presented based on Minimum Vector solution (MVS) to obtain the d− and q−
reference currents to minimize the stator current. The proposed method is uncomplicated to

implement in a microcontroller. In addition, its implementation requires a lower number of
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cubic root calculations with respect to other analytical solutions, which results in a shorter

computation time. In the MTPA region and the ŕux-weakening region, the approach is

used on an IPMSM. Also, Maximum Torque per Voltage (MTPV) region is applied to the

controller and tested in high range of speed. The proposed approach, however, is focused in

the MTPA and the ŕux-weakening region. The results are investigated in the thesis by sim-

ulation and experimentally. As the results, the computation time is decreased in comparison

with other analytical models and the operating trajectory is tracked by proposed method

accurately.

In order to obtain optimal performance and efficiency, the knowledge of non-linear ŕux vs.

current behavior (typically represented in the form of maps) is required both off-line (i.e.

during the control parameters design) and online (during control operation). Different meth-

ods have been proposed for this purpose, such as the use of Look-Up Tables (LUT), which

main drawback is the memory usage. To solve this problem, approximation approaches (e.g.

using polynomial functions) have been introduced, which typically suffer from lower accu-

racy. In this Thesis, the Group Method of Data Handling (GMDH) is used to as a novel

approach to őnd an optimal approximation of the ŕux linkage maps of IPMSM. Due to the

multi-layer structure of this method and the coefficient selection process, the accuracy of

the approximated ŕux functions is signiőcantly improved with respect to the previous ap-

proaches. Moreover, this method can be used online, with relatively small memory footprint

and computational cost.

To enhance the performance of the drive system of the motor, the other parts such as

inverter controller plays an important role. Non-linearity effects in voltage source inverters

are mainly due to presence/need of dead times, voltage drops and parasitic/intrinsic capaci-

tive effects of power devices and electric machine. Accurate compensation of these effects is

of paramount importance in many drives applications, as resulting output voltage distortion

has strong effects on the performance of current control loop, especially at low speed, where

the operating voltage of the machine is comparable to the level of distortion introduced by

the non-linearity components. In this thesis, some studies and a novel approach about the

dead-time compensation for the inverter are presented. In this thesis, the advanced control

of Interior Permanent Magnet Synchronous Motor and Synchronous Reluctance Motor is

studied.

The thesis is started by an introduction in Chapter. 1. In this chapter a literature review is

presented for IPM and SynR machines, their main features, advantages, main applications.

The magnetic structure of IPM and SynR motors are examined in Chapter. 2. Based on

advantages and disadvantages of these motors they have been compared. Following this

evaluation of the PMSM analytical model, mechanical and electrical equations are obtained.

Furthermore,the behaviour of the motor in MTPA and ŕux-weakening regions is presented

in this chapter.

The maximum torque per ampere control has been examined in Chapter. 3 for IPMSM

and SynRM. The functioning, advantages, and disadvantages of the Real Signal Injection

and Virtual Signal Injection algorithms were comprehensively reviewed. The stability anal-



ysis of MTPA tracking algorithms has been studied and a gain adaption strategy for both

techniques has been proposed. A novel method is suggested to correct steady-state MTPA

tracking errors by non-linear ŕux maps, enhancing the VSI’s accuracy even when the ma-

chine ŕux maps are known with only raw quantization.

In Chapter. 4, a new analytical solution is studied to control the torque in IPMSM for MTPA

and ŕux-weakening region. The proposed method is uncomplicated to implement in a micro-

controller. In addition, its implementation requires a lower number of cubic root calculations

with respect to other analytical solutions, which results in a shorter computation time.

In Chapter. 5, GMDH method is presented as a novel approach to approximate the ŕux-

linkages maps of an IPMSM. The method is compared with a polynomial method. The

results show that the accuracy of GMDH is higher than polynomial method, according to

the error percentage.

In Chapter. 6, a recent approach for dead-time compensation adopting an analytical model

of the physical behavior of the inverter non-linearities has been considered. Model parame-

ters are derived from a self commissioning procedure, based on proper voltage injection and

processing, both affecting the accuracy of achievable compensation. One of the crucial as-

pects of this approach is the autonomous selection of the threshold current of the measured

voltage to current characteristics, a value whose reliable knowledge is mandatory for the

accurate identiőcation of the non-linearity model. The simulation and experimental results

are presented to investigate the contribution of the novel approach to the motor controller.

Keywords: AC Machines, Interior Permanent Magnet Synchronous Motor (IPMSM),

Synchronous Reluctance Motor (SynRM), Maximum Torque Per Ampere (MTPA), Flux-

weakening, Maximum Torque Pwe Voltage (MTPV), Real Signal Injection (RSI), Virtual

Signal Injection (VSI).
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Chapter 1

Introduction

It is well know that industrial development has played and still has an important role on

climate change and global warming. At the same time, strong demand of resources leads the

industry to manufacture more effective systems and devices. The importance of electrical

motors in global industrial and civil applications can be understood considering that they

represent the single largest end-use of electrical energy, accounting for more than 40% of

the global electricity consumption, which corresponds to about 6000 metric tons of CO2

emissions and roughly 500-600 billion USD per year of end-user expense [1].

For these reasons, companies and institutions continue to put considerable effort in the

research and development on electrical machines and drive systems, with the aim of reducing

energy consumption and improving performance, both at the system- and at the component-

level.

In the last decades, the improvements of electrical machines and drives, in terms of efficiency,

cost reduction and performance, have been remarkable, thanks to the constant investment by

industry and academia. Starting from the 1980s, the availability of strong magnet materials

and low-cost electronic controllers led to the development of Permanent Magnet Synchronous

Machine (PMSM), soon followed by SynRM and Permanent Magnet Assisted Synchronous

Reluctance Machine (PM-SynRM). However, until the last decade, these types of machines,

which exhibit high efficiency, wide speed range of operation and high power density [2], have

only been adopted in applications requiring high accuracy or fast dynamics (and in few

other market niches), due to their relatively high cost and the need for a properly controlled

power supply. Recently, their use has spread to other applications, such as general-purpose

drives, consumer goods, energy generation and traction, [3, 4]. In fact, their diffusion has

been favored by a combination of factors, such as the rise of environmental consciousness,

increased energy cost and energy-efficiency regulations, together with the decreasing cost of

electronics.

Fig. 1.1 shows a possible taxonomy of synchronous motors. The most common machine

in industry is the three-phase Induction Machine (IM), thanks to its low cost, robust con-

struction and the possibility to be powered directly from the grid. The main disadvantage
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Figure 1.1: Taxonomy of Synchronous motors.

of this kind of motor is the generally low efficiency, which also leads to low power density.

In particular, the induction operating principle of this machine ("asynchronous" operation)

requires considerable current to ŕow in the rotor, which involves additional power losses and

heating [5]. Besides efficiency and compactness, IMs also suffer from some speciőc reliabil-

ity issues (e.g., in rotor bars [6] and bearings [7]), which are mainly due to the high rotor

temperature. In fact, it should be noted that heat generated in the rotor is problematic,

since it is more difficult to provide good dissipation (for keeping the temperature low) and

temperature measurement (for protection) on the rotor, than on the stator.

Table 1.1: IM, PMSM and SynRM comparison.

Motor Type Advantages Disadvantages

IM
Low cost, line-start ca-
pability

low power factor, bear-
ing faults

PMSM
high torque density,
high performance in
wide speed range

high cost

SynRM

high speed capability,
reliable due to the ro-
tor structure, high dy-
namic

high torque ripple, low
power factor

1.1 IPMSM and SynRm Advantages and Disadvantages

As already mentioned, nowadays the PMSM are being increasingly adopted in many ap-

plications. The őeld in which these machines are having the major success is Electric and

Hybrid Vehicles, both light ones (e-bikes, scooters and similar) and cars. The design of per-

manent magnet machines is heavily affected by the seletion of rare-earth materials, which

also has important implications on the cost and sustainability of the production process.
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Neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) are two common mate-

rials for permanent magnets, in combination with small amounts of some relatively rare

materials, such as dysprosium. Unfortunately, the price of these materials is relatively high

and very volatile, heavily impacting the cost of the whole machine [8]. Also, permanent mag-

nets are prone to demagnetization and degradation, depending on operating temperature,

over-current events, moisture level and chemicals to which the machine may be exposed.

Careful design and proper manufacturing process can decrease the likelihood of such nega-

tive events. In general, while PMSM’s operation is based on the electro-dynamical principle

of electro-mechanical conversion, the reluctance principle can also be integrated, leading to

the so-called IPMSM. This motor variant normally employs a reduced amount of permanent

magnet materials and also achieves higher power density and can operate in a wide speed

range.

SynRM’s rotor design distinguishes it from PMSMs, since it does not comprise any windings

nor permanent magnets. In this case, the machine does not have the dissipation issues of IM

and high cost of PMSM, and this typically results in an affordable and reliable alternative,

which is the reason why SynRMs are seen as the future replacement of IMs. However, these

machines operate at a lower power factor, which in turns leads to the need for a slightly

over-sized power supply (i.e. a larger current rating of the driving inverter). In Table. 1.1 a

summary comparison is presented based on advantages and disadvantages of the IM, PMSM

and SynRM.

1.2 Maximum Torque per Ampere (MTPA) Algorithms

Based on the working principle and model of AC machines, there are inőnite operating points

that result in the same value of produced torque. In other words, in the control of such mo-

tors, there is a "degree of freedom", i.e. a variable whose value can be set almost arbitrarily,

even if aiming at the same mechanical output (torque and speed). This clearly calls for a

method for selecting the "optimal" operating point (typically in the form of a two-element

current vector), given a certain optimality criterion. In PMSMs and SynRMs stator con-

duction losses (also referred to as "Joule" or "copper" losses) are dominant, at least in the

low-speed range. For this reason, the most common optimization criterion adopted in the

selection of the operating point is the minimization of current amplitude for a given torque,

which can be expressed, equivalently, as maximization of torque for a given current magni-

tude. In both literature and industry, this condition is typically named Maximum Torque Per

Ampere (MTPA). The MTPA trajectory (or "current locus") can be evaluated (theoretically

or experimentally) considering a constant load condition and őnding the current vector that

features the minimum magnitude [9]. Based on the standard (constant-parameters) model

of the machine, the analytical solution to this problem is relatively simple, although this

strongly depends on the input and output variables selected. As an example, determining
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the current values based on the desired torque (which is the ideal input-output selection

from the control perspective) according to the MTPA condition, is relatively complex, since

it involves solving a quartic equation. Moreover, since the behavior of the motor, in terms

of magnetic characteristics (i.e. ŕux-linkage vs. current) is typically non-linear (due to

magnetic saturation) and considering that the permanent magnet behavior is affected by

temperature [10], the analytical solution becomes insufficient in many cases, making the

implementation of SynRM challenging. As an example, in [11] and [12], the parameters of

the motor are initially considered constant but, due to magnetic saturation, the theoretical

MTPA algorithm is inaccurate. Magnetic non-linearity has been taken into account in [9],

[13] and [14].

It is possible to accomplish the MTPA procedure with the help of Look Up Table (LUT)[15],[16].

It is also possible to get LUT data by conducting a series of laboratory experiments, although

this takes more time and resources and may not adequately account for the ŕuctuation re-

lated to magnetic structure, components, and temperature, especially if only a few samples

are tested. The LUT information can be obtained via the parameters identiőcation meth-

ods. Such techniques still suffer from inaccuracy issues and, if implemented online, affect

the overall control stability and performance. Due to these problems, LUT-based methods

for MTPA operations have signiőcant limitations [17]. In [18], a search strategy is used, in

order to modify the operating point (in terms of current) so that, at steady-state, it fulőlls

the MTPA requirement at the required load torque. Although these solutions do not require

prior knowledge of motor parameters, the slow convergence ratio of the tracking techniques

results in low dynamic performance [19].

Recent years have seen the introduction of the new approaches for estimating the MTPA

with the injection of speciőc signals. The main idea behind these techniques is based on

Extremum Seeking Control (ESC) [20], i.e. the operating point is varied around its steady-

state value, for the purpose of testing whether the variable of interest (torque or current, in

this case) increases, decreases or remains constant, i.e. searching for a minimum or max-

imum. In the case of the so-called "MTPA tracking", signal injection consists in varying

the current phase angle, while either the current magnitude or the torque variations is ob-

served. Given the difficulty in directly detecting the generated torque and its variations,

the MTPA tracking error can be extracted from speed oscillations, [21]. However, relatively

high- performance speed sensing is required, which limits the applicability of this approach.

An alternative approach has been proposed, which detects active power oscillations, based

on voltage and current signals, [22] [23]. In [24], the proposed MTPA tracking algorithm

based on "low-frequency" signal injection, is thoroughly analysed and experimentally vali-

dated. In this case, the current magnitude is observed, while it is assumed that the speed

regulator keeps the produced torque equal to the load, despite the current angle variation

injected. Both the convergence and the stability of this method were studied in [25]. A

ŕux amplitude signal is injected, instead, in [26], in order to calculate the torque variation

while observing the resulting variation of current magnitude. Whenever signals are injected

(Real Signal Injection, RSI [18],[23],[22],[25],[27]) for the only purpose of MTPA tracking,
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additional power losses are introduced and speed ripple or vibration are also caused. Possible

mechanical resonance can be avoided by carefully choosing the injection frequency. However,

since the estimation relies on terminal current and voltage measurements, harmonics in those

variables could affect the signal processing.

In order to avoid these issues, Virtual Signal Injection (VSI), [28], [29], [30] has been intro-

duced, which applies a parameter-estimation technique in order to obtain a MTPA correction

signal which is supposed to be similar to the one used in RSI. Although the two classes of

methods have been studied quite extensively in literature, a fair evaluation in terms of accu-

racy and performance of RSI and VSI was still missing. The present work comprises a direct

comparison between them (Chapter. 3). As mentioned above, in the case of RSI, the ac-

tual response of the machine to the injected perturbation is considered in terms of measured

torque or speed oscillations, and adopted to drive the estimates (e.g. the current space vector

angle) towards the actual MTPA condition. On the other hand, VSI allows to őnd out the

MTPA condition of the analytical model of the machine, i.e. to solve an on-line analytical

optimization problem. In fact, the system response to the injected signal is obtained based

on the model and some of the parameters needed for its calculation are estimated based on

the actual fundamental voltage and current measurements. Therefore, in VSI is not really

estimating the MTPA condition of the actual machine, but can be considered as a strategy

to enhance the simplest MTPA methods with information retrieved online. The accuracy of

this approach is therefore limited by the knowledge of some machine parameters (especially

when saturation and/or cross-saturation are considered) and on the approximations that

need to be introduced.

In the Chapter. 3, the analysis of both the classes is reported, also considering speciőc as-

pects and the inŕuence of simplifying hypothesis that are normally introduced to allow an

effective implementation. The results related to the analytical description of the tracking er-

rors in the VSI case have been extended with respect to previous literature, also introducing

a strategy for compensating the steady-state errors arising from non-linear ŕux maps. An

effective analytical model of the machine inductance is embedded in the analysis of the track-

ing loop, allowing to improve tracking accuracy even in the case the machine ŕux maps are

known with relatively low resolution. Furthermore, to improve the accuracy of the MTPA

trajectory using both VSI and RSI, a LUT of d− axis apparent inductance is used and the

results are compared with conventional RSI and VSI.

1.3 Flux-Weakening and Maximum Torque Per Voltage

When operating a PMSM or SynRM at relatively high speed, e.g. in the MTPA condition,

a given torque corresponds to a certain ŕux-linkage amplitude and thus the steady-state

voltage magnitude is approximately proportional to speed. Thus, above a certain speed (i.e.

the "base speed"), the available phase voltage (which depends on the DC-bus voltage value)

will not be sufficient for keeping the current under control. To overcome this issue, other
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operation regions are introduced, namely Flux-weakening (FW) and Maximum Torque Per

Voltage (MTPV) regions, in which ŕux-linkage magnitude is reduced, with respect to its

normal value.

In the FW region, the operating point current values should be chosen so that the desired

torque is produced and the voltage constraint is satisőed. If the current amplitude required

for both conditions to be fulőlled is above its limit (e.g. above the rated value), the current

magnitude must be őxed at the limit, while torque will be lower than the desired value.

Considering the mechanical characteristic of the drive (i.e. the available torque vs. speed

curve), these constraints result in the available torque being constant up to the base speed.

The range above that value is known as the "constant-power range", since the electrical

apparent power (voltage-current product) remains constant, while torque is almost inversely

proportional to speed. On other hand, at very-high-speed, it may be necessary to apply

the MTPV strategy, in which the current limit is properly reduced, in order to obtain the

maximum available torque for a given speed and available voltage.

Similar to the case of MTPA, obtaining FW control is challenging, due to the non-linear

relationship between current and voltage magnitude, which is further complicated by the

non-linear ŕux characteristics of IPMSMs and SynRMs. Since achieving correct FW and

MTPV is required for obtaining a wide operating range, considerable research effort has

been dedicated to the development of effective control methods applicable in these regions.

In the őrst experiments [31] and [32], the torque capacity of IPMSMs in FW operation was

the primary focus. The control scheme based on LUT and approaches using models were

also given [33],[34],[35],[36],[9],[12],[37],[38]. Although these methods are indeed effective,

the overall performance of the drive may suffer signiőcantly, if parameters are altered or any

errors are made [39].

In order to solve these issues, several closed-loop techniques have been proposed, aiming at

a robust FW control, ideally parameter-independent or "parameter-free". Even in this case,

the ideal current references may be calculated and used as a feed-forward term, improving

the control performance during transients.

As previously discussed, to overcome the non-linearity, inductance variation can be taken

into account via LUTs. Otherwise, the analytical solution is explored to identify the roots

of the quartic equation in the MTPA, Flux-Weakening (FW) and MTPV regions. In [40],

an analytical solution is presented for regulating the motor’s torque. The optimal values

for the currents are obtained using Ferrari’s method, although this approach is difficult to

utilize because it does not take into account the current limit constraint. Moreover, the

computation time, for a typical microcontroller platform, is relatively long. To simplify the

quartic equation, numerous approximation strategies are investigated. In [41], the Taylor’s

series is used to lower the orders of the quartic equation. Both the current limit and the

voltage ellipse limit are studied, and Euler’s quartic solution is employed in [42].

Some publications even focus on numerical solutions. In these techniques, the problem is

transformed into two non-linear equations using the Lagrange-multiplier method. Both [43]

and [44] employ Newton’s method and the Gauss-newton method. However, in these meth-
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ods, as it could be assumed, the computing time is relatively decreased, but the accuracy is

low, compared to the analytical solution.

In Chapter. 4, a novel analytical solution is presented, based on current magnitude min-

imization, to obtain the reference currents according to the desired torque. Thanks to a

different problem formulation, the proposed method is much simpler than other analytical

solutions. In fact, the number of cubic roots (the most demanding operation) to be com-

puted in this case is lower than other analytical models, which greatly helps to decrease the

computation time. The method is applied on an IPMSM in MTPA and FW region. Al-

though the MTPV operation is considered in the torque control loop, the proposed method

is focused on MTPA and FW regions.

1.4 Non-linear Parameters of the IPMSM

Due to the non-linear magnetic behavior of IPMSM and SynRM, the maps of the ŕux-linkages

(as a function of current) are important for many aspects, including current control, gains

adaption and axes decoupling, MTPA, FW and sensor-less control. Off-line characterization

approaches require a large amount of time for commissioning and devoted hardware. In the

typical process, the parameters will be obtained from the system under test, operating at

constant speed condition and steady state, where these parameters are extracted by imposing

different reference currents under test. The simplest way for representing ŕux-linkage is the

analytical method with constant machine parameters [11],[45], i.e. iron magnetic saturation

is neglected. These methods can be easily implemented in low-cost digital hardware. In or-

der to improve the ŕux accuracy, a very popular method consists in the use of LUT[46][47].

Approximating functions have also been proposed, e.g. by őtting a polynomial function of

currents. The estimated function can be improved by considering other nonlinear param-

eters like temperature effects, mechanical and iron losses [40]. In this case, all parameters

are obtained off-line, then the control parameters are used online to calculate the machine

parameters instantaneously. In [48], by using the Group Method of Data Handling (GMDH)

method, the apparent inductance is estimated just for sensor-less application. However, the

whole map is not approximated, thus limiting the scope of application of the method.

In Chapter. 5, GMDH method is proposed, in order to approximate the ŕux-linkage maps for

an IPMSM. Thanks to the adoption of a neural network, the set of approximating functions

is used in an efficient way. The approximation method allows to calculate the ŕux-linkages

online, based on current inputs. The proposed approximation GMDH has been analyzed

in a study case. The results show that the accuracy of GMDH is higher than polynomial

approximation, according to error percentage (2-3 times smaller error).
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1.5 Dead-time compensation

All the techniques for the selection of optimal operating point and for the control of IPMSM

and SynRM rely on the possibility to accurately control the stator currents by means of a

three-phase voltage source inverter, which is seen as a variable-voltage actuator. However,

the non-ideal behavior of the inverter may result in distorted phase currents and so sub-

optimal operation of the machine. In order not to degrade the performance of the drive

system, compensation of inverter non-linearity are needed. These effects are mainly due

to presence of dead-times, voltage drops and parasitic/intrinsic capacitive effects of power

devices and electric machine. Accurate compensation of these effects is of paramount impor-

tance in many drives applications, as resulting output voltage distortion has strong effects on

the performance of current control loop, especially at low speed, where the operating volt-

age of the machine is comparable to the level of distortion introduced by the non-linearity

components. This phenomenon is even more concerning in sensor-less systems, as low-speed

performance is heavily affected by the correct knowledge of machine feeding voltage, that is

normally not directly measured, as reference values are adopted instead to limit drive elec-

tronics complexity. Therefore, inverter non-linearity effects are injected into the estimation

loop and degrade the reliability and accuracy of the estimates.

As distortion voltage components depend mainly on leg output currents, most of the com-

pensation techniques proposed in past literature employ a certain voltage to current char-

acteristic to approximate the non-linearity effects, which is often identiőed within a self-

commissioning procedure. The simplest model for dead-time effect considers diode clamping

only, and results in a compensation curve that simply depends on current ŕow direction, as

analyzed in a quite old contribution, [49]. Some more recent methodologies propose the use

of different correcting functions, e.g. linear saturated, [50], sigmoid, [51], exponential, [52] for

approximating and őnally compensating the non-linearities. A much more complex method

is proposed in [53], requiring a őne external tuning to adapt the compensation function to

the commercial drive. The effect of dead-time with different PWM schemes is analyzed in

[52], and new non-linearity effect identiőcation is introduced adopting the Discontinuous

PWM. The aforementioned approaches require identiőcation of parameters of the correction

functions or őlling up Look-Up Tables (LUTs), that can be subsequently interpolated online

to be used by the control algorithm, [54]. Most compensation methods need current sensors

or current references to determine the phase current direction, other approaches [55] [56] use

extra hardware for zero-crossing detection, to őnd the current polarity in order to improve

the compensation when the amount of ripple cannot be neglected, e.g. low inductance ma-

chines and/or high voltage systems and/or low switching frequency converters feeding the

machine.

A quite different approach has been recently introduced, [57], where an analytical model

for the physical behavior of the inverter non-linearity is considered, as well as a proper test

procedure allowing the self-identiőcation of the parameters of that model, e.g. the equivalent

voltage drop, output capacitance and resistance. A crucial aspect, which has been analyzed
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and addressed in this thesis, is the autonomous selection of the threshold current of the

measured voltage vs. current characteristics, a value whose knowledge is mandatory for the

accurate estimation and compensation of the non-linearity effects in a self-commissioning

scenario.

1.6 Thesis Overview

In this thesis, the advanced control of Interior Permanent Magnet Synchronous Motor is

studied. The PMSM mathematical model, which is necessary for analyzing and control-

ling the motor, is described in Chapter. 2, along with the description of the main magnetic

structures of synchronous motors. The different motor types have also been compared, high-

lighting their advantages and disadvantages. Following this evaluation of the PMSM ana-

lytical model, the equations describing the mechanical and electrical dynamics are obtained.

Furthermore, MTPA and FW constraints, operation regions and control implementation il-

lustrate the PMSM’s behavior. The motor operates in the MTPA region up to a speciőc

speed (base speed), and at high speeds it functions in the ŕux-weakening region, as is for-

mulated in this chapter.

The maximum torque per ampere control has been examined in Chapter. 3 for IPMSM

and SynRM. The functioning, advantages, and disadvantages of the Real Signal Injection

and Virtual Signal Injection algorithms are comprehensively reviewed. Moreover, the stabil-

ity analysis of MTPA tracking algorithms has been carried out and a gain adaption strategy

for both techniques has been proposed. Simulations have been performed to validate the

fundamentals of the two techniques and to identify their drawbacks. A speciőc approach has

been adopted for analyzing the MTPA tracking errors of the two methods, i.e. an analytical

model was used to create ideal non-linear ŕux-linkage maps of a "reference" SynRM machine.

This allows to remove any potential measuring errors or "glitches" from the real machine

ŕux maps and allow for a very accurate quantitative comparison (based on calculations and

simulation). The main computing operations that the control must carry out are also brieŕy

discussed before the tests. Accurate simulation results, also based on an IPMSM, conőrm

that the RSI algorithm is more accurate than VSI. Given the non-linearity of the tracking

loop, a gain adaptation strategy has also been proposed and tested successfully. The VSI

ensures faster dynamics, mainly because of the lower impact of measurement noise. It is also

shown that, with RSI, large sensors noise is problematic and forces to reduce the tracking

bandwidth.

In Chapter. 4, a new analytical solution is studied to control the torque in IPMSM. The

proposed approach adopts a vector magnitude minimization criterion to őnd the MTPA

operating point of an IPMSM, for a given desired torque value. By using this method,

the quartic equation for calculating the current references is simpliőed, thanks to the 3rd
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and 2nd order coefficients being null. The complexity of the proposed solution is reduced

signiőcantly and, in particular, the cubic root needs to be calculated less times than for the

method found in literature. The computation time of the proposed method and the previous

Ferrari’s method are compared experimentally for a typical microcontroller implementation.

The computation time is decreased by more than 50% with respect to the classical technique.

Furthermore, the novel solution is applied to an IPMSM in MTPA region experimentally

considering constant and adaptive q-axis inductance. As a results, the proposed method

track the MTPA trajectory with a high accuracy.

In Chapter. 5, the GMDH method is proposed for the approximation of ŕux linkage maps

of an IPMSM. According to this approximation, the inputs are the currents and a suitable

set of functions is őtted. The method is compared with a polynomial method, showing that

the accuracy of GMDH is higher than polynomial method. In fact, the error is reduced by

2 to 3 times, compared to the polynomial approximation.

The self-commissioning of the dead-time compensation curve is analyzed in Chapter. 6.

The adopted model is based on physical parameters, such as the actual dead-time, capac-

itance of the switching node and total series resistance on the inverter phase. An off-line

identiőcation procedure allows to identify all parameters. A crucial aspect of this approach,

namely the selection of a threshold separating the linear and non-linear part of the distor-

tion curve, is studied in this chapter. Two new methods are proposed, which ensure minimal

identiőcation error. Their development is reported, together with validation, demonstrating

the superiority of the results over state-of-the-art approaches. Finally, the effects of the

mentioned inverter distortion on the accuracy of current sampling and control loops, mainly

dependent on the capacitance value and operating point, are also analyzed for the őrst time.

An original compensation strategy is proposed and validated by means of accurate simula-

tions and experiments.
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Chapter 2

Interior Permanent Magnet Synchronous

Machine and Synchronous Reluctance

Machine

2.1 Introduction

Over the past few decades, numerous studies have been conducted to improve the effec-

tiveness of electrical devices like PMSM, SynRM and PM-SynRM. The greatest torque per

ampere contribution, wide speed operating range, and high efficiency of these machines made

them attractive for usage in industry [3, 4]. The PMSM have used in many applications.

The advantages of this machines are high torque density, high efficiency and operating in

wide range speed [2]. Selecting the rare-earth materials is quite important in these kind of

machine. Neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co) are two common

materials for permanent magnets. However, The price of theses materials are high and it

will increase the cost of the whole machine [8]. Also, there can be some issue with possible

faults on the permanent magnets.

SynRM’s rotor design distinguishes it from PMSMs. There is not any permanent magnets

in the rotor of these kind machine that make it more reliable. In this case, the machine does

not have the high cost of PMSM.

In this chapter, the magnetic structure of the Interior Permanent Magnet Synchronous Ma-

chine (IPMSM) and Synchronous Reluctance Machine (SynRM) is studied. Then, the dy-

namical models of the IPMSM is presented. In addition, the Maximum Torque Per Ampere

(MTPA), ŕux-weakening and Maximum Torque Per Voltage (MTPV) are introduced in last

sections.

2.1.1 Surface Permanent Magnet Synchronous Machine (SPMSM)

In (Fig. 2.1), an SPMSM’s schematic is depicted. The surface of the rotor is where the

SPMSM’s permanent magnets are mounted. Since the magnetic permeability of ceramic
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2.1. Introduction

Figure 2.1: Schematic of Surface Permanent Magnet Synchronous Machine (SPMSM).

and rare-earth magnet materials is nearly that of free space, the permanent magnet can be

considered as a part of air-gap. As a result, the effective airgap of an SPMSM as viewed by the

stator windings is equal to the sum of the permanent magnet thickness product and airgap

[58]. Due to the homogeneity of the air-gap thickness, the winding’s inductance is almost

unaffected by the position of the rotor. Due to the interaction of the permanent magnet

and armature reaction őelds, SPMSMs only have the aligning torque contribution. SPMSMs

utilize a lot of permanent magnets since the reluctance torque component is absent, which

makes it challenging to manage in the region of weakening őelds. The maximum induced

Electro Motive Force (EMF) needs to be bounded in order to keep safety at high speeds in

the case that the inverter drives the SPMSM fails. Because both torque and back EMF of a

SPMSM are related to the ŕux-linkage of the permanent magnet, this requirement conŕicts

with the necessity for high torque. The only solution to overcome this issue is to increase

the inverter’s Voltage-Ampere (VA) rating, which results in massive inverters and cost.

2.1.2 Interior Permanent Magnet Synchronous Machine (IPMSM)

Fig. 2.2 display a possible structure of IPMSM (V-shaped PMs). IPMSM, Radially Internal

Permanent Magnet Synchronous Machine (RI-PMSM), and V-Shaped Internal Permanent

Magnet Synchronous Machine (VI-PMSM) are some types of typical IPMSMs rotor topolo-

gies. IPMSMs have permanent magnets that are mounted inside the rotor compared to

SPMSMs, and this distinction provides several beneőts. First, because the steel rotor core

physically encloses and protects the permanent magnets, IPMSMs are more mechanically

robust and applicable for high speed, high torque processes. Second, because the steel rotor

core’s magnetic permeability different from the permanent magnet, rotor position affects

the winding inductance, providing reluctance torque and improving capability in the ŕux

weakening region. Additionally, the IPMSMs offer excellent overload capability throughout

the full speed range [59].

Since the permanent magnet ŕux-linkage contributes to the motor torque, the back-emf

of the IPMSM at high velocity is substantially lower than that of an equivalent SPMSM.
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ipm_5  -  RMxprtDesign1  -  Main

Figure 2.2: Schematic and photograph of Interior Permanent Magnet Synchronous Machine (V-
shaped).

2.1.3 Synchronous Reluctance Machine (SynRM)

SynRM has some advantages, i.e, motor simple design, lack of permanent magnet and wind-

ing in the rotor and rotor with a low moment of inertia. The machines have a high efficiency

due to the lack of windings on the rotor. Thus, there is a lower value of overheating of the

stator winding and bearing assemblies that decrease the whole losses in the motor. How-

ever, compared to permanent magnet (PM) machines, the torque density, power density, and

power factor (PF) of SynRMs are relatively low, that adding PMs into SynRM rotors could

enhance motor performance. A schematic and photograph of an industrial SynRM is shown

in Fig. 2.3.

The Synchronous Reluctance Motor (SynRM) utilizes the reluctance concept and rotating

sinusoidal MMF, which can be produced by the traditional 3-phase stator, for torque pro-

duction. In the SynRM, őeld is produced by a sinusoidally distributed winding in a slotted

stator and it links the stator and rotor through a small air gap. The őeld is rotating at

synchronous speed, and can be assumed to have a sinusoidal distribution.

Figure 2.3: Schematic and Photograph of Synchronous Reluctance Machine.

14



2.2. Machine Dynamical Models

2.2 Machine Dynamical Models

2.2.1 IPMSM mathematical model in the stator reference frame

IPMSMs are rapidly being utilized in automobile tractions and a range of applications be-

cause of their beneőts. Both Direct Torque Control (DTC) [60ś64] and Direct Flux Vector

Control (DFVC) [65ś67] in the stator ŕux-linkage synchronous reference frame as well as

Field Oriented Control (FOC) in the rotor synchronous reference dq frame [9, 34, 68] can be

used to control IPMSMs. It is vital to understand the dynamic and mathematical machine

model as well as its electrical and magnetic properties in order to investigate the electric and

magnetic behavior of the IPMSM under various operating situations. Several dynamic and

mathematical IPMSM models are reported in the literature [69ś73]. The traditional dynamic

and mathematical machine models are discussed in this section. The conventional dynamic

and mathematical IPMSM model’s foundational simplifying assumptions are as follows:

• sinusoidal spatial distribution of the Magneto Motive Force (MMF) force in the air

gap;

• linear magnetic behavior of the machine and lack of cross-saturation effects (these

hypotheses will be eliminated later, in particular when dealing with MTPA tracking);

• lack of hysteresis and eddy currents in the iron core;

• lack of slot harmonic effects,

• lack of temperature effects on the machine.

The general voltage formulae are as follows once referring to a three-phase machine:







ua = Rsia(t) +
dλa(t,θe)

dt

ub = Rsib(t) +
dλb(t,θe)

dt

uc = Rsic(t) +
dλc(t,θe)

dt

(2.1)

Where λi is the magnetic ŕux-linkage, ui is the phase voltage and ii is the phase current for

i phase. Rs is the phase resistance, which ought to be the same for each of the three phases.

In an IPMSM, both the currents ŕowing through each stator phase and the magnetic ŕux

coming from the rotor permanent magnets affect ŕux-linkage to the stator phases. Given the

assumption of linear magnetic behavior (or constant magnetic permeability) and negligible

iron losses, the following relationships can be used to express the ŕux-linkage:







λa(t) = λa,i(t) + Λmga(t)

λb(t) = λb,i(t) + Λmgb(t)

λc(t) = λc,i(t) + Λmgc(t)

(2.2)
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where Λmgn is the ŕux-linkage created by permanent magnets and λn,i is the ŕux-linkage

created by stator current excitation. On the basis of the model, it is possible to assume that

the ŕux-linkage Λmga , Λmgb , and Λmgc are sinusoidal:







Λmga = Λmgcos(ppθr)

Λmgb = Λmgcos(ppθr − 2
3
π)

Λmgc = Λmgcos(ppθr − 4
3
π)

(2.3)

where Λmg indicates the maximum ŕux-linkage induced by permanent magnets in each

phase and pp is the pole pairs. The following relationships can be used to express the

ŕux-linkage that is generated by stator current excitation:







λa,i = Laaia + Labib + Lacic

λb,i = Lbaia + Lbbib + Lbcic

λc,i = Lcaia + Lcbib + Lccic

(2.4)

Whereas the three phases’ self-inductances are Laa, Lbb, and Lcc, the mutual-inductances

between the three phases are Lab, Lbc, and Lac. It can be considered that the self and

mutual inductances as being time and rotor position dependent.







Laa = Lσs + Lms0 + Lmcos(2ppθr)

Lbb = Lσs + Lms0 + Lmcos(2ppθr − 2
3
π)

Lcc = Lσs + Lms0 + Lmcos(2ppθr − 4
3
π)

(2.5)

It is determined by adding a constant term (Lσs + Lms0) and a sinusoidal term with

a double electrical frequency (amplitude Lm). The stator ŕux that surrounds in the air

without affecting the rotor is represented by the constant Lσs, which is relative to the leakage

inductance. Lms0 and Lm stand for the magnetization inductance’s constant component

and anisotropy component’s amplitude (2ppθr angle function), respectively. The mutual

inductances account for the ŕux that each winding links to the other windings’ current ŕow.

These also depend on the machine’s anisotropy and can be described by the relationships

shown below:







Lab = Lba = −Ms + Lmcos(2ppθr − 2
3
π)

Lbc = Lcb = −Ms + Lmcos(2ppθr)

Lca = Lac = −Ms + Lmcos(2ppθr − 4
3
π)

(2.6)

where Ms is the average mutual induction coefficient among the stator winding’s phases.

The following matrix represents the relationships mentioned above:
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




ua

ub

uc




 =






Rs 0 0

0 Rs 0

0 0 Rs











ia

ib

ic




+

d






λa

λb

λc






dt
(2.7)






λa

λb

λc




 =






Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc











ia

ib

ic




+






Λmga

Λmgb

Λmgc




 (2.8)

Another way to state the Eq. 2.7 and Eq. 2.8 compactly is as follows:

[uabc] = [Rs][iabc] +
d[λabc]

dt
(2.9)

[λabc] = [Labc][iabc] + [Λmgabc ] (2.10)

Eq. 2.10 can be substituted for Eq. 2.9 of electric voltage.

[uabc] = [Rs][iabc] +
d[Labc][iabc] + [Λmgabc ]

dt
=

= [Rs][iabc] +
d[Labc]

dt
[iabc] +

d[iabc]

dt
[Labc] +

d[Λmgabc ]

dt
=

= [Rs][iabc] +
dθr
dt

d[Labc]

dθ
[iabc] +

d[iabc]

dt
[Labc] +

dθr
dt

d[Λmgabc ]

dθr
=

= [Rs][iabc] + ωm
d[Labc]

dθr
[iabc] + [Labc]

d[iabc]

dt
+ ωm

d[Λmgabc ]

dθr

(2.11)

where, [Rs][iabc] are the components of the drop voltages in phases a, b and c. [Labc]
d[iabc]
dt

are the induced back EMF to stator windings. ωm
d[Labc]
dθr

[iabc] are the rotational back EMF

caused by the machine’s anisotropy and ωm
d[Λmgabc

]

dθr
are the rotationally-induced back EMF

that permanent magnet ŕux produces.

Input power expression can be obtain by multiplying the transposed vector of the currents

[iabc]
T to the all components of Eq. 2.11.

[Peabc ] = [iabc]
T [uabc] = [iabc]

T [Rs][iabc] + [iabc]
Tωm

d[Labc]

dθr
[iabc]+

[Labc][iabc]
T d[iabc]

dt
+ ωm[iabc]

T d[Λmgabc ]

dθr

(2.12)

where, [iabc]
T [uabc], [iabc]

T [Rs][iabc], [Labc][iabc]
T d[iabc]

dt
, [iabc]

Tωm
d[Labc]
dθr

[iabc]+ωm[iabc]
T d[Λmgabc

]

dθr

represents input electric power(Pe), stator winding losses (Pcu), stored power in magnetic

őeld and motor’s shaft mechanical power (Pm) respectively.

As a result, the following relationship can be used to express the electromechanical torque

to the shaft:
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Tem =
Pm

ωm

= [iabc]
T d[Labc]

dθr
[iabc] + [iabc]

T d[Λmgabc ]

dθr
(2.13)

where the reluctance torque component is [iabc]
T d[Labc]

dθr
[iabc]. [iabc]

T d[Λmgabc
]

dθr
is a represen-

tation of the torque created by the machine as a result of the interplay between the ŕux

generated by the permanent magnets and the currents ŕowing through the phases of the sta-

tor. The resulting mathematical representation of the IPMSM consists of a set of non-linear

differential equations with difficult solutions. This problem is solved by using a mathematical

approach that involves changing the coordinates from the abc stator reference frame system

to the synchronized dq0 reference frame system.

2.2.2 dq0 synchronous reference frame for the IPMSM mathemati-

cal model

Three differential equations with variable coefficients make up the mathematical model in

the stator reference frame system mentioned in the previous section. It is complicated the use

of such a mathematical model for the purpose of operating an IPMSM. You can apply linear

mathematical transformations to create differential equations with constant parameters. In

particular, the Park transformation enables the change from a three-phase stator reference

system to a two-phase reference frame system, with the real axis aligned with the polar rotor

axis and spinning at the electrical rotor speed ωme. This transformation has the beneőt of

being simpliőed to a set of equations in the reference dq0, where the self- and mutual-

induction coefficients are independent of the rotor location and remain constant over time.

As seen in Fig. 2.4, the stator reference system (a,b,c) is őrst transformed into the őxed

two-phase reference system (α,β) in order to achieve the Park model.

a

av

b
v

cv
ai

b
i

ci

s

s

v

v

i

i

s

s
( , , ) ( , )a b c  

Figure 2.4: Transformation of coordinated from (a,b,c) to (α,β).

A system with only two windings aligned at 90 degrees and that is magnetically uncoupled

is the result of such a transformation. The inductive coefficients are still a function of the
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angular position of the rotor in this model because the stator and rotor parameters are

evaluated in relation to the appropriate physical reference frame. To express stator and rotor

quantities under a single reference, a further transformation is required. The rotor quantities

are studied in relation to a system of axes (d,q,0) revolving integrally with the rotor. Fig. 2.5

depicts this additional coordinates transformation, in which the stator quantities referred to

the system (d,q) are provided.

( , ) ( , )d q  
v

v

i

i

s

sr

r

dq

d
v

qv
d
i

qi

s

sr

dq

r−

Figure 2.5: Transformation of coordinated from (α,β) to (d,q).

The following transformation matrix is used to convert the quantities from the three-

phase reference system (a,b,c) to the reference system (d,q,0):

[T ] =
2

3






cospθr cos(pθr − 2
3
π) cos(pθr − 4

3
π)

−sinpθr −sin(pθr − 2
3
π) −sin(pθr − 4

3
π)

1
2

1
2

1
2




 (2.14)

The inverse matrix, which enables the conversion of the quantities from the coordinate

system (d,q,0) to the three-phase coordinate system (a,b,c), also can be deőned:

[T ]−1 =
2

3






cospθr −sinpθr 1

cos(pθr − 2
3
π) −sin(pθr − 2

3
π) 1

cos(pθr − 4
3
π) −sin(pθr − 4

3
π) 1




 (2.15)

The following relationships deőne the electrical quantities in the (d,q,0) reference system:

[udq0] = [T ][uabc] =
2

3






cospθr cos(pθr − 2
3
π) cos(pθr − 4

3
π)

−sinpθr −sin(pθr − 2
3
π) −sin(pθr − 4

3
π)

1
2

1
2

1
2











ua

ub

uc




 (2.16)

[idq0] = [T ][iabc] =
2

3






cospθr cos(pθr − 2
3
π) cos(pθr − 4

3
π)

−sinpθr −sin(pθr − 2
3
π) −sin(pθr − 4

3
π)

1
2

1
2

1
2











ia

ib

ic




 (2.17)
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[λdq0] = [T ][λabc] =
2

3






cospθr cos(pθr − 2
3
π) cos(pθr − 4

3
π)

−sinpθr −sin(pθr − 2
3
π) −sin(pθr − 4

3
π)

1
2

1
2

1
2











λa

λb

λc




 (2.18)

The ŕux equation for the IPMSM mathematical model is as follows after applying the

previous indicated coordinate transformation:

[λdq0] = [T ][λabc] = [T ][Labc][iabc] + [T ][Λmgabc ] =

[T ][Ldq0][T ]
−1[idq0] + [T ][T ]−1[λdq0] =






Ld 0 0

0 Lq 0

0 0 L0











ia

ib

ic




+






Λmg

0

0






(2.19)

The voltage equations can be obtained as follow:

[udq0] = [T ][uabc] = [T ][Rs][iabc] + [T ]
d[λabc]

dt
=

= [T ][Rs][T ]
−1[idq0] + [T ]

d([T−1][λdq0])

dt

= Rs






id

iq

i0




+ [T ][T ]−1

d






λd

λq

λ0






dt
+ [T ]ωm

d[[T ]−1]

dθ






λd

λq

λ0




 =

= Rs






id

iq

i0




+

d






λd

λq

λ0






dt
+ ppωm






−λd

λq

λ0






(2.20)

The voltage equation was formed by substituting Eq. 2.19 for Eq. 2.20.






ud

uq

u0




 = Rs






id

iq

i0




+






Ld 0 0

0 Lq 0

0 0 L0






d






id

iq

i0






dt
+ pωm






−Lqiq

Ldid + Λmg

0




 (2.21)

The following expression provides the (d,q,0) coordinate system’s power balance:

Pi = [iabc]
T [uabc] = [idq0]([T ]

−1)T [T ]−1[udq0] =
3

2
(udid + uqiq + u0i0) (2.22)

By using this equation, the following results are obtained:
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Pi = [iabc]
T [uabc] = [idq0]([T ]

−1)T [T ]−1[udq0] =

[idq0]([T ]
−1)T [T ]−1([Rs][idq0] + [Ldq0]

d

dt
[idq0] + ppωm






−λq

λd

λ0




) =

= [idq0]([T ]
−1)T [T ]−1[Rs][idq0] + [idq0]([T ]

−1)T [T ]−1[Ldq0]
d

dt
[idq0]

+[idq0]([T ]
−1)T [T ]−1ppωm






−λq

λd

λ0






(2.23)

Where the őrst term represents the joule losses in the stator windings Pcu, the second term

represents variation in the time unit of the energy stored in the magnetic őeld produced by

the armature ampere-turns (Pmf ) and the last term represents the output electromechanical

power Pm. The electromechanical power Pm is equal to:

Pm = [idq0]([T ]
−1)T [T ]−1ppωm






−λq

λd

λ0




 =

3

2
ppωm[λdiq − λqid] =

=
3

2
ppωm[Λmgiq + (Ld − Lq)idiq]

(2.24)

It is feasible to extract the electromechanical torque expression from this equation:

Te =
3

2
pp[λdiq − λqid] =

3

2
pp[Λmgiq + (Ld − Lq)idiq] (2.25)

The expression of electromechanical torque consists of two parts: the fundamental torque,

which depends on the ŕux-linkage induced by permanent magnets and q-axis current, and

the reluctance torque, which depends on the saliency of the machine and both d- and q-axis

currents. Below, all the dynamic and mathematical model equations are presented:

ud = Rsid + Ld
did
dt

− ppωmLqiq (2.26)

uq = Riq + Lq
diq
dt

+ pωmLdid + pωmΛmg (2.27)

Te =
3

2
pp[Λmgiq + (Ld − Lq)idiq] (2.28)

Te = Tr + Fωm + J
dωm

dt
(2.29)

d

dt
θr = ωm (2.30)
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2.3 Control Strategies

2.3.1 Current, Voltage and Speed Limits

The voltage of the inverter needs to be higher than the motor-terminals voltage in order to

control the motor current. The DC link voltage, on the other hand, is constrained. The

IPMSM dynamics steady state model is presented as:

Ud = RsId − ΩmeLqIq (2.31)

Uq = RsIq − ΩmeLdId + ΩmeΛmg (2.32)

The current and voltage vectors in steady state condition are illustrated in Fig. 2.6 based

on Eq. 2.31 and Eq. 2.32. When id < 0 and id > 0 during motoring, two aspects are

compared. Since ΩmeLdid < 0 is laid on the q-axis, as shown in Fig. 2.6a, the negative

d-axis current lowers the voltage at the motor terminals. By canceling off the back EMF

by this coupling voltage, ωmeΛmg, which increases with speed. Therefore, it enhances the

speed range. On the other hand, positive d-axis current, raises the voltage vector. In order

q axis−

d axis−

qi

d
i

IV

e mg 

e q qL i−RI

e d dL i



(a)

q axis−

d axis−

qi

d
i

I

V e mg 

e q qL i−RI

e d dL i



(b)

Figure 2.6: Voltage magnitude and power factor depending on id polarities during motoring: (a)
id < 0 and (b) id > 0.

to keep the current under control the terminal voltage must not exceed the available voltage

from the inverter. Fig. 2.6a the angle difference, ϕ is not very large and both the current

and voltage vectors are in the second quadrant. According to Fig. 2.6b, the vectors of the

current and voltage are in distinct quadrants if id > 0. As a result, the power factor is low.

Last but not least, negative d−axis current improves power factor while limiting voltage rise.

The torque expression Eq. 2.28 can be rewritten as

Te =
3

2
pp[Λmg + (Ld − Lq)id]iq (2.33)
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Since Lq is expected to be greater than Ld, the term (Ld − Lq)id is positive when the d-axis

current is negative, which increases Λmg + (Ld − Lq)id with respect to the case with id = 0.

As a result, negative d-axis current leads to increased torque, for the same q-axis current, i.e.

the reluctance torque adds to the electro-dynamical one. The former can be as large as the

latter component, in some well-designed IPMSMs, especially when operating at high speeds.

Finally, the current vector is parallel to the Ohmic voltage drop. Although the resistive

voltage increases the magnitude of terminal voltage, its contribution can be neglected at

high speed, for the sake of simplicity, since this voltage component is typically small with

respect to the ωmeλd,q terms. Similar vector diagrams in the case of regeneration are shown in

Fig. 2.7. The shaft torque is negative if iq is negative. It functions as a generator by absorbing

external mechanical power and transforming it into electrical power. When iq < 0, the two

scenarios are compared. With regard to the magnitude of the terminal voltage, the same

effect can be seen. With id < 0, the terminal voltage is lower. When regeneration occurs, it

is preferred to obtain a power factor of -1 (PF = −1), or (ϕ ≈ 180◦) in this case. From this

vantage point, the scenario where id < 0 is better. The Ohmic voltage drop, as opposed to

motoring, aids in reducing the terminal voltage.
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Figure 2.7: Voltage magnitude and power factor depending on id polarities during motoring: (a)
id < 0 and (b) id > 0.

Torque Versus Current Angle A lossless model’s vector diagram can be shown in

Fig. 2.8. The current angle β is typically considered starting from the q-axis. It follows from

the polar description that

id = −Isinβ (2.34)

iq = Icosβ (2.35)
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where I =
√

i2d + i2q and β = tan−1(−id
iq
). With Eq. 2.34 and Eq. 2.35 as substitutes in the

torque equation,

Te =
3

2
pp[ΛmgIcos(β)−

1

2
(Ld − Lq)I

2sin(2β)] (2.36)

q axis−

d axis−

cosq Ii =

sin
d

Ii = −

I
V






Figure 2.8: Vector diagram of a lossless model.

Also take note that the current angle must be greater than zero (β > 0) in order for the

reluctance torque to be positive when Lq > Ld. It implies that the current along the d-axis

must be negative. When Lq > Ld, torque is illustrated against current angle in Fig. 2.9. For

a medium value of β, the reluctance torque’s relative magnitude is not low.

-180 -135 -90 -45 0 90 18045

Magnetic

torque

Reluctance

torque

Torque sum

135

Figure 2.9: Torque against the current angle for a given value of current amplitude.

2.3.2 MTPA Classiőcation and Implementation scheme

It is important to classify the MTPA estimation method in order to their dependence and

independence to the motor non-linear parameters. Fig. 2.10 illustrate a taxonomy of MTPA
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Figure 2.10: Taxonomy of MTPA techniques.

estimation methods that it is divided to two main families, i.e, online and offline [17]. Com-

monly the speed controller’s output is applied to the MTPA algorithm. However, depends

on the MTPA estimation methods the input can be different. After processing the d− and

q− axis reference currents should be obtained.

In conventional method of MTPA estimation, the differentiation of Te with respect to β is

taken:
∂Te

∂β
=

3pp
2

[−ΛmgIsin+ (Ld − L− q)I2cos2β] = 0 (2.37)

thus,

2(Ld − Lq)Isin
2β + Λmgsinβ − (Ld − Lq)I = 0 (2.38)

Fig. 2.11 illustrate the MTPA trajectory in dq axis currents.

Figure 2.11: MTPA trajectory.
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The angle β can be obtained:

β = sin−1

[

−Λmg +
√

Λmg + 8(Ld − Lq)2I2

8(Ld − Lq)2I2

]

(2.39)

Eq. 2.39 is the loss minimization current angle for a given current magnitude I. according

to id = −Issinβ the dq reference currents are obtained.

id =
Λmg −

√

Λ2
mg + 8I2(Ld − Lq)2

4(Ld − Lq)
(2.40)

iq =
√

I2 − i2d (2.41)

As it illustrated in Fig. 2.12 the MTPA input is x and the output is (y1,y2) which they

can be different parameters. In Field Oriented Control (FOC) technique, the outputs usually

are d− and q− reference currents, i.e i∗d and i∗q. there are some different MTPA estimation
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Figure 2.12: General block diagram with MTPA technique.

method conőguration that are presented in Fig. 2.13

As it mentioned before, these different implementations can be used online and offline. In

offline methods, an open loop is used to modify the reference currents. In some methods such

as Real Signal Ingection (RSI) and Virtual Signal Injection (VSI) a feedback from measured

current is needed to modify the reference currents. In Fig. 2.13a, the input is the reference

torque and the outputs are the reference currents. Also, the amplitude of the stator current

can be used as the input of the MTPA calculation block. In this implementation the angle

between id and iq (Fiq. 2.13b) is modiőed. Fig. 2.13c shows another conőguration of the

MTPA technique implementation with reference torque as the input. In this conőguration

q−axis current is a function of the torque and obtained d−axis reference current.

Furthermore, approximation can be used to implement MTPA estimation methods. In this

implementation outputs can be polynomial functions that are estimated by the non-linear

parameters and measured currents of the motor (Fig.2.13d).
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Figure 2.13: Different implementation of MTPA technique (a) reference torque as input (b)
reference current as input (c) reference torque as input (d) polynomial approximation based solution.

2.3.3 Constant Power Speed Range (CPSR).

Let Us stand for the maximum voltage’s magnitude. The voltage limit is then explained by

U2
d + U2

q ≤ U2
s (2.42)

By lowering the Ohmic voltage so that Eq. 2.31 and Eq. 2.32 yield a simpliőed steady

state IPMSM model.

Ud = −ΩmeLqIq (2.43)

Uq = ΩmeLdId + ΩmeΛmg (2.44)

From Eq. 2.42, it follows that

L2
d(Id +

Λmg

Ld

)2 + L2
qI

2
q ≤ U2

s

Ω2
me

(2.45)

It is an ellipse equation. Keep in mind that the major and minor axes are dependent

on speed. The primary axis is horizontal since Ld < Lq. It is clear from Eq. 2.45 that as

the speed increases, the ellipses shrinks to (−Λmg

Ld
, 0), as seen in Fig. 2.14, the current limit,

however, is a őxed circle:

I2d + I2q ≤ I2s (2.46)

At the point where an ellipse and a circle intersect, a feasible maximum power solution
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is established. The torque-speed curve and current contour are shown in Fig. 2.15. The
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Figure 2.14: Voltage ellipses and current limit.

terminal voltage reaches its maximum with a rated inverter voltage at the base speed, also

known as the rated speed. On the current limit circle, the rated condition is indicated by the

letter A. The voltage limit decreases as speed rises further. The maximum power solution

then descends to the circle’s horizontal axis. As a result, the solution with the highest

possible power goes closer to the circle’s horizontal axis at high speed.
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Figure 2.15: (a) Speed vs torque, current and voltage (b) current trajectory in dq plane.

When the speed is increased, the operations at points B, C, D, and E occur in the order

shown in Fig. 4.4. In order to satisfy the voltage requirement, a bigger current along the

d−axis, in the negative direction, must be provided. ωmeLdid, in particular, counteracts

the increasing back EMF, ωmeΛmg, and a larger id (in the negative direction) is achieved at
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the expense of decreasing the q−axis current. Since both the voltage and the current are

held at the same value, the intersections that are shown in Fig. 2.15b belong to the contour

of constant (apparent) power, which is denoted by the equation Pe = UsIs. If there is a

relatively small amount of loss, the majority of the electrical power will be transformed into

the mechanical power Pm = Teωme. In the event that the power factor is very close to one,

the contour BE will be used to characterize the Constant Power Speed Range (CPSR). Since

iq approaches zero as ωme increases, based on the Eq. 2.45 the Eq. 2.47 can be obtained.

(id + Λmg)
2 ≤ U2

s

(Lqωme)2
(2.47)

When ωme is increased sufficiently large, the right hand side of Eq. 2.47 disappears. As

a result, it ought to be obvious that id → −Λmg

Ld
as ωme → ∞. As was observed in [74], the

requirements that are met will determine whether or not one is capable of producing power

at an unlimited speed. the ability of producing power at inőnite speed is determined by the

criteria.

Λmg ≤ LdIs (2.48)

This indicates that in order to prolong the speed range indeőnitely, the demagnetizing

ŕux, denoted by LdIs and produced by the stator coil, must be greater than the PM ŕux,

denoted by Λmg. The voltage limits, current limitation, and power plots vs speed are dis-

played for three different situations in Fig. 2.16. The following is a condensed summary of

the speciőc illustrations for each of the three cases: [32] a) Λmg > LdIs: This refers to the

situation in which the rotor ŕux exceeds the maximum d-axis ŕux that the stator current can

provide. If the machine operates at the current limit, the apparent power remains constant,

while available torque decreases with speed. Because the ellipse’s center, −Λmg

Ld
, is outside

the current limit, no more intersections will occur above the critical speed (where Iq = 0 and

thus torque is null), given by

ωcritical =
Us

Λmg − LdIs
(2.49)

b) Λmg = LdIs: This is the situation in which Λmg

Ld
= Is. Because the center of the ellipse

is located on the current limit circle, there is always an intersection for any value of that is

arbitrarily large ωme. Therefore, the theory suggests that the constant maximum power can

be extended to the inőnite speed. This means that in theory, the constant maximum power

can be applied to an unlimited speed.

c) Λmg < LdIs: The constant power range will also be increased to an unlimited speed.

However, the output power is reduced after peaking. This is the most common design setting.
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Figure 2.16: The voltage limits, current limitation, and power plots vs speed for (a) Λmg > LdIs
(b) Λmg = LdIs (c) Λmg < LdIs

.

30





Chapter 3

Online Methods for Maximum Power

Point Tracking (MTPA)

In recent years, new approaches for estimating the maximum torque per ampere (MTPA)

have been introduced with the use of speciőc signals. The main idea behind these techniques

is to vary the operating point around its steady-state value and observe how the variable of

interest (torque or current) changes in response, in order to őnd a minimum or maximum.

This is known as the ESC approach [20].

One technique, known as MTPA tracking, involves varying the current phase angle while

observing either the current magnitude or the torque variations. To extract the MTPA track-

ing error, speed oscillations are analyzed [21], but this requires relatively high-performance

speed sensing, which limits its applicability. An alternative approach has been proposed that

detects active power oscillations based on voltage and current signals [22] [23]. In this ap-

proach, the current magnitude is observed while assuming that the speed regulator keeps the

produced torque equal to the load, despite the current angle variation. Another technique,

known as Virtual Signal Injection (VSI) [28], [29], [30], has been introduced to overcome

the limitations of Real Signal Injection (RSI). VSI uses a parameter-estimation technique to

obtain an MTPA correction signal, instead of directly measuring torque or speed oscillations.

VSI is based on the analytical model of the machine and some of the parameters needed for

its calculation are estimated based on the actual voltage and current measurements. VSI is

not actually estimating the MTPA condition of the actual machine, but can be considered

as a way to enhance the simplest MTPA methods with information retrieved online. How-

ever, the accuracy of VSI is limited by the knowledge of some machine parameters and the

approximations that need to be introduced.

In this chapter, a direct comparison between RSI and VSI is performed, considering the ac-

curacy and performance of both techniques. An analytical description of the tracking errors

in the VSI case is reported, including a strategy for compensating the steady-state errors

arising from non-linear ŕux maps. An effective analytical model of the machine inductance

is embedded in the analysis of the tracking loop, allowing for improved tracking accuracy,

even with low-resolution knowledge of the machine ŕux maps. To further improve accuracy,
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3.1. Real Signal Injection

a look-up table (LUT) of the d-axis apparent inductance is used in both RSI and VSI, and

the results are compared to conventional RSI and VSI [75].

3.1 Real Signal Injection

Real signal injection MTPA tracking is based on the evaluation of the actual machine torque

oscillation due to a high-frequency current injection, allowing the closed-loop correction of

the current space vector angle towards the MTPA condition. Different approaches have been

proposed in past literature based on this main concept, [26], [23], [27]. The implementation

of this class of methods introduces strong constraints on the accuracy and dynamics of the

speed measurement affecting the overall performance of MTPA tracking, e.g. [27].

Tracking the MTPA trajectory is an optimization problem. Considering the constant torque

of the machine Tref , The minimization of the current |Is(γ)| is a function of current vector

angle γ
MTPA

:

min
γ

|is(γ)| subject to T (|Is|, γ) = Tref (3.1)

To obtain the minimum point for a vector angle value the following condition should be

satisőed:
dIs
dγ

(γMTPA) = 0 (3.2)

A high-frequency signal is injected to get the response of the derivative. That the results give

the modiőed proper vector angle signal. Fig. 3.1 illustrate the MTPA tracking loop block

diagram. By the sum of the MTPA tracking loop output and high sinusoidal frequency signal

δγ (with frequency fi and amplitude A) the reference angle of current vector γ∗ is calculated.

γ∗ = γ0 + δγ = γ0 + Asin(2πfit) (3.3)

The frequency of the injected signal should be less than the bandwidth of the current control.

The amplitude and vector angle of the actual current is assumed to be equal to the reference

values (γ = γ∗ and Is = I∗s ). In order to reject the disturbance created by the injected current

phase angle oscillation, the speed regulator will generate a variation in current amplitude.

Is(γ0 + δγ) = Is(γ0) + δIs = Is0 + δIs (3.4)

where Is0 and γ0 are the equilibrium points. Using the results of the small signal behavior

analysis, a block diagram similar to the one in Fig. 3.1 can be obtained. The linearized

transfer function is determined as follows:

W (s) =
δis(s)

δγ(s)
= −∂Te

∂γ

C(s)P (s)

1− (−C(s)P (s))∂Te

∂is

(3.5)

where the C(s) and P (s) functions refer to the speed controller and the mechanical load

plant transfer functions, respectively. The solution to Eq. 3.5 can be broken down into two
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Figure 3.1: Small-signal linearized equivalent model of the speed control loop.

parts: the static gain, and the dynamical part. In this case, it is the closed-loop speed

response transfer function.

Ωloop(s) =
C(s)P (s)∂Te

∂is

1 + C(s)P (s)∂Te

∂is

(3.6)

The following equivalency is valid only if the system is operating under conditions of constant

torque:

dTe =
∂Te

∂is
dis +

∂Te

∂γ
dγ = 0 ⇒ ∂Te

∂γ
=

∂is
∂γ

∂Te

∂is
(3.7)

The following equation can be found by substituting the Eq. 3.7 into Eq. 3.5:

W (s) =
∂is
∂γ

C(s)P (s)∂Te

∂is

1 + C(s)P (s)∂Te

∂is

(3.8)

The term ∂is/∂γ can be derived from derivatives of torque with respect to phase angle and

magnitude of current vector correspondingly by using Eq. 3.7. In this manner, the end result

is as follows:
∂is
∂γ

= − is[Λmg cos γ + (Ld − Lq)is cos(2γ)]

sin γ[Λmg + (Ld − Lq)2is cos γ]
(3.9)

Taking into consideration the time domain, the current vector magnitude oscillation δis is

rewritten as follows, based on the following considerations:

δis(t) =
∂is
∂γ

|Ωloop(j2πfp)|A sin(2πfpt+ ∠{Ωloop(j2πfp)}) (3.10)

where |Ωloop(j2πfp)| and ∠{Ωloop(j2πfp)} represent the magnitude and phase, respectively,

of the closed-loop speed control transfer function W (s) computed at the injection frequency.

One needs to őlter and demodulate the detected disturbance to get a continuous signal.

Fig. 3.2 depicts a scheme for MTPA tracking, which involves applying a high pass őlter to

the perturbed signal and then multiplying the őltered signal by the perturbation to obtain

the demodulated signal.

To ensure that both signals have the same phase shift, it is important to notice that the
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Figure 3.2: MTPA tracking loop block diagram.

perturbation itself is őltered. Second-order terms at higher harmonics are suppressed by

őltering the demodulated signal with a Low Pass Filter (LPF). The error signal ϵf as obtained

can be expressed as:

ϵf = LPF{δis ∗ δγ} ≈ 1

2
k2
HPF (j2πfp)ℜ{Ωloop(j2πfp)}A2dis

dγ
(3.11)

where ℜ{Ωloop(j2πfp)} is the real part of the speed regulation transfer function calculated

at injection frequency.

Now the phase angle of the current vector can be corrected by feeding the erroneous signal

into a Proportional Integral (PI) regulator. Some factors should be considered to make sure

about the correct result.

3.1.1 Stability Analysis

This algorithm’s stability needs to be thought out. Gains of PI regulators must be selected

sensibly, őrst and foremost, to guarantee adequate stability and a good convergence rate.

The Lyapunov stability requirement provides a useful analytical framework for assessing

robustness.

V (t) =
1

2
ϵ2f (t) (3.12)

considering a fully integral tracking regulator such as:

dγ

dt
= −ϵfKiMTPA

(3.13)

Lyapunov derivative is obtained as

dV

dt
=

dV

dϵf

dϵf
dγ

dγ

dt
= KiMTPA

ϵ2f
dϵf
dγ

< 0 (3.14)

For a variety of operating situations, the following inequality must hold true before stability

is achieved:
dϵf
dγ

=
d

dγ

(
1

2
A2dis

dγ
k2
HPF (j2πfp)ℜ{Ωloop(j2πfp)}

)

> 0 (3.15)
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Eq. 3.15 cannot be solved analytically because of its complexity. In actuality, its computation

involves various physical parameters and speed regulator gains. Inaccurate measurements

of these parameters can lead to incorrect calculations. On the other hand, the closed-loop

speed transfer function can be analyzed in a number of efficient ways.

First, certain considerations might be addressed regarding the High Pass Filter (HPF). Since

the component around the injected frequency must pass through the őlter undisturbed, the

őlter pole must be located at a lower frequency than the injection frequency (fHPF << fp).

Thus, the term k2
HPF (j2πfp) can be approximated to unity as follows:

dϵf
dγ

=
d

dγ

(
1

2
A2dis

dγ
ℜ{Ωloop(j2πfp)}

)

> 0 (3.16)

The closed-loop speed control response can be almost unity if the injection frequency is

selected so that it is well within the speed control bandwidth:

Ωloop(j2πfp) ≈ 1 (3.17)

In accordance with the previous two conditions, the error signal ϵf possesses the maximum

strength of the usable signal for a given injection amplitude. Taking these approximations

into consideration, the Eq. 3.11 can be rewritten as follows:

ϵf ≈ 1

2
A2dis

dγ
(3.18)

the stability condition of Eq .3.15 is obtained as follow:

dϵf
dγ

=
1

2
A2d

2is
dγ2

> 0 (3.19)

Eq .3.14 is conőrmed for the range of angles being investigated because it can be shown that

the derivative d2is/dγ
2 is positive for any γ ∈ [π/2, π].

3.1.2 Gain design and adaptation

The transfer function Eq. 3.8 is made up of two terms, as was already stated at the beginning

of this section: a gain and a dynamical component (Eq. 3.9) that is equivalent to the speed

control regulator. The gain component depends on the operating point, as is evident. This

indicates that there are various transfer functions with various cut-off frequencies depending

on the operating point. Varying cut-off frequencies result in different time constants in the

time domain, which means that the operating point determines how long it takes to reach

steady state. A method to linearize loop dynamics is presented in [3]. The approach is

based on small-signal gain normalization with local linearization. Let’s look at the non-

linear tracking loop representation in Fig. 3.3. The plant’s small-signal equivalent model is

as follows:
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Figure 3.3: Equivalent schematic for the derivative-based normalization.

g =
dϵf
dγ

(3.20)

Dividing the error signal by an estimated ĝ ≈ g of the gain, the loop dynamic can be

made normalized. By use Eq. 3.9, the estimate can be derived as in Eq. 3.19. As a result,

the system in Fig. 3.3 becomes linear and the dynamics of the tracking loop is no longer

dependent on the operational point. In the vicinity of any steady-state operating point, the

system obtains the behavior of a őrst-order low-pass őlter. By examining the derivative of

the Lyapunov candidate function Eq. 3.12, which becomes as follows in the case of accurate

gain normalization, the stability can be examined:

dV

dt
= KiMTPA

ϵ2f < 0 (3.21)

Analytical tracking regulator design is now simple because the model has been linearized

using a method called gain normalization. As an integrator, the open-loop transfer func-

tion’s cross-over frequency is equal to the integral gain and also relates to the closed-loop

bandwidth.

KiMTPA
= 2πBWMTPA (3.22)

According to earlier assumptions, the tracking bandwidth BWMTPA is the only design re-

quirement and must be upper bound by the injection frequency, which itself must be suitably

lower than speed control bandwidth.

3.2 Virtual Signal Injection (VSI)

VSI allows to őnd out the MTPA condition of the analytical model of the machine, i.e. to

solve an on-line analytical optimization problem, where the system response to the injected

signal is obtained by the analytical model of the average torque of the machine and some

of the parameters needed for its calculation are estimated starting from actual voltage and

current measurements. As no injection is done on the actual machine, the main advantage

of this method is related to the theoretical inőnite tracking bandwidth, being related to the

frequency of the virtually injected signal, that could be theoretically increased up to the

Nyquist limitation. As in RSI case, the perturbation amplitude has to be kept small, so to

reduce second order effects during the demodulation process.
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3.2. Virtual Signal Injection (VSI)

The initial proposal is reported in [28], whilst in [29] the same authors provide an explanation

of some wrong approximations adopted in the őrst proposal and a new expression of the

torque aiming at improving the overall accuracy. Hereafter a full analytical development is

reported, aiming at highlighting the general concept behind this approach and the required

approximations that are needed to be introduced allowing a real implementation in an actual

drives system, where magnetic saturation is normally present and machine parameters cannot

be considered constant terms.

In steady state condition the power equation can be written as Eq. 3.23. In addition the

average electromagnetic torque (lack of iron loss) equation can be obatined as Eq. 3.24.

Pm =
3

2
[(vd −Rid)id + (vq −Riq)iq] =

3

2

[

(vq −Riq) +
(vd −Rid)

iq
id

]

iq (3.23)

Pm

ωm

= Te =
3

2
pp[Λmg + (Ld − Lq)id]iq (3.24)

To calculate the high-frequency component of the d− and q−axis currents, we use Eq. 3.26

and Eq. 3.27, respectively, when a high-frequency sinusoidal signal is injected into the stator

current angle.

∆β = Asin(wht) (3.25)

ihd = −Issin(β +∆β) (3.26)

ihq = Iscos(β +∆β) (3.27)

From Eq. 3.23 the following equation is obtained:

Pm

wm

= Te =
3

2

[
(vq −Riq)

ωe

+
(vd −Rid)

iqωe

id

]

iq (3.28)

Obviously, the operation condition effect the (vq − Riq)/ωe and (vd − Rid)/(iqωe) during

injecting the high-frequency signal ∆β can be considered as constant values. Also, The

parameters in Eq. 3.24 can be considered constant during injecting small sinusoidal signal

(they vary respect to the d− and −q axis currents and temperature). A polynomial function

(Eq. 3.29) can be used to approximate the relationship between torque and d− and q−axis

currents. This is possible because the alignment torque component and the reluctance torque

component both contribute to the torque. The difference in the d− and q−axis inductances

is the cause of this difference.

T h
e =

3

2

[
(vq −Riq)

ωe

+
(vd −Rid)

iqωe

ihd

]

ihq (3.29)

as it explained Eq. 3.29 is an approximated polynomial function, there is error during inject-

ing the high-frequency signal which the analyze is going to be described in the next sections.
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Figure 3.4: Schematic of signal processing block to extract.

As it can be seen the perturbed torque can be obtained by motor velocity, the id and iq that

perturbed by high-frequency signal and the d− and q−axis voltages. In this case it does not

need to inject a real signal to the stator current and perturb the torque.

3.2.1 Signal Processing for VSI

Eq. 3.29 can be expanded by Taylor’s series:

T h
e = Te(β) +

∂Te

∂β
Asin(ωht) +

1

2

∂

∂β

(
∂Te

∂β

)

A2sin2(ωht) + ... (3.30)

The MTPA operation point can be demonstrated by the partial derivative of torque to the

current angle ∂Te/∂β. As it illustrated in Fig. 3.4 the operation point of MTPA is extracted

by a signal processing. The LPF is the proportional to ∂Te/∂β. In addition it should

be mentioned again that the cut-off frequency of the őlter should be lower than virtual

perturbation signal ωh.

Based on the equality of the Eq. 3.29 and Eq. 3.30 the torque can be obtained by following

parameters.

• d− and q−axis voltages, vd and vq,

• measured speed of the motor ωe,

• d− and q−axis currents, id and iq,

• the perturbed d− and q−axis currents produced by injecting signal ,ihd and ihq

As it illustrated in Fig. 3.4 the signal is processing by a Band Pass Filter (BPF), the

center frequency of the őlter is equal to the injected high-frequency signal. Then, according

to the Eq. 3.30 the output signal of the BPF is the proportional item to the őrst order of

the equation.

As a result, the following equation is obtained:

K
∂Te

∂β
Asin2(ωht) = K

∂Te

∂β
A

(
1

2
[cos(0)− cos(2ωht)]

)

=
1

2
KA

∂Te

∂β
− ∂Te

∂β
KAcos(2ωht)

(3.31)

where K represents the gain of the BPF at the frequency where the signal is being injected.

A őrst order order LPF will be applied to the right hand side of Eq. 3.30. The cut-off

frequency of this őlter will be lower than the frequency of the virtual perturbation signal.

39



3.2. Virtual Signal Injection (VSI)

The ∂Te/∂β data can be retrieved in this method. Since the MTPA current angle is equal

to the current angle, the LPF’s output is effectively zero in this case. The integrator will

use this state to produce the d−axis current reference necessary for MTPA functioning.

3.2.2 Square-Wave Injection

Different signal waves can be injected into the motor model, just as there is no actual signal

injection into the motor. In this situation, it is possible to inject a square-wave signal,

which has several beneőts that are addressed in this section. It should be underlined that

everything that has been thought about and assumed is still true in this situation because

the operation point is still can be tracked.

Let’s have a look at how the phase angle of the current vector is affected by the perturbation.

Taking into account a square-wave perturbation with an amplitude of A and a period of Ts,

the equation can be stated as follows:

β∗ = β +∆β where ∆β =







A, when nTs ≤ t ≤
(

n+ 1
2

)

Ts

−A, when

(

n+ 1
2

)

Ts ≤ t ≤ (n+ 1)Ts

(3.32)

The perturbed torque due to the injected square-wave can be expanded by Taylor’s series.

The following equation illustrate the expression:

T h
e (∆β) = Te(0) + ∆β · ∂T

h
e

∂β

∣
∣
∣
∣
∆β=0

+
1

2
∆β2 · ∂

2T h
e

∂2β

∣
∣
∣
∣
∆β=0

+ · · · (3.33)

By selecting a small value for ∆β, the second order terms does not need to be considered:

T h
e ≈ Te +∆β

∂Te

∂β
(3.34)

Eq. 3.34 can rewritten as follow:

T h
e − Te ≈ ∆β

∂Te

∂β
(3.35)

Hereafter, the method depicted in Fig. 3.5 is used to demodulate the Eq. 3.35. When using

a square wave, a BPF is unnecessary, as can be seen by comparing Fig. 3.4 and 3.5. When

the system’s overall bandwidth is raised in this way, settling time is decreased.

The signal error that comes out from the demodulator has the following form:

ϵf = |A|dTe

dβ
= sign(∆β)(T h

e − Te) (3.36)

As for the other algorithms, signal error ϵf can be fed to a PI-regulator.
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3.2. Virtual Signal Injection (VSI)

Figure 3.5: Demodulation for square-wave perturbation.

3.2.3 Gain design and adaptation

Another issue with VSI algorithms is that their dynamic performance is operating point

dependent. Analyzing static gain is done in a way comparable to RSI. Since the procedure

does not include any actual injection or dynamical systems, the problem of gain adaptation

for VSI must be tackled mathematically.

The preceding section established that the PI regulator receives an error signal consisting

of:

ϵf = |A|∂Te

∂β
(3.37)

This is how the error is affected by the angle:

∂ϵf
∂β

= |A|∂
2Te

∂β2
(3.38)

One interpretation of the last formula is as follows: if we change the angle by a small amount,

the resulting change in signal error will be proportional to the second derivative of torque

with respect to the angle:

∂2Te

∂β2
=

3

2
pp
(
− ΛmgIs sin(β) + 2(Ld − Lq)I

2
s sin(2β)

)
(3.39)

Gain adaption for (3.39) is performed by dividing the error.

3.2.4 Disadvantages of RSI and VSI

In the previous sections, an explanation of two MTPA tracking algorithms operation is

presented. But, the issues with the two algorithms have not been discussed. Both algorithms

perform well in terms of tracking, but because of their different topologies, they have some

issues. A brief comparison of the drawbacks of the two algorithms is presented in this

subsection.

For the purpose of rejecting the oscillation of the current vector, an error signal must be

generated by the speed control loop. To do this, the speed control loop must be fed with

an accurate and reliable speed measurement. The speed sensor must be sensitive enough to

detect even the slightest changes in velocity caused by the oscillation of the vector current.
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3.2. Virtual Signal Injection (VSI)

A costly speed sensor is needed to provide a reliable reading. Therefore, the RSI algorithm

cannot be used in situations where speed is not directly detected or when less accurate speed

sensors are utilized.

The delay in the algorithm’s őnal result is another drawback. In reality, the RSI algorithm’s

settling time is longer than the VSI algorithm because of the limits that have already been

enforced for RSI. The bandwidth of the control loops makes this a challenging problem to

handle. Increasing the bandwidth of the control loops is not a good idea because it could

make the whole system unstable. However, if a system is provided with an accurate speed

sensor, the algorithm provides accurate tracking characteristics.

Non-negligible parameter ŕuctuations and some false assumptions are made when calculating

the torque derivative, both of which have been discovered through literature research of the

VSI algorithm. The latter is thoroughly analyzed in [28].

Eq. 3.29 makes some assumptions based on the method described in [28]. It can be seen

that the result of multiplying the term by id and iq is equivalent to Ld −Lq and multiplying

the term by just iq results in Λmg.

It can be observed that the result is actually the derivative of the torque equation multiplied

by the amplitude of perturbation, if the computation of T̃ h
e − T̄e is performed under the

two assumptions provided below (i.e., by substituting the two terms in 3.29 with Λmg and

(Ld − Lq), respectively). These two presumptions, however, are incorrect because the real

deőnitions of the two terms are written in the Eq. 3.40, which may be used to compute

T̃ h
e − T̄e.

−Lq =
ud −Rid
ωeiq

(Λmg + Ldid) =
uq −Riq

ωe

(3.40)

Thus,

T̃ h
e − T̄e = ∆β

3

2
pp

(
ΛmgIs cos(γ) + LdI

2
s cos

2(γ)− LqI
2
s cos(2γ)

)
(3.41)

that Eq. 3.35 claims a different derivative value.

To get the correct derivative data, a new equation for calculating the torque is proposed in

[29]. The following is the equation for the new model of the torque.

Te =
3

2
pp

[(
uq −Riq

ωe

− Ldid

)

+

(

Ld +
ud −Rid
ωeiq

)

id

]

iq (3.42)

The new form of the voltage equations modiőed as below.

(Ld − Lq) =
ud −Rid
ωeiq

+ Ld

Λmg =
uq −Riq

ωe

− Ldid

(3.43)

The right answer is achieved by using T h
e −Te in this calculation. Observe that the MTPA
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3.2. Virtual Signal Injection (VSI)

curve tracking procedure now calls for two parameters, R and Ld. Due to the negligible

variation in these two values during motor operation, they can be considered as constants.

Parameter dependence is now examined in detail. Torque calculations at the perturbed point

might be problematic because of the non-linear behavior of machine parameters. According

to the prior discussion, the current phase angle is to be perturbed by a square wave, indi-

cated by ∆γ. The perturbed torque can be expressed as follows using a őrst order Taylor’s

approximation:

T h
e = T̄e +∆γ

∂T̄e

∂γ
+O

(
∂2T̄e

∂γ2

)

→ T h
e − T̄e ≈ ∆γ

∂T̄e

∂γ
(3.44)

This means that the derivative of the torque with respect to the same angle is directly

proportional to the injected angle perturbation, and therefore the torque variation. Using

what you know about the torque derivative, you can force the system’s operating point to

the MTPA condition. To construct the MTPA tracking loop, the torque variation T h
e − Te

could be used instead of the torque derivative, necessitating a real-time calculation of that

term. The torque written in Eq. 3.42 is a close approximation T̃ h
e = T h

e + eT̃h
e

of the true

perturbed torque. The equation can be revised to account for the present dependence of

both parameters as follows.

T h
e =

3

2
ppi

h
q

{
Λmg(i

h
d , i

h
q ) + [Ld(i

h
d , i

h
q )− Lq(i

h
d , i

h
q )]i

h
d

}
(3.45)

Because accurate information regarding the machine’s parameters at the perturbed operating

point is not presently accessible, it is necessary to make use of an estimate of this kind. When

the machine voltage equations are taken into account, the following two terms emerge:

[Ld(i
h
d , i

h
q )− Lq(i

h
d , i

h
q )] ≈

ud −Rīd
ωeīq

+ Ld(̄id, īq) (3.46)

Λmg(i
h
d , i

h
q ) ≈

uq −Rīq
ωe

− Ld(̄id, īq )̄id (3.47)

Under the simpliőcation assumptions that current derivatives and parameter ŕuctuations in

the perturbed current operating point are minimal, it can be determined.

T h
e − T̄e =

(

T̃ h
e − eT̃h

e

)

− T̄e (3.48)

Then, based on the Eq. 3.48

T̃ h
e − T̄e =

3

2
∆γpp

[

ΛmgIs cos(γ) + (Ld − Lq) I
2
s cos(2γ)

]

= ∆γ
∂Te

∂γ
+ eT̃h

e
(3.49)

For highly non-linear electric machines like SynRM, the tracking error introduced by the

second simplifying assumption above can be quite signiőcant and hence require e ∂Te
∂γ

=

eT̃h
e
/∆γ. Using the polar equation for the torque derivative with respect to the present
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angle, the computation of this inaccuracy is relatively simple.

∂Te

∂γ
=

3

2
pp

[

ΛmgIs cos(γ)+ (Ld − Lq) I
2
s cos(2γ) +

∂Λmg

∂γ
Is cos(γ) +

(
∂Ld

∂γ
− ∂Lq

∂γ

)
I2s
2
sin(2γ)

]

(3.50)

Eq. 3.51 is the result of a direct comparison with the T h
e − Te expression for the torque

variation.

e ∂Te
∂γ

=
3

2
pp

[
∂Λmg

∂γ
+

∂Ld

∂γ
id −

∂Lq

∂γ
id

]

iq (3.51)

It can be shown that the error is proportional to the torque and is related to the non-

perturbed current operating point. As will be demonstrated in the following, understanding

the machine’s ŕux-maps enables one to compute the derivative terms of Eq. 3.51 and offer

a direct correction for VSI tracking inaccuracy. The tracking loop model incorporates a

useful analytical representation of the machine inductances to increase tracking precision

even when the machine ŕux maps are known with only modest quantization.

The tracking error for the torque equation in Eq. 3.42 is also analyzed in [29]. Using the

same approach used for (3.42), it can be seen that in equation (3.41) there is a term that is

proportional to cos2. By rewriting it as:

cos2(γ) = cos (2γ) + sin2(γ)

The derivative information can be written in this way:

T h
e − T̄e = ∆γd2pp

(
ΛmgIs cos(γ) + LdI

2
s cos(2γ)− LqI

2
s cos(2γ) + LdI

2
s sin

2(γ)
)

(3.52)

Since the last term is not present in the derivative, the error can be written as:

e′∂Te
∂γ

= d2pp

[
∂Λmg

∂γ
Is cos(γ) +

∂Ld

∂γ
Is cos(2γ)−

∂Lq

∂γ
Is cos(γ)− LdI

2
s sin

2(γ)

]

(3.53)

Comparing (3.51) and (3.53), it can be note the in the latter equation a term −LdI
2
s sin

2(γ)

is added. This means that when the torque increases, also Is increases meaning that e′∂Te
∂γ

becomes bigger and higher with respect to e ∂Te
∂γ

.

3.3 Using Virtual Signal Injection (VSI) for SynRM

In SynRM there is not any magnet, So, when the rotor spin the torque will be generated by

the variation of the reluctance. Thus, the voltage equation can be written as below:

ud = Rid − ωeLqiq (3.54)

uq = Riq + ωeLdid (3.55)
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Based on the voltage equation the torque equation is obtained:

Te =
3

2
ppiqid(Ld − Lq) (3.56)

Based on Eq. 3.54 and Eq. 3.55 the inductances of the machine can be obtained as below:

−Lq =
ud −Rid
ωeiq

Ld =
uq −Riq
ωeid

(3.57)

By taking into account the VSI torque error, T h
e −Te, the derivative value can be directly cal-

culated without the contribution of the parameters’ change. All process that have explained

for IPMSM, for SynRM is valid.

3.4 Results

In this section the experimental and simulation results are shown. The RSI algorithm and

the VSI algorithm have been implemented and tested for an IPMSM. Hereafter, simulation

and experimental results are compared, in particular, the steady state point in order to verify

the accuracy of the two algorithms.

Table. 3.1 illustrate the characteristics of the IPMSM machine. The motor behavior is

Table 3.1: IPMSM Parameters.

Variable Value

Number of pole pairs (pp) 2
Base speed (ωbase) 1480 RPM
Maximum torque 6.5 Nm

DC-link voltage (Vs) 250 V
d−axis inductance (Ld) 22 mH
q−axis inductance (Lq) 95 mH
Stator resistance (Rs) 3.4 Ohm

simulated with Plecs through ŕux maps that are measured from the motor. The charac-

teristics of the apparent inductances are the following and they are represented in Fig. 3.6.

A őrst set of simulations has been carried out to verify the static accuracy of the track-

ing methods, whose main features. The non-linear analytical model of the SynRM has been

considered in the őrst tests, in order to allow a fair validation and comparison, highlighting

any possible difference of the tracking methods on a highly non-linear model, as compared

to the one of the IPMSM that will be considered later.
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(a) (b)

Figure 3.6: d− and q−axis inductances maps. (a) d−axis inductane (b) q−axis inductance.

The results of VSI method is presented based on the Eq. 3.29 is shown by blue cross

’×’ and Eq. 3.42 that is illustrated by violet circle ’O’ in Fig. 3.7. There are two another

trajectory that one of them is based on the LUT of ŕux maps and the other one is a

contribution of the LUT of Ld for Eq. 3.29. The green triangle ’△’ shows the MTPA

trajectory based on the LUT of all motor parameters and the red square ’□’ illustrate the

trajectory based on Eq. 3.42 which contributed by the LUT of d−axis apparent inductance.

As a results, the accuracy of MTPA trajectory using Eq. 3.29 is quite low that by using the

right equation (Eq. 3.42), the MTPA trajectory’s accuracy is improved. The results still can

be better by considering the contribution of the d−axis inductance LUT.

Fig. 3.8 illustrate the results of adding a LUT of Ld as a compensator to Eq. 3.29 for

VSI algorithm. The black cross ’×’ present the MTPA trajectory based on Eq. 3.29 that

the accuracy is not acceptable. By using the an compenstor (Ld LUT map), the MTPA

trajectory’s accuracy is improved which is illustrated by black triangle ’△’. Fig. 3.9 illustrate

the results of using and LUT of Ld to contribute Eq. 3.42 for VSI. The black circle ’O’ shows

the MTPA trajectory based on Eq. 3.42 that the accuracy is acceptable. But, by using a

LUT of Ld to contribute it, the MTPA trajectory is improved which is illustrated by red

square ’□’.

The test results of Fig. 3.10 aim at validating the effectiveness of the dynamics equalization

through gain adaptation. Small-signal disturbance is injected into the error ϵf at t = 8s

when the system has already reached a steady-state condition for the tracking loop and the

error is zero. The test has been carried out at three different level of load torque, namely

0.5, 3 and 6 Nm. In case the gain of the tracking loop is correctly compensated, the error

follows a reference őrst order response independently on the torque operating point. It is

also clear how the responses are different when proposed loop compensation is not adopted.

The response of the equivalent őrst-order system to the reaction of the real system has a

good match, as seen in Fig. 3.10. Therefore, it can be claimed that the gain is correctly
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compensated.

By correcting the gain of the tracking system, the settling time is also improved, especially

for low torque loads.

3.4.1 RSI vs VSI for IPMSM

In this subsection a comparison between RSI and VSI is presented in terms of steady-state

accuracy. The injection parameters for both method are the same, but the injection frequency

is different. The frequency for RSI is 2 Hz and for VSI is 2.5 kHz. Furthermore, the gain

compensation is used for both methods. As it can be seen in Fig. 3.11, the red cross ’×’

shows the VSI methods based on Eq. 3.29 that the accuracy is quite low. The blue asterisk

’∗’ presents the VSI methods based on the Eq. 3.42 that in this case the VSI method is

improved. The RSI method is illustrated by the black triangle ’△’. As a results, the RSI

method have a higher accuracy than VSI method.

3.4.2 VSI and RSI for SynRM

The procedure of VSI and RSI for SynRM is the same as IPMSM. Just in IPMSM there is

the contribution of permanent magnets.

Fig. 3.12 presents the MTPA trajectory based on VSI, RSI and VSI+Ld LUT. The black

cross ’×’ shows the VSI method for this kind of machine. As a results, VSI has a linear

behavior and does not tracking the MTPA trajectory due to the constant value of the d−
and −q inductances. The RSI method which is illustrated by red triangle ’△’ has a higher
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Figure 3.10: Gain compensation results.

-6 -5 -4 -3 -2 -1 0

i
d
 [A]

0

1

2

3

4

5

6

i q
 [

A
]

Current Circle Limit

MTPA Trajectory

MTPA Trajectory Based on VSI (Eq. 3.29)
MTPA Trajectory Based on VSI (Eq. 3.42)

MTPA Trajectory Based on RSI

3 Nm

2.5 Nm

2 Nm

Figure 3.11: Demodulation for square-wave perturbation.

49



3.4. Results

0 0.5 1 1.5 2 2.5 3 3.5 4

i
d
 [A]

0

0.5

1

1.5

2

2.5

3

3.5

4

i q
[A

]

MTPA Trajectory

MTPA Trajectory Based on VSI

MTPA Trajectory Based on VSI

MTPA Trajectory based on VSI+Compensator

3 Nm

2.5 Nm

2 Nm

Figure 3.12: MTPA trajectory using RSI and VSI with polynomial approximation of SynRM
parameters.

accuracy.

The behavior of VSI algorithm is improved by considering the non-linearity of the ŕux-

linkage maps; a LUT of Ld is added that the results are presented by blue square ’□’.

Using a LUT to overcome the non-linear behaviour of the machine parameters costs on

memory of the microcontroller. There are some approximation methods to őnd the nonlinear

behaviour of the machine parameters based on the d− and q−axis ŕux-linkage. In [76] a

polynomial approximaton is presented that in Chapter. 5 is studied.

The polynomial approximation is used instead of LUT in to compensate the error; the

results are presented in Fig. 3.12 (blue square ’□’). Based on the results, using polynomial

approximation is not accurate as LUT.

3.4.3 Experimental Results

The experimental results are displayed in this subsection. For an IPM motor, the RSI and

VSI algorithms have implemented and tested. Fig. 3.13 illustrate the control and power

board of the experimental implementation. In order to conőrm the accuracy of the two

algorithms, simulation and experimental data are compared, focusing in particular to the

steady state point.

Two power supply are used to power the drive; the őrst one provides 24V DC to the control

board and the second power source provides 250V DC to the power board. The motor

positioned on a test rig, is connected to the control board. An hysteresis brake is attached

to the motor shaft to provide a controlled load torque. Using a PC interface and a serial
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(a) (b)

Figure 3.13: (a) Control board and (b) power board of the experimental test.

port, the load torque can be adjusted.

Fig. 3.14 presents the experimental results using VSI and RSI for IPMSM. The d− and

q−axis currents are measured in steady state conditions.

The simulation results and experimental MTPA trajectories based on VSI are illustrated by

orange cross ’×’ and blue cross ’×’ ,respectively. The gray triangle ’△’ shows the simulation

results of the RSI MTPA trajectory and the red triangle ’△’ is the experimental results of

MTPA trajectory based on the RSI.

The RSI method has a better accuracy compare with the VSI algorithm. There are some

error between simulation and experimental results that comes from experimental limitations

such as noise and the accuracy of the current sensors.

To improve the VSI algorithm results for IPMSM, a LUT of d−axis inductance is used and

the simulation and experimental results are presented in Fig. 3.15. The blue cross ’×’ and

green circle ’O’ illustrate the simulation and experimental results of the MTPA trajectory

based on the VSI algorithm, respectively.

The blue triangle ’△’ shows the simulation results of the MTPA trajectory based on the VSI

algorithm with a LUT of d−axis inductance. And the experimental results of the MTPA

trajectory based on the VSI algorithm with a LUT of d−axis inductance is shown by the

red square ’□’.

By using the LUT of the d−axis inductance the accuracy of the MTPA trajectory based on

the VSI method is improved.

Like previous results, there are errors between simulation and experimental implementation

that as explained it is because of the noise and the experimental limitations.

3.5 Conclusion

A fair evaluation of the accuracy and performance of RSI and VSI and a direct comparison

between them is proposed in this chapter. Simulations have been carried out for two types

of motors. To avoid possible errors due to interpolation of ŕux maps and measures inaccu-
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3.5. Conclusion

racy, an analytical model of SynRM is developed and used to test the accuracy of the two

algorithms. As can be seen from the results, if no compensation for tracking error is applied

to VSI algorithm, RSI has better accuracy.

VSI accuracy in estimating the MTPA is affected by the knowledge of some machine param-

eters and should be considered indeed an estimation method based on the model knowledge,

while RSI entirely relies on extremum seeking approach. In the VSI method, the steady-

state MTPA error is mainly due to variation of magnetic parameters, which were supposed

constant. In order to address this issue, a compensation strategy for the tracking error

is introduced, resulting in a substantial improvement of accuracy, allowing to increase the

accuracy of this method even in the case the machine ŕux maps are known with poor reso-

lution. A further improvement is proposed, which allows analytical tuning and adaptation

of the tracking loop gains, assuring both stability and the same dynamical performance in

the whole machine operating range.

From the dynamical point of view, the model of an IPMSM is used to test the dynamical

behavior of the two algorithms. Another test is carried out on a real SynRM to test the

accuracy of the two algorithms even when quantization of ŕux maps is low. Experimental

tests have been carried out on the real IPMSM in order to prove simulation results. As can

be seen from the results, accuracy of the VSI algorithm is worse with respect to that of RSI,

when no Ld LUT contribution is applied. However, since the saliency of the IPMSM is lower

with respect to SynRM, the error is relatively small.

As a future work, the RSI and improved VSI can be tested on the Permanent Magnet assisted

Synchronous Reluctance Motors (PMa-SyRMs).
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Chapter 4

Torque control in a wide speed range

The operating of Permanent Magnet Synchronous Motors (PMSMs) and Sychronous Reluc-

tance Motors (SynRMs) at high speeds in maximum torque per ampere (MTPA) condition

leads to a certain ŕux-linkage amplitude corresponding to a given torque. This means that

the steady-state voltage magnitude is proportional to speed, leading to insufficient phase

voltage to control current above a certain speed, referred to as the "base speed". To address

this, Flux-weakening (FW) and maximum torque per voltage (MTPV) regions are intro-

duced, in which the ŕux-linkage magnitude is reduced. In the FW region, the current values

should be chosen to produce the desired torque and satisfy the voltage constraint, but if the

required current amplitude exceeds its limit, the current magnitude must be őxed at the

limit, reducing the torque below the desired value.

The non-linear relationship between current and voltage magnitude, along with the non-

linear ŕux characteristics of PMSMs and SynRMs, makes FW control challenging. To ad-

dress this, various closed-loop techniques have been proposed, aiming for a robust FW control

that is ideally parameter-independent. Some publications have focused on the analytical so-

lution, using Ferrari’s method to obtain the optimal current values [40], but this approach

is computationally intensive and does not take into account the current limit constraint.

To simplify the solution, approximation strategies such as using Taylor’s series have been

employed [41]. Some publications have also focused on numerical solutions using Lagrange-

multiplier method and Newton’s or Gauss-Newton method [43] [44], but these have lower

accuracy compared to the analytical solution.

In this chapter, a novel analytical solution is presented, based on current magnitude min-

imization, to obtain the reference currents according to the desired torque. Thanks to a

different problem formulation, the proposed method is much simpler than other analytical

solutions. In fact, the number of cubic roots (the most demanding operation) to be com-

puted in this case is lower than other analytical models, which greatly helps to decrease the

computation time. The method is applied on an IPMSM in MTPA and FW region. Al-

though the MTPV operation is considered in the torque control loop, the proposed method

is focused on MTPA and FW regions.
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4.1. Analytical model improvement for wide speed range

4.1 Analytical model improvement for wide speed range

By considering core saturation effects, the stator ŕux linkages of the IPMSM can be obtain

in synchronous reference frame.

λd(id, iq) = Ld(id, iq)id + Λmg (4.1)

λq(id, iq) = Lq(id, iq)iq (4.2)

where id and iq are the d− and q−axes currents, Ld and Lq are the apparent inductances

and Λmg is the stator ŕux linkage due to the permanent magnets; indeed it is the maximum

value. The voltage equation in synchronous reference frame can be obtained as Eq. 2.31 and

Eq. 2.32.

The current and voltage limits can be described as Eq. 2.46 and Eq. 2.45, if the Ohmic

effect of stator resistance does not considered. As it can be seen in Fig. 4.1 the current

limit shown by dashed circle centered (0,0) with Is radius. The voltage limit is illustrated

by doted ellipse centered (−Λmg

Ld
, 0). Based on Eq. 2.45 the voltage limit ellipse shrinks by

increasing the speed of the motor.

Voltage 
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Constant 

Torque Curve

MTPA

Current Limit 

Circle

,0
mg

dL

 
− 
 

 qi A

 di A

Figure 4.1: Constant torque curve, current circle limit and voltage limit ellipse in d-q axis.

4.1.1 Segmentation of Orientation Region

There are two states for operation region. In Chapter. 2, it discussed brieŕy. In this section,

the segmentation of orientation region for two condition (Λmg

Ld
> Imax and Λmg

Ld
< Imax) is

explained in detail.
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4.1. Analytical model improvement for wide speed range

First Condition

First condition shown in Fig. 4.2, Λmg

Ld
> Imax. By applying the convectional method the

input is stator current (shown by ’ż’). In this condition, the MTPA operates in ’segmentI ′′’

(O ∼ H). After reaching to the maximum stator current and voltage, the motor will operate

in ŕux weakening region (’segmentII ′′’) and the trajectory continuous from H through V

where the value of apparent power is maximum constant value.

If the motor is controlled based on desired torque, the motor can operate in three segments

(illustrated by ’ż’). ’segmentI’ is the MTPA region that is controlled based on the MTPA

equation; current countor is depicted by O ∼ T . From point T through U is the ’segmentII’

that the reference currents are obtained in constant torque region that the torque curve and

the voltage ellipse have intersection. In this region the stator current is not in maximum

value but the voltage is on maximum value. In this region, the motor operates based on the

desired torque. And, the last operation region is the ’segmentIII’ that the d− and q− axis

currents are evaluated by FW in maximum constant current region; illustrated by U ∼ V .

In this region the motor operate on the maximum apparent power.
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Figure 4.2: The operation region where
Λmg

Ld
> Imax.

Second Condition

In the second condition as shown in Fig. 4.3, Λmg

Ld
< Imax . By applying the convectional

method which the input is the stator current (shown by ’ż’). In this case, the MTPA is

operate in ’segmentI ′′’ (O ∼ F ). After reaching to the maximum stator current and voltage

the motor will operate in ŕux weakening region (’segmentII ′′’) and the trajectory continuous

from H through Q where the apparent power is maximum. After that, the motor will reach

to the MTPV region and the trajectory will be R through S. In this region still motor

operates in maximum stator voltage value (’segmentIII ′′’).

If the motor controlled based on the desired torque, it operates in four segments (shown by
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4.1. Analytical model improvement for wide speed range

’ż’). ’segmentI’ is the MTPA region; current trajectory is depicted by O ∼ P . From point

P through Q is the ’segmentII’ that the reference currents are obtained in constant torque

region’s equations. In this region, the constant torque curve and the voltage ellipse have

intersection. Furthermore, in this region the the apparent power is on maximum value. The

speed is not constant in different points. And the third operation region is the ’segmentIII’

that the d− and q− axis currents are evaluated by FW in maximum constant current region;

illustrated by Q ∼ R. The last operation part is called ’segmentIV ’, in this segment voltage

ellipse has tangential intersection with constant torque curve, where the minimum stator

current value can be obtained by MTPV estimation methods; the trajectory will be R

through S. In this region motor operates in maximum stator voltage value.

Fig. 4.4 illustrates the torque vs speed curve of the motor in all range of the speed. The
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Figure 4.3: The operation region where
Λmg

Ld
< Imax.
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Figure 4.4: Torque vs speed curve in all speed range.
Λmg

Ld
< Imax.

torque is constant in Segments I and II. Segment I operates bellow ω1. If the desired torque

is the maximum torque, Segment I operates in base speed, in both condition (Λmg

Ld
< Imax,

Λmg

Ld
> Imax) the torque is going to be decreased after ω2. In second condiotion through

Segment IV the motor operates in high speed range.
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4.1. Analytical model improvement for wide speed range

4.1.2 Conventional MTPA Solution

The conventional solution of MTPA region can be used to obtain d− and q− axis reference

currents as follow [9]:

idconv =
Λmg ±

√

Λ2
mg + 8I2s (Ld − Lq)2

4(Ld − Lq)
(4.3)

iqconv = ±
√

I2s − i2dconv
(4.4)

where 0 < Is < Imax. Is is the output of the speed regulator. In this solution the controller

does not have the ability to have the torque as the input of the MTPA region. Thus, if the

desired torque is going to be controlled, this method is not applicable.

4.1.3 Ferrari’s Analytical Solution

In [15], instead of using the stator current magnitude as the input of the MTPA, a desired

torque is applied. In this paper, the Ferrari’s method is used to obtain the d− and q− refer-

ence currents by őnding the roots of the quartic equation, x4+A1x
3+B1x

2+C1x+D1 = 0.

The Lagrangian multiplier solution is solved őrst to őnd the coefficients of the quartic equa-

tion. Where for the MTPA region the coefficients are,

A1 =
3Λmg

(Ld−Lq)
,

B1 =
3Λ2

mg

(Ld−Lq)2
,

C1 =
Λ3
mg

(Ld−Lq)3
,

D1 =
16T 2

ref

18P 2
p (Ld−Lq)2

Then the currents are obtained by Ferrari’s method

iqMTPA1,2,3,4
= −A1

4
±s

η1
2

±t
µ1

2
(4.5)

where

α1 =
1

3
(3A1C1 − 12D1 − B2

1) (4.6)

β1 =
1

27
(−2B3

1 + 9A1B1C1 + 72B1D1 − 27C2
1 − 27A2

1D1) (4.7)

γ1 =
B1

3
+

3

√

β1

3
+

√

β2
1

4
+

α3
1

27
+

3

√

−β1

3
−

√

β2
1

4
+

α3
1

27
(4.8)
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η1 =

√

A2
1

4
− B1 + γ1 (4.9)

µ1 =

√
3

4
A2

1 − η21 − 2B1 ±s
1

4η1
(4A1B1 − 8C1 − A3

1) (4.10)

Selecting the best value of the reference currents is explained in the [15]. Where,

idMTPA
= −A1

4
− η1

2
+

µ1

2
(4.11)

iqMTPA
=

2T ∗

3pp

Λmg + (Ld − Lq)idMTPA

(4.12)

To validate the Ferrari’s method in MTPA region, it is compared with the conventional

method. First, the d− and q− axis currents are obtained based on the conventional method.

After calculating the reference currents, the electromagnetic torque equation is used to ob-

tain the dq reference currents by Ferrari’s solution. Then the obtained reference torque from
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MTPA

 Torque 
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Method
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Ferrarid
i

*

Ferrariqi

Figure 4.5: Ferrari’s method validation using the obtained conventional torque.

the conventional method is used as the input of the Ferrari’s method to obtain the d− and

q− axis current values. Fig. 4.5 shows the Ferrari’s method validation procedure in MTPA

region. If the reference d− and q− axis currents of the Ferrari’s method were equal to the d−
and q− axis currents of the conventional method (idconv = idFerrari

,iqconv = iqFerrari
), it can be

validate that the Ferrari’s method is correct. Fig. 4.6 illustrate the simulation results of the

MTPA region based on the conventional method (black circle ’O’) and Ferrari’s method (red

asterisk ’∗’). According to the zoom-in on 2 Nm, 2.5 Nm and 3 Nm, both two methods

őt on the MTPA trajectory. Also, the Ferrari’s method is used to solve the equation for

the ŕux-weakening region where just the coefficients of the quartic equation are different,

x4 + A2x
3 +B2x

2 + C2x+D2 = 0. Thus,

A2 =
3Λmg

(Ld−Lq)
(2− Lq

Ld
),

B2 =
Λ2
mg

(Ld−Lq)2
+

4Λ2
mg

Ld(Ld−Lq)2
+

Λ2
mg

L2

d
− V 2

s

ω2
eL

2

d
,

C2 =
2Λmg

Ld
(

Λ2
mg

(Ld−Lq)2
+

Λ2
mg

Ld(Ld−Lq)2
− V 2

s

ω2
eLd(Ld−Lq)

),

D2 =
1

(Ld−Lq)2
(
Λ4
mg

L2

d
+

L2
q

L2

d

16T ∗2

9p2p
− V 2

s

ω2
e

Λmg2

L2

d
)
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Figure 4.6: Simulation results of the MTPA region based on the conventional method and Ferrari’s
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Then the reference currents of ŕux weakening region are obtained as follow,

iqFW1,2,3,4
= −A2

4
±s

η2
2

±t
µ2

2
(4.13)

where

α2 =
1

3
(3A2C2 − 12D2 − B2

2) (4.14)

β2 =
1

27
(−2B3

2 + 9A2B2C2 + 72B2D2 − 27C2
2 − 27A2

2D2) (4.15)

γ2 =
B2

3
+

3

√

β2

3
+

√

β2
2

4
+

α3
2

27
+

3

√

−β2

3
−

√

β2
2

4
+

α3
2

27
(4.16)

η2 =

√

A2
2

4
− B2 + γ2 (4.17)

µ2 =

√
3

4
A2

2 − η22 − 2B2 ±s
1

4η2
(4A2B2 − 8C2 − A3

2) (4.18)

Selecting the best value of the reference currents is explained in the [15]. Where,

idFW
= −A2

4
− η2

2
+

µ2

2
(4.19)
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4.1. Analytical model improvement for wide speed range

iqFW
=

2T ∗

3pp

Λmg + (Ld − Lq)idFW

(4.20)

there are two cubic roots in MTPA and ŕux weakening region according to the Eq. 4.8 and

Eq. 4.16. The cubic roots will increase the computation time in microcontroller.

4.1.4 Proposed Minimum Vector Solution

In this section a novel solution is presented. The idea is to őnd the minimum vector of

the current magnitude in MTPA region based on the desired torque. The d− and q−axis

reference currents can be obtained considering the electromagnetic torque equation. In fact,

the main idea is minimizing the stator current to minimize the winding copper loss where is

the dominant loss among other losses. The desired points in MTPA trajectory can be obtain

by Minimum Vector Solution (MVS) based on constant torque curve. However, by using

MTPA there will be some points outside the voltage limit ellipse Fig. 4.7 where is called

ŕux weakening region. In this region, using the proposed method the minimum value of the

stator current magnitude is obtained based on intersection of voltage ellipses and the torque

curve.
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Figure 4.7: Voltage ellipse and constant torque intersection. (a) two intersections (b) MPTV
region.

Minimum Vector Solution for Region i: MTPA region

In this region the minimum current is obtained by őnding the minimum vector between

point (0,0) and (idMTPA
, iqMTPA

) by MVS based on the torque control loop. In fact, the

minimum value of stator current is obtained by discovery the minimum vector from the

center point of the coordinate and torque constant curve. The vector between point (0,0)
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and (idMTPA
,iqMTPA

) can be evaluated as follow:

D2 = (idMTPA
− 0)2 + (iqMTPA

− 0)2 (4.21)

where idMTPA
is found by electromagnetic torque equation average:

idMTPA
=

2Tref − Λmg3ppiqMTPA

3ppiqMTPA
(Ld − Lq)

(4.22)

Tref is the reference torque. By substituting Eq. 4.22 in Eq. 4.21, the vector between desired

points is evaluated.

D2 = i2qMTPA
+

4T 2
ref − 12TrefΛmgppiqMTPA

+ 9Λmgp
2
pi

2
qMTPA

9p2pi
2
qMTPA

(Ld − Lq)2
(4.23)

The minimum vector is at the point where D′(iqMTPA
) = 0. When D′(iqMTPA

) = 0 the square

of D is zero. D2(iqMTPA
) = 0.

After solving and collecting iqMTPA
the quartic equation Eq. 4.24 is obtained. To őnd the

q− axis reference current Eq. 4.26 should be solved.

2.25

T 2
refΛmg

p2pΛmgi
4
qMTPA

+
1.5

Tref

ppΛmgiqMTPA
− 1 = 0 (4.24)

The structure of quartic equation is a1x
4+ b1x

3+ c1x
2+d1x+ e1 = 0. Based on the structue

of the equation the coefficients are

a1 =
2.25
T 2

ref
p2p(Ld − Lq)

2,

d1 =
1.5
Tref

ppΛmg,

e1 = −1, b1 = c1 = 0. After őnding the roots and doing simpliőcation, the equation of

q−axis current in MTPA region is calculated as follow:

iqMTPA1,2
= 0.5(±

√

2d1

a1
√
C1

− C1 −
√

C1) (4.25)

iqMTPA3,4
= 0.5(±

√

− 2d1

a1
√
C1

− C1 −
√

C1) (4.26)

where,

A1 =
3

√

0.5(3
√
3
√

27a21d
4
1 − 256e31a

3
1 + 27a1d21) (4.27)

B1 =
12a1e1
A1

(4.28)
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4.1. Analytical model improvement for wide speed range

C1 =
A1 +B1

3a1
(4.29)

There are four roots for q−axis current where the positive and non-complex root is acceptable

as the best value for the reference current. The sign of a1 and d1 is positive, and the sign

of e1 is negative, then A1 and C1 are positive and B1 is negative. Based on the sign of the

parameters, idMTPA1,2
have real roots, that the real-positive root idMTPA1,2

is the best selection

for q−axis current in the second quadrant of dq coordinate system. To őnd the real roots,
2d1

a1
√
C1

should be more than C1 ( 2d1
a1

√
C1

> C1). Thus the best selection of the q−axis current

is:

iqMTPA
= 0.5(

√

2d1

a1
√
C1

− C1 −
√

C1) (4.30)

The d−axis reference current is obtained by Eq. 4.22. To validate the MVS, it is compared

with the conventional method. First, the d− and q− axis currents are obtained based on the

conventional method. After calculating the reference currents the average torque equation

is used to obtain the torque values in MTPA region based on the different stator currents

value. Then the obtained reference torque from the conventional method is used as the input

Figure 4.8: d− and q− axis reference current based on the MVS.

of the MVS to obtain the d− and q− axis current values. Fig. 4.8 shows the MVS validation

procedure. If the reference d− and q− axis currents of the MVS method were equal to the

d− and q− axis currents of the conventional method (idconv = idMV S
, iqconv = iqMV S

), it can

be validate that the MVS solution is true. Fig. 7 illustrate the simulation results of the

MTPA region based on the conventional method (orange dashed-line ’- - -’), MVS (black

square ’□’) and Ferrari’s solution (red asterisk ’∗’). According to the zoom-in on 2 Nm, 2.5

Nm and 3 Nm, all three methods őt on the MTPA trajectory.

Minimum Vector Solution for Region ii: Flux Weakening region

In conventional method the evaluation of d− and q− axis currents is done by maximum

value of the stator current in ŕux-weakening region. But in some cases the maximum torque

of the motor is limited in the current circle. In this region the intersection of the voltage

ellipse and the costant torque curve is considered as the d− and q− axis reference currents.

Fig. 4.7a illustrate the location of this points, there are two points K1 and K2 that according

to the stator current magnitude, K1 will be the best choice. Based on the MVS.

V 2
s = v2dFW

+ v2qFW
(4.31)
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Figure 4.9: Simulation results of the MTPA region based on the conventional method, Ferrari’s
solution and MVS solution.

where iqFW
is obtained by electromagnetic torque equation.

iqFW
=

2Tref

3pp

Λmg + (Ld − Lq)idFW

(4.32)

In steady state condition, the d− and q− axis voltages can be obtained as vqFW
= −LqiqFW

ωe

and vdFW
= ωeLdidFW

+ωeΛmg . Thus, by substuting Eq. 4.32 in voltage equations in steady

state condition and apply to the Eq. 4.31 the following equation is obtained,

(Λmgωe +
Ldωe(2Tref − 3ΛmgiqFW

pp)

+(Ld − Lq)iqFW
pp

)2 − V 2
s + L2

qi
2
qFW

ω2
e (4.33)

After collecting iqFW
a quartic equation is obtained:

9p2p(Ld − Lq)
2L2

q

4L2
dT

2
ref

i4qFW
+
9p2p(−Λ2

mgL
2
qω

2
e + (Ld − Lq)

2V 2
s )

4L2
dT

2
ref

i2qFW
−3ΛmgLqpp

LdTref

iqFW
+1 = 0 (4.34)

Where in this region,

a2 =
9p2p(Ld−Lq)2L2

q

4L2

dT
2

ref
,

c2 =
9p2p(−Λ2

mgL
2
qω

2
e+(Ld−Lq)2V 2

s )

4L2

dT
2

ref
,

d2 =
3ΛmgLqpp
LdTref

,

65



4.1. Analytical model improvement for wide speed range

e2 = 1 and b2 = 0. Thus, the equation Eq. 4.35 and Eq. 4.36 are used to őnd the q−axis

current.

iqFW1,2
= 0.5(C2 ±

√

−4C2

3a2
− B2 −

2d2
C2a2

) (4.35)

iqFW3,4
= 0.5(−C2 ±

√

−4C2

3a2
− B2 −

2d2
C2a2

) (4.36)

where,

A2 =
27a2d

2
2

2
− 36a2c2 + c32 +

3

√

(2c32 − 72a2c2 + 27a2d22)
2 − 4(c22 + 12a2)3

2
(4.37)

B2 =
A2 +

c2
2
+12a2
A2

3a2
(4.38)

C2 =

√

B2 −
2c2
3a2

(4.39)

The sign of a2 is positive and d2 is negetive, c2 is positive if ωe >
(Ld−Lq)Vs

(ΛmgLq
, and it is negetive

if ωe <
(Ld−Lq)Vs

(ΛmgLq
. It should be notice that c2 should be positive to obtain real roots for d−

and q− axis currents. Also, B2 should be grater than 2c2
3a2

(B2 > 2c2
3a2

). The best current

selection in the second quadrant dq coordinate system, considering the explained conditions

is iqFW3
.

The q− and d− axis reference currents are obtained by voltage equation and Eq. 4.32 re-

spectively.

iqFW3
= 0.5(C2 +

√

−4C2

3a2
− B2 −

2d2
C2a2

) (4.40)

Region iii: MTPV region

In the high speed region, if the Λmg

Ld
< Imax there will be tangential intersection between

constant torque curve and voltage ellipse entire the current circle limit (Fig. 4.7b point H). By

őnding the tangential intersection the maximum torque is achieved for a given voltage. id =
λd−Λmg

Ld
and iq =

√
(Vs/ωe)2−λ2

d

Lq
, where by substituting voltage equation into electromagnetic

torque, it can be obtained:

T 2
tan = (

3pp
2

)2(λd − Lq
λd − Λmg

Ld

)2
(Vs/ωe)

2 − λ2
d

L2
q

(4.41)
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The reference value of the d−axis ŕux linkage is calculated by evaluating differentiation with

respect to λd and equal it zero.

λ∗
d =

−LqΛmg ±
√

L2
qΛmg + 8(Ld − Lq)2(Vs/ωe)2

4(Ld − Lq)
(4.42)

By using Eq. 4.42, d− and q− axis currents in MTPV region are obtained.

idtan =
λ∗
d − Λmg

Ld

(4.43)

iqtan =

√

(Vs/ωe)2 − λ∗
d
2

Lq

(4.44)

4.1.5 Current Control Algorithm and System Control Block Dia-

gram

As it shown in Fig. 4.10, the torque control block diagram works based on selecting the

reference currents by applying proposed MVS. By desired torque and the controlled speed

of the motor as the input of the minimum vector algorithm the d− and q− axis reference

currents are selected, as it is shown in Fig. 4.11. The ŕowchart steps are as below:

Step1: start algorithm.

Step2: read reference torque Tref and motor parameters, Ld, Lq, Λmg, Vsmax , Is and the

motor speed ωme.

Step3: if the Tref ≤ Ttan, request torque reduction and go to Step2. Otherwise go to

Step4.

Step4: calculate VsMTPA
.

Step5: if |VsMTPA
| ≤ |Vsmax |, go to Step6, otherwise go to Step9.

Step6: calculate (idMTPA
, iqMTPA

).

Step7: if idMTPA
+ iqMTPA

≤ Is go to Step8, otherwise request torque reduction and go to

Step2.

Step8 reference currents in MTPA region can be evaluated (idref = idMTPA
, iqref = iqMTPA

).

Step9: calculate (idFW
, iqFw

).

Step10 if idFW
+ iqFW

≤ Is go to Step11, otherwise request torque reduction and go to

Step2.

Step11: reference currents in FW region can be evaluated (idref = idFW
, iqref = iqFW

).

4.1.6 Results

An IPMSM motor is selected (Table 4.1). MATLAB are used for simulation. In the sim-

ulations the non-linearity of the inductances has not been considered. If Λmg

Ld
> Imax then
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the motor works in őrst condition, thus the voltage does not have tangential intersection

with torque entire current circle limit. As the őrst test, the torque is increased from 0.5 Nm

to 6.5 Nm to check the MTPA trajectory. The maximum desired torque is considered as

6.5 Nm. The d− and q− axis current trajectory is presented in Fig. 4.12 that is tested in

MATLAB. As it mentioned the operation region is changed from region i (MTPA region)

Figure 4.12: MATLAB simulations for d− and q− axis currents trajectory respect to the desired
torque (6.5 Nm considered as maximum desired torque).

to region ii (Flux weakening region) at 1480 rpm when the desired torque is 6.5 Nm. Then

at 1700 rpm due to the maximum current limitation the torque reduction is requested, and

the reference currents are obtained by proposed method for region ii.

Fig. 4.13a illustrate the speed vs torque curve for 6.5 Nm. As it can be seen, the torque

is 6.5 Nm through 1700 rpm and after that the torque reduction is requested. d− and q−
axis current behavior is shown in Fig. 4.13b. Below 1480 rpm the d− and q− axis currents

are -3.36 A and 4.63 A ,respectively. After that in ŕux weakening region, the currents are

decreased based on voltage ellipse and torque curve intersection. The stator current is 5.72

A in MTPA region (under 1480 rpm).

Between 1480 rpm and 1700 rpm the stator current is increased (operate in region ii)

and after 1700 rpm it is operated on maximum stator current (5.9 A) (Fig. 4.13c). Fig. 4.13d

illustrates the variation of stator voltage respect to the speed. As it can be seen before 1480

rpm the stator voltage is increased and after 1480 rpm it is settled on 144 V .

Fig. 4.14 present the MTPA and ŕux weakening trajectory in MATLAB. In this test the

maximum desired torque is 3 Nm. As the őrst test, the torque is increased from 0.5 Nm

to 3 Nm to check the MTPA trajectory. In this scenario, the operation region is changed

from region i (MTPA region) to region ii (Flux weakening region) in 2095 rpm. Then in

3879 rpm due to the maximum current limitation the torque reduction is requested, and the

reference currents are obtained by proposed method for region ii. Fig. 4.15a illustrates the

speed vs torque curve for 3 Nm. As the result, the torque is 3 Nm through 3879 rpm and
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4.1. Analytical model improvement for wide speed range

Table 4.1: IPMSM Parameters.

Variable Value

Number of pole paires(pp) 2
Base speed(ωbase) 1480 RPM
Maximum torque 6.5 N.m

Maximum current(Imax) 5.9 A
DC-link voltage(Vs) 250 V

Permanent magnet ŕux(Λmg) 0.221613
d−axis inductance(Ld) 22 mH
qaxis inductance(Lq) 95 mH
Stator resistance(Rs) 3.4 Ohm

after that the torque reduction is requested.

The d− and q− axis current behavior is shown in Fig. 4.15b. Below 2095 rpm the d− and

q− axis currents are -1.73 A and 2.87 A, respectively. After that in ŕux weakening region,

the currents are decreased based on voltage ellipse and torque curve intersection. The stator

current is 3.35 A in MTPA region (under 2095 rpm). Between 2095 rpm and 3879 rpm the

stator current is increased (operate based on region ii) and after 3879 rpm it is operated on

maximum stator current (5.9 A) (Fig. 4.15c). Fig. 4.15d illustrates the variation of stator

voltage respect to the speed. As it can be seen before 2095 rpm it is increased and after

2095 it is settled on 144 V .

In Table. 4.2, the computation time of Ferrari’s method [15] and the proposed method based

on experimental results in both MTPA region and ŕux-weakening region is presented. It

Table 4.2: Computation time comparison for Ferrari’s method and proposed method (MVS) in
MTPA and FW region

Analytical solution Region Computation time

Ferrari’s solution MTPA 6.15 µs
Ferrari’s solution FW 8.64 µs

MVS solution MTPA 3.43 µs
MVS solution FW 4.40 µs

is implemented on Texas Instruments C2000 microcontroller (TSM320F280049). The com-

putation time for Ferrari’s method and proposed method is 6.15 µs and 3.43 µs respectively

in MTPA region that the calculation time reduction is 56%. For ŕux weakening region the

results are 8.64 µs and 4.4 µs for Ferrari’s and proposed solutions, respectively that the

calculation time reduction is 50%. The main reason of this difference is the cubic roots.

There are 2 cubic roots in Ferrari’s solution and 1 cubic root in the proposed method. The

computation time for cubic roots using TSM320F280049 is around 2.2 µs.
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Figure 4.13: (a) speed vs torque (b) speed vs dq axis currents (c) speed vs stator current (d)
speed vs stator voltage curves respect to the 6.5 Nm as maximum desired torque.

Figure 4.14: MATLAB simulations for d− and q− axis currents trajectory respect to the desired
torque (3 Nm).
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Figure 4.15: (a) speed vs torque (b) speed vs dq axis currents (c) speed vs stator current (d)
speed vs stator voltage curves respect to the 3 Nm as desired torque.

4.1.7 Experimental Results

In this subsection, the experimental results of the novel method (MVS), in MTPA region

are presented. Fig. 3.13 illustrates the control and power board of the experimental imple-

mentation. Two power supplies are used to power the drive; the őrst one provides 24V DC

to the control board (TMS320F82069) and the second power source provides 100V DC to

the power board. The motor positioned on a test rig, is connected to the inverter board. An

hysteresis brake (Magtrol HD-715) is attached to the motor shaft to provide the load torque

and is controlled by a Magtrol DSP7000.

The applied sampling frequency for the control is equal to the switching frequency, i.e. 10

kHz and the speed of the motor is 300rpm. The tests are carried out at three load torque

values: 2Nm, 4Nm and 6Nm. The motor parameters and dq apparent inductance maps

are presented in Table. 3.1. Fig .3.6 . Fig. 4.16 illustrate the MVS MTPA steady-state

trajectory based on three experimental tests for each load torque value, namely calculated

with constant inductance, adaptive q−axis inductance and other operating points out of

the calculated MTPA, but at the same load torque ("MTPA perturbation"). As can be

seen, the calculated MTPA points are very close to the actual MTPA (tangential point).

The accuracy of the MVS is higher when the adaptive q−axis inductance is applied to the
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MTPA. However, it can be seen that, even considering the constant inductance, the MTPA

trajectory is tracked with an acceptable accuracy.
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Figure 4.16: Minimum vector solution MTPA trajectory in dq axis currents coordinate using
constant motor parameters and adaptive q-axis inductance.

Fig. 4.16 reports the same data as the previous őgure, emphasizing the relationship

between torque and current magnitude. The MVS, in both cases (i.e. calculated using

constant inductance and adaptive q−axis inductance), guarantees the minimum current

magnitude for a given load torque, or a value that is very close to the minimum, so that it

cannot be practically discriminated. In fact, it should be noted that any differences in current

that are in the order of few mA and up to few tens of mA should be disregarded, given the

limited measurement accuracy of the setup. Considering that the current measurement range

is approximately ±30 A, a difference in the order of 10 mA corresponds to approximately

0.03% of the full-scale value.

Fig. 4.18 illustrates the accuracy of torque actuation, i.e. the correspondence between

torque reference (command) and actual torque output. The measured points are very close

equality (i.e. the load torque is very close to the commanded value). However, a constant

difference is visible, which corresponds exactly to the no-load commanded torque, thus it can

be attributed to the friction effects. The dashed line represents the expected total torque

corresponding to each load torque value, i.e. the sum of load torque and friction. Since the

measured points lay on the dashed line (especially in the adapted inductance case), it can be

concluded that the MVS algorithm actuates the torque command very accurately, i.e. with

less than 1% error (0.9, 0.2 and 0.4% for 2, 4 and 6 Nm, respectively).
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4.2 Conclusion

In this Section a new analytical solution is presented to control the motor torque in the

maximum-torque-per-ampere and ŕux-weakening region with a torque constraint. The con-

troller is designed to operate in wide speed range; MTPA, ŕux weakening and MTPV regions.

Based on the proposed solution the complexity of the quartic equation of dq axis current

is decreased signiőcantly. The method is compared with another analytical solution, ex-

perimentally to investigate them based on the computation time. By using the proposed

method, the computation time is decreased 56% versus Ferrari’s method for MTPA region.
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In ŕux weakening region the difference of computation time for the proposed method and

Ferrari’s solution is 51%. Furthermore, the novel solution is applied to an IPMSM in MTPA

region experimentally considering constant and adaptive q-axis inductance. As a results, the

proposed method track the MTPA trajectory with a high accuracy.

As the future work, the novel method is going to be tested experimentally in ŕux-weakening

region. In addition, the minimum vector solution can be studied analytically in MTPV

region.
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Chapter 5

IPMSM and SynRM Parameters

Approximation

In this chapter, a new method for approximating the ŕux-linkage maps of an Interior Per-

manent Magnet Synchronous Motor (IPMSM) using the Group Method of Data Handling

(GMDH) method is proposed. The importance of these maps is due to the non-linear mag-

netic behavior of IPMSMs and Permanent Magnet Synchronous Motors (SynRMs), which

makes them crucial for various control applications, including current control, gains adapta-

tion, axes decoupling, Maximum Torque Per Ampere (MTPA), Field Weakening (FW), and

sensor-less control.

In most case, off-line characterization methods have been used to obtain the system param-

eters, but these methods require a large amount of time for commissioning and specialized

hardware. On the other hand, simple analytical methods that assume constant parameters

may not provide accurate results. In order to improve the accuracy of the approximations,

other methods have been proposed, such as the Look-Up Table (LUT) [46][47] method and

polynomial approximation. The LUT method uses pre-computed data to obtain the system

parameters, while polynomial approximation őts a polynomial function to the data. How-

ever, both methods require all parameters to be obtained off-line.

The GMDH method proposed in this chapter uses a neural network to efficiently approxi-

mate the ŕux-linkage maps online, based on the current inputs. The proposed method has

been analyzed in a case study and the results show that the accuracy of the GMDH method

is higher than the polynomial approximation, with up to 2-3 times smaller error. This means

that the GMDH method is a more efficient and accurate approach for approximating the

ŕux-linkage maps of IPMSMs.
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(a) (b)

Figure 5.1: d− and q−axis ŕux-linkages maps based on LUT. (a) for d−axis ŕux-linkage (b) for
q−axis ŕux-linkage.

5.1 Using Polynomial Method to Approximate the PMSM

Flux-linkage Maps

In polynomial method the relation of the motor parameters to the d− and q−axis currents

is going to be considered to extend the Taylor’s series [76]. Eq. 5.1 and Eq. 5.2 are obtained

by the Taylor’s series for d− and q−axis ŕux-linkages.
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The equations can be simpliőed by considering the partial parts as the coefficients of the d−
and q−axis currents.

λd (id, iq) =pd00 + pd10id + pd01iq + pd20i
2
d + pd11idiq + pd02i

2
q

+ pd30i
3
d + pd21i

2
diq + pd12idi

2
q + pd03i

3
q

λq (id, iq) =pq00 + pq10id + pq01iq + pq20i
2
d + pq11idiq + pq02i

2
q

+ pq30i
3
d + pq21i

2
diq + pq12idi

2
q + pq03i

3
q

(5.3)

thus,

pd00 = λd(id0, iq0)+
∂λd

∂id
id0− ∂λd

∂iq
iq0+

1
2
∂2λd

∂i2d
i2d0+

∂2λd

∂id∂iq
id0iq0+

1
2
∂2λd

∂i2q
i2q0− 1

6
∂3λd

∂i3d
i3d0− 1

2
∂3λd

∂i2d∂iq
i2d0iq0−

1
2

∂3λd

∂id∂i2q
id0i

2
q0 − 1

6
∂3λd

∂i3q
i3q0

pd10 =
∂λd

∂id
− ∂2λd

∂i2d
id0 − ∂2λd

∂id∂iq
iq0 +

1
2
∂3λd

∂i3d
i2d0 +

∂3λd

∂i2d∂iq
id0iq0 +

1
2

∂3λd

∂id∂i2q
i2q

pd01 =
∂λd

∂iq
− ∂2λd

∂i2q
iq0 − ∂2λd

∂iq∂iq
id0 +

1
2
∂3λd

∂i3q
i2q0 +

∂3λd

∂id∂i2q
id0iq0 +

1
2

∂3λd

∂i2d∂iq
i2d0

pd20 =
1
2
∂2λd

∂i2d
− 1

2
∂3λd

∂i3d
id0 − 1

2
∂3λd

∂i2diq
iq0

pd11 =
∂2λd

∂idiq
− ∂3λd

∂i2diq
id0 − ∂3λd

∂idi2q
iq0

pd02 =
1
2
∂2λd

∂i2q
− 1

2
∂3λd

∂i3q
iq0 − 1

2
∂3λd

∂idi3q
id0

pd30 =
1
6
∂3λd

∂i3d

pd21 =
1
2
∂3λd

∂i2diq

pd12 =
1
2
∂3λd

∂idi2q

pd03 =
1
6
∂3λd

∂i3q

By considering that N × N data is collected from the motor the matrix can be written

as below (N2 dimension matrix is arranged for λd and λq):

λd = XdPd

λq = XqPq

(5.4)

where Xd and Xq are matrixes of N2×10. The parameters vector of d− and q− ŕux-linkages

are presented as Pd and Pq. By using least square approach the coefficient of the parameters

can be obtained.
Pd =

(
XT

d Xd

)−1
XT

d λd

Pq =
(
XT

q Xq

)−1
XT

q λq
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After obtaining the parameters, the ŕux-linkages should satisfy the reciprocity condition:

∂λd(id, iq)

∂iq
=

∂λq(id, iq)

∂id
(5.5)

If the ŕux-linkage equation does not satisőed the reciprocity condition by using least square

method, the coefficients should be modiőed as follow:

p̄d01 + p̄d11id + 2p̄d02iq+p̄d21i
2
d + 2p̄d12idiq + 3p̄d03i

2
q

=

p̄q10 + 2p̄q20id + pq11iq + 3p̄q30i
2
d + 2p̄q21idiq + p̄q12i

2
q

(5.6)

Thus based on the equation the coefficients of same order should be the same,then:

p̄d01 = p̄q10, p̄d11 = 2p̄q20, 2p̄d02 = p̄q11

p̄d21 = 3p̄q30, p̄d12 = p̄q21, 3p̄d03 = p̄q12
(5.7)

The best feasible approach is to add and subtract a half of correction term that can be

evaluated by Eq. 5.7. As a result, the ŕux-linkages satisfy Eq. 5.5 and the following equations

can be obtained:

λd (id, iq) =p̄d00 + p̄d10id + p̄d01iq + p̄d20i
2
d + p̄d11idiq + p̄d02i

2
q

+ p̄d30i
3
d + p̄d21i

2
diq + p̄d12idi

2
q + p̄d03i

3
q

λq (id, iq) =p̄q00 + p̄q10id + p̄q01iq + p̄q20i
2
d + p̄q11idiq + p̄q02i

2
q

+ p̄q30i
3
d + p̄q21i

2
diq + p̄q12idi

2
q + p̄q03i

3
q

(5.8)

If the ŕux saturation is considered, the Eq. 5.9 and Eq. 5.10 can be as the modiőed version:

λd (id, iq) = Ld (id) id + Ldq (id, iq) iq (5.9)

λq (id, iq) = Lq (iq) iq + Lqd (id, iq) id (5.10)

Then by collecting the terms with same orders the inductances of the motor can be evaluated

as below:
Ld (id) =p̄d00/id + p̄d10 + p̄d20id + p̄d30i

2
d

Lq (iq) =p̄q00/iq + p̄q01 + p̄q02iq + p̄q03i
2
q

Ldq (id, iq) =p̄d01 + p̄d11id + p̄d02iq + p̄d21i
2
d

+ p̄d12idiq + p̄d03i
2
q

Lqd (id, iq) =p̄q10 + p̄q11iq + p̄q20id + p̄q21idiq

+ p̄q12i
2
q + p̄q30id

(5.11)

Based on the Eq. 5.11 the d− and q−axis inductances can be approximated using polynomial

approach. After őnding the coefficients of the ŕux equations the dq maps can be plotted as
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Fig. 5.2.

(a) (b)

Figure 5.2: d− and q−axis ŕux-linkages maps based on polynomial approximation. (a) for d−axis
ŕux-linkage (b) for q−axis ŕux-linkage.

In the next section, a new method is introduced that is more accurate than polynomial

method.

5.2 Group Method of Data Handling (GMDH) to Ap-

proximate the PMSM Flux-linkage Maps

To start the process in GMDH, the model should have multiple inputs and at least one

output. There are partial models in the process where can be updated in each layer and the

optimal models will be selected based on the minimum value of the external criterion. On

the other hand, GMDH can be described as a multilayered model. It can be expressed as

a mathematical model with high order terms lack of instability difficulties. The main idea

of the method is detecting a relationship between input and output based on the possible

inputs. The network is updated layer by layer during training and optimization. Each layer

consists of neurons with two inputs where the output of each neuron is a quadratic function

of the best combination of two inputs. The coefficient of these functions is calculated based

on linear regression approaches. The previous layer is trained, before switching to a new

layer. During training each neuron obtained by two unique combination inputs. On the

other hand, input combination selection can be done by best performance. Then for the new

layer all this procedure will be repeated. The relation between input and output variables

is expressed by a Volterra polynomial series, known as ‘’Kolmogorov-Gaborž polynomial.

y = a0 +
i=1∑

n

aixi +
i=1∑

n

j=1
∑

n

aijxixj + ... (5.12)
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where, xi is the input of the multi-layer network, m represents the number of the inputs, ai

is the coefficient. Note that a0 is a constant offset, which can be considered as offset łnoisež.

In this case, the output function of each neuron can be obtained as,

y = (xi, xj) = a0 + a1xi + a2xj + a3x
2
i + a4x

2
j + a5xixj (5.13)

Where, a0, a1, a2, a3, a4 and a6 are the weights coefficients where should be obtained by

least squares method for all neurons.

AT = Y XT (5.14)

To select the best estimated coefficient and input combinations for each neuron in each layer

the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are used. Where

MSE is the error of the actual and estimated difference over data set and RMSE is the root

of MSE that has the same units as the quantity plotted on the vertical axis.

MSE =
1

n

i=1∑

n

(ŷi − yi)
2 (5.15)

RMSE =

√
√
√
√

i=1∑

n

(ŷi − yi)2

n
(5.16)

where ŷ is the predicted value, y is the actual value and n is the number of the item. The

process of GMDH algorithm implementation can be described as below,

Step1: the actual system’s data is divided into training and testing sets in two parts.

Training data are used to estimate the weights of GMDH neurons, while checking data are

utilized to create the GMDH structure.

Step2: all possible combination of two inputs will be generated; for this motor the inputs

are the combinations of id and iq. Then the quadratic polynomial should be expressed by

inputs combinations (these equations obtained in the next section, Eq. 5.17 to Eq. 5.24).

Then by training data the coefficients of the polynomial function will be obtained by Least

Square őtting method.

Step3: the output and data set of the polynomial functions are examined and tested in the

third stage. In this location, the regularity criterion for each neuron will be determined. To

serve as the new inputs for the next layer, the top-performing neurons are chosen. where the

neurons that were not chosen are not included in the network. There are 9 neurons with

54 coefficients and 4 inputs are chosen for the dq approximating ŕux-linkages for the studied

motor. Ignored are two inputs and one neuron.

Step4: all of the steps from steps 2 through 4 are then repeated until the GMDH network is

satisőed. When the minimum regularity criterion in the current layer is not less signiőcant

than the preceding layer, the procedure will be őnished. The selected neurons in each layer
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can be used to create the őnal model of the GMDH; as was described in Step 3, unselected

neurons will not be taken into account.

Measure PMSM data 

Parameters Identification to obtain 

id,iq,λd (id,iq) and λq (id,iq) maps

Use the combination of  id,iq maps as 

Inputs and λd (id,iq), λq (id,iq) maps as 

targets

Select the quantity of neurons and 

layers
Start GMDH

Make polynomial function and check 

best inputs selection

Best selection

Maximum neuron
No

No

Yes

Yes

Go to next layer

Maximum layer

End GMDH, get the 

best polynomial 

function

Yes

No

Figure 5.3: Flowchart of the GMDH approximation process.

x1
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x3

x4

x5

x6

z1

z2

z3

w1

w2

w3

v1

v2

v3

λd

Figure 5.4: GMDH implementation for d−axis ŕux-linkage approximation.

The inputs of the GMDH are selected as x1 = id, x2 = iq, x3 =
√
id, x4 =

√
iq, x5 =

√

i2d + i2q
and x6 = arctan iq/id . In Fig. 5.4 and Fig. 5.5, the structure of GMDH method for d− and

q−axis ŕux-linkages are illustrated. The inputs x1,x4,x5,x6 are selected as the best inputs.

In layer 2, 3 and 4 the best selections are, z1,z2,z3,w1,w2,w3,v1 and v3 respectively. The

inputs x2 and x3 and neuron v2 are not used. Eq. 5.17 to Eq. 5.20 represents the polynomial
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x1
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x4

x5

x6
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t1

t2

t3

u1

u2

u3

λq

Figure 5.5: GMDH implementation for q−axis ŕux-linkage approximation.

functions of the approximated GMDH model for d−axis ŕux-linkage.







z1 = a011 + a111x1 + a211x5 + a311x
2
1 + a411x

2
5 + a511x1x5

z2 = a012 + a112x1 + a212x4 + a312x
2
1 + a412x

2
4 + a512x1x4

z3 = a013 + a113x1 + a213x6 + a313x
2
1 + a413x

2
6 + a513x1x6

(5.17)







w1 = a021 + a121z1 + a221z3 + a321z
2
1 + a421z

2
3 + a521z1z3

w2 = a022 + a122z2 + a222z3 + a322z
2
2 + a422z

2
3 + a522z2z3

w3 = a023 + a123z1 + a223z2 + a323z
2
1 + a423z

2
2 + a523z1z2

(5.18)







v1 = a031 + a131w1 + a231w2 + a331w
2
1 + a431w

2
2 + a531w1w2

v2 = a032 + a132w1 + a232w3 + a332w
2
1 + a432w

2
3 + a532w1z3

v3 = a033 + a133w2 + a233w3 + a333w
2
2 + a433w

2
3 + a533w2w3

(5.19)

λd = a041 + a142v1 + a243v3 + a344v
2
1 + a445v

2
3 + a546v1v3 (5.20)

where xi,zi,wi,zi are the polynomial functions of each layer. The coefficients shown as aiLN

where i, L, N represent number of coefficients, number of layer and number of neurons

respectively. As shown in Fig. 5.5, in őrst layer x2,x4,x5,x6 are selected as best inputs. In

layer 2, 3, 4 and 5 the best selections are s1,s2,s3,t1,t2,t3,u1,u2 respectively (inputs x1 and x3

and neuron u3 are not used). The polynomial functions of the approximated GMDH model
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for q−axis ŕux-linkage are reported below:







s1 = b011 + b111x2 + b211x4 + b311x
2
2 + b411x45

2 + b511x2x4

s2 = b012 + b112x1 + b212x5 + b312x
2
1 + b412x

2
5 + b512x1x5

s3 = a013 + b113x2 + b213x6 + b313x
2
2 + b413x

2
6 + b513x2x6

(5.21)







t1 = b021 + b121s1 + b221s3 + b321s
2
1 + b421s

2
3 + b521s1s3

t2 = b022 + b122s1 + b222s2 + b322s
2
1 + b422s

2
1 + b522s1s2

t3 = b023 + b123s2 + b223s3 + b323s
2
2 + b423s

2
3 + b523s2s3

(5.22)







u1 = b031 + b131t1 + b231t3 + b331t
2
1 + b431t

2
3 + b531t1t3

u2 = b032 + b132t1 + b232t2 + b332t
2
1 + b432t

2
2 + b532t1t2

u3 = b033 + b133t2 + b233t3 + b333t
2
2 + b433t

2
3 + b533t2t3

(5.23)

λq = b041 + b142u1 + b243u2 + b344u
2
1 + b445u

2
2 + b546u1u2 (5.24)

The GMDH ŕux-linkages maps are presented in Fig. 5.6 based on the Eq. 5.20 and

Eq. 5.24.

(a) (b)

Figure 5.6: d− and q−axis ŕux-linkages maps based on GMDH approximation. (a) for d−axis
ŕux-linkage(b) for q−axis ŕux-linkage.

5.3 Results

To investigate the accuracy of the GMDH method, ŕux-linkage estimation error (difference

between the actual value and the estimated value), error histogram (histogram of the errors
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between target values and predicted values after training in GMDH) and linear regression

scatter plot (statistical relationship between actual and approximated ŕux-linkage) are pre-

sented in this section. Fig. 5.7a and Fig. 5.7b illustrate the estimation error and error

histogram of the d−axis ŕux-linkage, respectively.

(a) (b)

Figure 5.7: (a) ŕux-linkage estimation error and (b) error histogram of GMDH learning and
optimization for d−axis ŕux-linkage.

Fig. 5.8a and Fig. 5.8b illustrate the estimation error and error histogram of the q−axis

ŕux-linkage, respectively. The linear regression scatter plot for d− and q−axis ŕux-linkage

(a) (b)

Figure 5.8: (a) ŕux-linkage estimation error and (b) error histogram of GMDH learning and
optimization for q−axis ŕux-linkage.

are presented in Fig. 5.9a and Fig. 5.9b. The results indicated low RMSE (deőned as in

Eq. 5.15), i.e. 0.02 and high linearity, R > 0.999 for d−axis ŕux-linkage. For q−axis ŕux-

linkage, the RMSE and linearity are 0.02 and 0.999.

The approximated ŕux-linkage maps are presented based on the d− and q−axis currents

(Fig. 5.1, Fig. 5.2 and Fig. 5.6). Fig. 5.6a and Fig. 5.6b are obtained by GMDH and

Fig. 5.2a and Fig. 5.2b are the maps based on the polynomial approximation [76]. The error
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(a) (b)

Figure 5.9: Linear regression scatter plot of GMDH method. (a) for d−axis ŕux-linkage approxi-
mation (b) for q−axis ŕux-linkage approximation.

of the whole ŕux-linkage map for GMDH and polynomial approximations versus LUT arre

presented in Fig. 5.10 and Fig. 5.11. As a results, the d−axis ŕux-linkage error for GMDH

method and polynomial one is 5.8% and 15%, respectively. And, it is 3.8% and 5.2% for the

q−axis ŕux-linkages. These results show that the GMDH method achieves better accuracy

with respect to the polynomial method. The GMDH memory occupation is also lower than

LUT methods with similar accuracy. Moreover, the availability of an analytical expression

for approximating the ŕux maps is useful for off-line work.

(a) (b)

Figure 5.10: (a) λd actual and approximated error between LUT and polynomial Approximation
(b) λq actual and approximated error between LUT and polynomial Approximation.

5.4 Conclusion

GMDH method is presented in this chapter to approximate the ŕux-linkages of the IPMSM.

Using this method can be done online where the inputs are the dq axis currents. The

87



5.4. Conclusion

(a) (b)

Figure 5.11: (a) λd actual and approximated error between LUT and GMDH approximation (b)
λq actual and approximated error between LUT and GMDH approximation.

method is compared with a polynomial method. The simulation results conőrm that the

accuracy of GMDH is higher than polynomial method due to error percentage. Based on the

results the error percentage for d− and q−axis ŕux-linkages using GMDH is less 3 times and

2 times respectively compare to polynomial approximation method. The GMDH method

approximate the ŕux-linkages maps of IPMSM (achieving approximately half the RMSE

error, Table I), while polynomial methods are accurate only for SynRM.

As the future work, the GMDH method can be used for SynRM motor to approximate the

ŕux maps. Furthermore, the approximated ŕux maps cab be applied to the controller instead

of constant value of the motor parameters or LUT.

88





Chapter 6

Advances on Analysis, Modeling and

Accurate Self Commissioning

Compensation of Inverter Dead-Time

Distortion Based on a Physical Model

In this chapter, a novel approach on dead-time compensation for the inverter controller,

which plays an important role in enhancing the performance of the motor drive system is

presented. The non-linearity effects in voltage source inverters are primarily caused by dead-

times, voltage drops, and the parasitic and intrinsic capacitive effects of power devices and

electric machines. Accurate compensation of these effects is crucial in many drives applica-

tions, as output voltage distortion can greatly impact the performance of the current control

loop, particularly at low speeds where the operating voltage of the machine is similar to the

level of distortion introduced by non-linearity components.

This is of even greater concern in sensorless systems where low-speed performance is highly

dependent on accurate knowledge of the machine’s feeding voltage, which is not directly

measured. As a result, inverter non-linearity effects are introduced into the estimation loop,

degrading the reliability and accuracy of the estimates.

Most compensation techniques in the literature employ a voltage-to-current characteristic to

approximate non-linearity effects and are identiőed during a self-commissioning procedure.

Some approaches use different correcting functions, such as linear saturation, [50], sigmoid,

[51], exponential, [52], while others require external tuning to adapt the compensation func-

tion to the commercial drive. Some methods use current sensors or references to determine

current direction, while others use extra hardware for zero-crossing detection.

Recently, a novel approach has been introduced where an analytical model of the physical

behavior of the inverter non-linearities is considered and a proper test procedure is performed

to self-identify the critical parameters of the model [57]. This approach involves autonomous

selection of the threshold current of the measured voltage-to-current characteristics, which

is necessary for accurate estimation and compensation of the non-linearity effects. In this
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chapter, two new methods that assure minimal error estimation and demonstrate their su-

periority over state-of-the-art approaches is presented [77]. Additionally, for the őrst time

the effects of inverter distortion on the accuracy of current sampling and control loops and

propose an original compensation strategy is analyzed. Theoretical analysis and develop-

ments, along with simulations and experimental results based on a commercial drive, are

fully reported.

6.1 Accurate Modeling of Inverter Distortion

The inverter output voltage characteristics are inŕuenced by the non-ideal behavior of the

commutation phenomena, such as dead-time effect, commutation delays, voltage drops in

power devices, equivalent parasitic resistance and inductance of the current paths, charging

and discharging of the equivalent (parasitic or intrinsic) output capacitance of the leg. For

this reason the inverter instantaneous output voltage with respect to the DC bus reference

level, i.e. Vx0 in Fig. 6.1, will be considered in the following analysis. Averaging and extension

to the phase voltage of the three-phase load will be considered as a consequence. The

inductive behavior of the load allows to model the leg output current as a constant value

during the switching period or, at least, during the dead-time intervals, as it will be explained

shortly. A őrst model will be considered, which takes into account the recalled non-ideal

conditions, but neglects the effects of the output capacitance. Later, those effects will be

introduced and a complete model obtained. The simpliőed version of that model represents

the base for the proposed self commissioning and compensation strategy, discussed in the

next sections.

Figure 6.1: Charging and discharging switch capacitance during lower IGBT switching off.

6.1.1 Dead-time and switch voltage drops effects

The output voltage waveforms during dead time interval (TDT ) when considering voltage

drops (VIGBT and Vdiode) and switching delays (Tdelay,H→L and Tdelay,L→H) are sketeched in

Fig. 6.2. Two different cases have been considered, as a function of the sign of the output

current, which affects the conduction state of the free-wheeling diodes and thus the output
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voltage.

Figure 6.2: Output voltage waveforms during dead time when considering voltage drops and
switching delays.

The voltage difference (increase or decrease) between ideal (dashed black lines) and actual

switchings (solid black lines) are highlighted by coloured areas and identiőed by + and ś signs,

meaning that the corresponding contribution respectively increases or decreases the output

voltage averaged over the switching period TSW . In the following sections the term V̄x0DT
=

V̄x0 − V̄ ∗
x0 that represents distortion of the inverter output voltage will be referred to as

łdistortion voltagež. Symmetric commutation delays (if any) are considered with green areas,

their average contribution being generally zero due to symmetry. Asymmetric commutation

delays can be considered as additional dead-time components and are therefore included

in that value, represented with yellow areas. Finally IGBT and diode contributions are

represented with red and blue areas.

The equivalent on-time of the output voltage can be therefore related to the commanded duty

cycle δx and the dead-time, as shown in the same őgure. If the average value of the output

voltage is considered within the switching period, the following equations are obtained for

distortion voltage as a function of the output current sign:

Ix> 0 : V x0DT
=

1

TSW






−VDCTDT
︸ ︷︷ ︸

⊡

−VIGBT (δxTSW−TDT )
︸ ︷︷ ︸

⊡

−Vdiode [(1−δx)TSW+TDT ]
︸ ︷︷ ︸

⊡







(6.1)
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Ix< 0 : V x0DT
=

1

TSW






VDCTDT
︸ ︷︷ ︸

⊡

+VIGBT [(1−δx)TSW−TDT ]
︸ ︷︷ ︸

⊡

−Vdiode (δxTSW+TDT )
︸ ︷︷ ︸

⊡






(6.2)

Previous equations can be manipulated after the introduction of the following equation

relating the IGBT and diode voltage drops:

VIGBT = Vdiode +∆V (6.3)

thus obtaining this:

Ix> 0 : V x0DT
= −VDC

TDT

TSW
−Vdiode−∆V

(

δx− TDT

TSW

)

Ix< 0 : V x0DT
=VDC

TDT

TSW
+Vdiode+∆V

(

1−δx− TDT

TSW

) (6.4)

In the case of small phase voltage (i.e. δx ∼= 0.5), a őrst sympliőed equation can be obtained

V x0DT
= −sign (Ix)

[

VDC
TDT

TSW

+Vdiode+∆V

(

0.5−TDT

TSW

)]

(6.5)

If dead-time interval is small with respect to switching period, the very last term of Eq. 6.5

can be neglected, leading to

V̄x0DT
= −sign (Ix)

(

VDC
TDT

TSW

+ Vdiode + 0.5 ∆V

)

(6.6)

6.1.2 Introducing the effect of capacitance

The adopted full model comprises parasitic capacitance charging effect, [78] [79] [80] [81].

During the dead-time interval the output current tends to force a commutation due to the

turn on of the opposite diode. One of the possible situations is sketched in Fig. 6.1, where

switching off of the low-side IGBT is considered. The output current is negative (i.e. entering

the output node) and initial voltage is equal to the lower IGBT voltage drop. Due to the

presence of the switch capacitance, output voltage does not rise immediately, as the upper

capacitance has to be discharged and lower one charged.

Four different cases can be considered as a function of the sign and the absolute value of the

output current, as depicted in Fig. 6.3.

In fact, if the time required to charge/discharge the output capacitance is higher than the

dead-time interval (i.e. when the output current is quite low), the commutation is slower and

a discontinuity is experienced in the output voltage as soon as the higher IGBT switches on

at the end of the dead-time interval. The limit condition between the ideal ramp transition

and intermediate lower slope cases can be calculated by matching the charge and discharge

time and dead-time. If the IGBT and diode voltage drops are taken into account, this results

in
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6.1. Accurate Modeling of Inverter Distortion

Figure 6.3: Output voltage waveforms during dead time when considering output capacitance and
different values of the output current.
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6.1. Accurate Modeling of Inverter Distortion

Ix =
2Cout (VDC − VIGBT + Vdiode)

TDT

(6.7)

where Cout is the overall output capacitance. The difference between the areas in Fig. 6.2,

i.e. null capacitance, and that of Fig. 6.3 are then considered, and four expressions are

obtained as a function of the output current:

if 0 < Ix < 2Cout(VDC−VIGBT+Vdiode)
TDT

V̄x0cap =
1

TSW

{

(VDC − VIGBT + Vdiode)TDT − |Ix|
4Cout

T 2
DT

} (6.8)

if Ix > 2Cout(VDC−VIGBT+Vdiode)
TDT

V̄x0cap =
1

TSW

{
Cout(VDC−VIGBT+Vdiode)

2

|Ix|

} (6.9)

if − 2Cout(VDC−VIGBT+Vdiode)
TDT

< Ix < 0

V̄x0cap =
1

TSW

{

− (VDC − VIGBT + Vdiode)TDT + |Ix|
4Cout

T 2
DT

} (6.10)

if Ix < −2Cout(VDC−VIGBT+Vdiode)
TDT

V̄x0cap =
1

TSW

{

−Cout(VDC−VIGBT+Vdiode)
2

|Ix|

} (6.11)

representing the contribution of the output capacitance to average output voltage distortion

V̄x0.

Finally the two contributions, i.e. the last four equations and those calculated in Eq. 6.1,

Eq. 6.2 can be joined to obtain the overall average distortion voltage in the different current

conditions, as reported in the following equations:

if 0 < Ix < 2Cout(VDC−VIGBT+Vdiode)
TDT

V̄x0 =
1

TSW
{VDCδxTSW − VDCTDT − VIGBT (δxTSW − TDT

−Vdiode [(1− δx)TSW + TDT ] + (VDC − VIGBT + Vdiode)TDT − |Ix|
4Cout

T 2
DT

(6.12)

if Ix > 2Cout(VDC−VIGBT+Vdiode)
TDT

V̄x0 =
1

TSW
{VDCδxTSW − VDCTDT − VIGBT (δxTSW − TDT

−Vdiode [(1− δx)TSW + TDT ] +
Cout(VDC−VIGBT+Vdiode)

2

|Ix|

(6.13)

if − 2Cout(VDC−VIGBT+Vdiode)
TDT

< Ix < 0

V̄x0 =
1

TSW
{VDCδxTSW + V DCTDT + VIGBT [(1− δx)TSW − TDT ]

+Vdiode (δxTSW + TDT )− (VDC − VIGBT + Vdiode)TDT + |Ix|
4Cout

T 2
DT

(6.14)

if Ix < −2Cout(VDC−VIGBT+Vdiode)
TDT

V̄x0 =
1

TSW
{VDCδxTSW+V DCTDT + VIGBT [(1− δx)TSW − TDT ]

+Vdiode (δxTSW + TDT )− Cout(VDC−VIGBT+Vdiode)
2

|Ix|

(6.15)
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6.2. Model Simpliőcation: Calculation of Phase Voltage Distortion

6.2 Model Simpliőcation: Calculation of Phase Voltage

Distortion

The model introduced above can be greatly simpliőed under the following hypotheses:

•δx ≈ 0.5 (small phase voltage);

•TDT ≪ δxTSW (small phase voltage and dead-time);

•VIGBT ≪ VDC (small IGBT voltage drop);

•Vdiode ≪ VDC (small diode voltage drop).

obtaining the following expressions for the leg output voltage:

if |Ix| < 2CoutVDC

TDT

V̄x0 = VDCδx − sign (Ix) VSW − T 2

DT

4CoutTSW
Ix

(6.16)

if |Ix| > 2CoutVDC

TDT

V̄x0 = VDCδx − sign (Ix) V DC
TDT

TSW

−sign (Ix) V SW + CoutVDC2TSW
1
Ix

(6.17)

The distortion voltage curve represented by this model is shown in Fig. 6.4. It is worth to

mention that the small phase voltage condition (i.e. δx ≈ 0.5) represents indeed the situation

in which inverter distortion compensation is mostly needed. Distortion voltage component

can be therefore expressed as a function of:

- three parameters, i.e. TDT , Cout and the average value of the two devices voltage drops

VSW = VIGBT+Vdiode

2
;

-two variables, i.e. Ix and VDC ; both are measured, the second one is slowly varying and

belongs to a limited range, therefore it can be considered as a known parameter.

As it can be seen both from the above equations and in Fig. 6.4, the presence of output

capacitance inŕuences the shape (slope, in particular) of the distortion voltage vs. current

characteristic, while the asymptotic value at high current is proportional to TDT .

Hereafter the distortion on phase voltage will be evaluated for a particular case, i.e. consid-

ering the injection of a controlled current space vector along the phase a of the motor. As

it will be shown, this situation is particularly convenient for the sake of parameters iden-

tiőcation, and represents a signiőcant case since standard experimental tests for dead time

distortion characteristic are normally referred to it.

Due to the particular choice of the current space vector the following trivial condition holds:

Ib = Ic = −Ia
2

(6.18)

which allows to calculate all the voltage distortion components as a function of the same

current Ia. Three different conditions have to be considered, i.e. the current is below (i.e.

łlow-currentž) the threshold Ithr = 2CoutVDC

TDT
, above twice the same threshold (i.e. łhigh-
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currentž) or intermediate:

if |Ia| < Ithr

V̄a0DT
= −sign (Ia) VSW − T 2

DT

4CoutTSW
Ia

V̄b0DT
= V̄c0DT

= sign (Ia) VSW + 1
2

T 2

DT

4CoutTSW
Ia

(6.19)

if Ithr < |Ia| < 2Ithr

V̄a0DT
= −sign (Ia) V DC

TDT

TSW
− sign (Ia) VSW + CoutVDC

2

TSW

1
Ia

V̄b0DT
= V̄c0DT

= sign (Ia) VSW + 1
2

T 2

DT

4CoutTSW
Ia

(6.20)

if |Ia| > 2Ithr

V̄a0DT
= −sign (Ia) V DC

TDT

TSW
− sign (Ia) VSW + CoutVDC

2

TSW

1
Ia

V̄b0DT
= V̄c0DT

= sign (Ia) V DC
TDT

TSW
+ sign (Ia) VSW − CoutVDC

2

TSW

2
Ia

(6.21)

Motor phase voltage can be őnally calculated by considering a balanced condition and

the relationship between inverter output leg voltage Vx0 and neutral point voltage Vn0, i.e.

Vxn = Vx0 − Vn0, where Vn0 =
Va0+Vb0+Vc0

3
.

Both for łhighž and łlowž currents the dependence of distortion voltage on current is quite

straightforward and is similar to that of leg voltage, but in the intermediate range both the

effects are in some way superimposed, meaning that a relatively accurate knowledge of the

involved parameters is needed for a proper compensation. Through experimental veriőcation

it was őnally highlighted that the effect of the devices voltage drops VSW can be neglected,

[79], and previous equations can be further simpliőed. If a balanced resistive load (e.g. the

motor windings in DC) is considered, phase voltage reference available at the output of the

vector control algorithm is:

V̄ ∗
an = V̄an − V̂anDT

= RSIa − V̂anDT
(6.22)

which, according to the simpliőed model, becomes:

if |Ia| < Ithr

V̄ ∗
an =

T 2

DT

4CoutTSW
Ia +RSIa

(6.23)

if Ithr < |Ia| < 2Ithr

V̄ ∗
an = 2

3
sign (Ia) V DC

TDT

TSW

−2
3
CoutVDC

2

TSW

1
Ia

+ 1
3

T 2

DT

4CoutTSW
Ia +RSIa

(6.24)

if |Ia| > 2Ithr

V̄ ∗
an = 4

3
sign (Ia) V DC

TDT

TSW
− 2CoutVDC

2

TSW

1
Ia

+RSIa
(6.25)

In Fig. 6.5 a graphical representation of the phase voltage reference (solid line) and its

distortion component (dashed line) as a function of the output current is shown for a typical

case. It can be seen that a linear saturated model can roughly approximate the curve, since

in the leftmost part of the diagram (i.e. łlowž current) the dependence is linear, whilst
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6.3. Analytical modeling of non linearities due to dead-time

in the rightmost part (i.e. łhighž current) a constant term prevails. This also explains the

conventional approaches to dead-time compensation by piece-wise linear saturated functions.

Figure 6.4: Simpliőed curve of phase leg distortion voltage.

Figure 6.5: Phase voltage reference vs. current curve in the commissioning conditions.

6.3 Analytical modeling of non linearities due to dead-

time

In an ideal inverter, there is a simple relationship between the duty cycle and the average

leg voltage in a switching period. This means that the desired (reference) voltage produced

by the current controller is perfectly actuated, by means of the chosen modulation strategy.

If non-linearities due to dead-time are considered, this is no longer the case. In Fig. 6.6,

the comparison between a simulation and an experimental test is shown, the experiment is

performed by injecting a current space vector with a slowly increasing staircase amplitude

along the -axis and measuring the corresponding reference voltage produced by the current

regulation loop. When the electrical system reaches each steady state condition, the output

values of the current regulators are sampled and stored together with the corresponding

reference value. These last are equally distributed from zero to the rated value of the

machine current. The only noticeable difference between the two curves lies in the very
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6.3. Analytical modeling of non linearities due to dead-time

Figure 6.6: Simulated and experimental V-I inverter characteristic.

low current region. Here, the switching devices behavior and capacitance value cannot be

assumed constant (being the assumption of the simulation), leading to the presence of a

difference between the two results. The inverter output leg voltage depends in fact on the

charging state of the parasitic capacitor (due to both the power switches and systems overall

capacitive effects), which affects the voltage transition during the dead time, as shown in

Fig. 6.7. From the image, the deőnition of threshold current can be retrieved, i.e. the value

needed to fully discharge the equivalent capacitance during dead-time. Indeed, the time

integral of the actual leg output current should be considered, i.e. the overall charge stored

in the capacitance. A common simplifying hypothesis is to consider a constant leg output

current, thus allowing to deőne the voltage transition behavior as a function of the current

value only. Two cases are illustrated, when the current is smaller than the threshold value

Figure 6.7: Leg output voltage during dead-time discharging (positive current).

(pink curve) and the node does not have enough time to fully discharge during dead-time,

and current equal to the threshold value, when the node discharges completely (blue curve).

The measured distortion function shows a voltage dip (right below 2A) that is not included

in the analytical model hereby presented. A study validated by simulation results relates this

phenomenon to the variability of the device capacitance. The capacitance value is almost

constant in all the voltage ranges, except for low voltages, where due to a small VCE (or

VDS) change a big difference in output capacitance is experienced, as shown in Fig. 6.8,
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6.3. Analytical modeling of non linearities due to dead-time

where the typical capacitances to voltage characteristics of a commercial power MOSFET is

reported. By simulating the output capacitance change as a function of the leg voltage, e.g.

 

Figure 6.8: Typical MOSFET capacitances as a function of drain-source voltage.

adopting a piecewise linear (PWL) approximation of the capacitance value as a function of

its applied voltage, the voltage dip effect can be obtained also in the simulation results, as

demonstrated in the results of Fig. 6.9. The comparison of the blue (simulation with PWL

Figure 6.9: Voltage-to-current characteristics: simulation with constant and variable capacitance
(green and blue, respectively), experimental (red).

capacitance model) and red (experimental) curves shows a quite good matching as far as the

dip effect concerns. The green curve (simulation with constant capacitance) is on the other

hand consistent with the analytical model that will be introduced hereinafter. The dip effect

may, in most cases, be neglected but, if this is not the case, it can be compensated with very

simple methods, such as via Look-Up Table (LUT).

6.3.1 Measurement of inverter distortion component by current

injection onto active space vector

The phase voltage reference that contains the distortion term, can be represented analytically

as in Eq. 6.26 and Eq. 6.27, where the last term of Eq. 6.26, named fd(•), represents the

distortion due to inverter non-linearities, being a function of all the three phase currents

(Note: in this section notation U is used instead of V for voltage).
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6.3. Analytical modeling of non linearities due to dead-time

U∗
x = Ux + fd (ia, ib, ic) = Rs ix + fd (ia, ib, ic) (6.26)

U∗
x =







4
3
Uswsign(ix) +

(
T 2

dt

4CoutTsw
+Rs

)

ix if |ix| < ithr

2
3
sign(ix)

(
Udc

Tdt

Tsw
+ 2Usw

)
+
(

1
3

T 2

dt

4CoutTsw
+Rs

)

ix − 2
3

CoutU2

dc

Tsw

1
ix

if ithr < |ix| < 2ithr

4
3
sign(ix)

(

Udc
Tdt

Tsw
+ Usw

)

+Rsix − 2
CoutU2

dc

Tsw
1
ix

if |ix| > 2ithr

(6.27)

The terms Udc, U
∗
x , Ux, ix, fd (•), Rs, Usw, Tdt, Cout, Tsw represent the dc link bus voltage,

average phase reference voltage (output of current controller), average phase actual voltage

(as measured on the machine), average phase actual current, distortion term on inverter

phase voltage, phase resistance, average switching devices voltage drop (UIGBT + Ud)2, dead

time, output capacitance and switching period, respectively. All the voltages and currents

are intended as averaged in one switching cycle. After measuring the non-linear V-I charac-

teristic of the inverter as explained in the previous section (an example of the sampled one

is shown in Fig. 6.6), the load resistive term and the dead time distortion voltage can be

achieved as reported in [57], i.e. by means of a Multi Linear Regression approach considering

the measurement range |ia| > 2ithr. Main equations are reported in Eq. 6.28, the system

unknown parameters Cout, Rs and Usw can be estimated. The last term is often neglected in

literature approaches, but in many applications this overlook causes errors in the identiőca-

tion of the correct voltage compensation function. The term x is a N × 3 matrix, whilst y

is a N × 1 column vector, assuming N as the number of points used for the identiőcation.

U∗
regr = χ0 sign(ia ) + χ1 ia + χ2/ia

X =






X0

X1

X2




 = (xTx)−1xTy

(6.28)

χ0 =
4
3
(UdcTdt

Tsw
+ Usw)

χ1 = Rs

χ2 = −CoutU2

dc

Tsw

(6.29)

x(i, 1) = sign(ia(i))

x(i, 2) = ia(i)

x(i, 3) = 1
ia(i)

(6.30)

y(i) = u∗
a(i) (6.31)

The process for estimating these parameters (which will lately be used to build the compen-

sation function) is strongly dependent on the knowledge of the threshold current value ithr,

whose value cannot be known a-priori since it depends on the output capacitance Eq. 6.32,
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6.3. Analytical modeling of non linearities due to dead-time

preventing a straightforward self commissioning procedure. Two new methods that assure

minimal error estimation are proposed and validated in the next sections, demonstrating the

superiority of the results over state of the art approaches.

ithr = 2CoutUdc/Tdt (6.32)

6.3.2 Measurement of inverter distortion component by current in-

jection orthogonal to one of the three axes

Measurement of the non-linear V-I characteristic can be done as explained in the previous

section, i.e. by performing the current injection onto the α−axis. The obtained measure-

ments are certainly correlated to the compensation function, but the data cannot be used

directly to compensate for the voltage distortion, as measurement of the actual leg distor-

tion voltage caused by dead-time is needed to this purpose. If known, this function shall be

added to the reference voltage produced by the current controller as a feed forward term,

in order to compensate for the non-linearities. Indeed, also in the case a direct compensa-

tion is adopted, e.g. by using a look-up-table (without any analytical model), this function

would be necessary and it cannot be derived directly from the measured data. As already

reported in Eq. 6.26, the contribution of all leg currents is in fact present in the measured

distortion function in the case of α−axis injection. A different strategy is proposed here, i.e.

the direction of the injection is changed to a direction being orthogonal to one of the three

axes, i.e.

θinj =
2kπ

3
± π

2
, k ∈ 1, 2, 3 (6.33)

In this way, the current in one phase (i.e. the one being orthogonal to the direction of the

injection) is always zero. The difference with respect to previous procedure is that, in this

case, the measurement can be directly used for the compensation, as phase voltage distortion

term can be obtained directly after the measurements, as will be demonstrated hereinafter.

In Fig. 6.10, experimental measurement and simulation of the inverter characteristic obtained

by β−axis injection are shown.

Figure 6.10: Non-linear V-I characteristic identiőed by β−axis injection.
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6.3. Analytical modeling of non linearities due to dead-time

The reference leg voltage of phase x (i.e. U∗
x0) is the sum of the phase reference voltage

U∗
x (output of the current regulators) and an injected common mode voltage U∗

0N (e.g. a

3rd harmonic), as reported in Eq. 6.34 (the symbol 0 is addressing for the inverter reference

terminal, whilst N for the machine neutral). The difference between the reference and the

actual inverter leg voltage Eq. 6.35 is deőned as the distortion term fd (ix), which is a non-

linear function of the phase current of that phase. Note that this term is only a function of

the considered leg current, as leg voltage is considered.

U∗
x0 = U∗

x − U∗
0N (6.34)

U∗
x0 − Ux0 = fd(ix) (6.35)

On the hypothesis of balanced load, the sum of the actual three-phase voltages Eq. 6.36

lead to Eq. 6.37, i.e. the voltage difference between the inverter reference terminal and the

machine neutral can be calculated as a function of each leg voltage.

Ux = Ux0 + U0N (6.36)

U0N = −1

3
(Ua0 + Ub0 + Uc0) (6.37)

Substituting Eq. 6.34 into Eq. 6.35, expression Eq. 6.37 can be rewritten as Eq. 6.38.

U0N = −1

3
[U∗

a + U∗
c − 3U∗

0N − fd(ia)− fd(ib)− fd(ic)] (6.38)

Since the sum of the reference phase voltages is zero, Eq. 6.38 can be simpliőed and by

substituting into Eq. 6.36, the generic reference voltage expression Eq. 6.40 is achieved.

U0N =
1

3
U∗
0N [fd(ia) + fd(ib) + fd(ic)] (6.39)

U∗
x = Ux + fd(ix)−

1

3
[fd(ia) + fd(ib) + fd(ic)] (6.40)

By injecting a current into the β−axis (ia = 0, ib = −ic) and using Eq. 6.40, the reference

voltage U∗
b can be obtained, as reported in Eq. 6.41. Since the distortion function fd(ix) is

odd, and actual phase voltage Ub is indeed taking only the actual voltage drop due to the

phase resistance, the expression can be rewritten as Eq. 6.42. The last equation shows that

by knowing the reference phase voltage in the b−axis and its phase current, the distortion

function can be estimated if given Rs and vice-versa. This is true only if the injection is

applied on an orthogonal axis, such as β.

U∗
b = Ub +

1

3
[2fd(ib)− fd(−ib)] (6.41)
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U∗
b = Rsib + fd(ib) (6.42)

Once the acquisition of the V-I points is completed, application of Multi-Linear Regression

allows to estimate Ĉout, Ûsw and R̂s and, őnally, build a compensating function for dead-time

effects. The new expressions based on the considered analysis are reported in Eq. 6.43, that

holds the same information as in Eq. 6.27. The main difference is that the new equation is

deőned in only 2 intervals (Λ0 and Λ1, for |ix| bigger or smaller then ithr respectively, i.e.

low and high current regions) instead of 3, and that the fd (ix) can be directly used as a

compensation function (even by using a LUT).

{

fd(ix)
Λ0 = sign(ix)Usw +

T 2

dt

4CoutTsw
ix if |ix| < ithr

fd(ix)
Λ1 = sign(ix)(Usw + Udc

Tdt

Tsw
)− CoutU2

dc

Tsw

1
ix

if |ix| > ithr
(6.43)

The estimated parameters obtained by using both measurement identiőcation procedures are

reported in Table. 6.1, proving that both the injection methods provide roughly the same

results. Once the three parameters have been identiőed, compensation is quite straightfor-

ward, as shown in the block diagram of Fig. 6. It is worth to mention that the compensating

components are calculated from Eq. 6.43 starting from the current references, in order to

reduce noise issues, and are added to the outputs of the current controllers.

Table 6.1: Estimated Parameters for α− and β− Injection.

Estimated parameters α injection β injection

Ĉout 1.24 [nf ] 1.1 [nf ]

Ûsw 0.75 [V ] 0.68 [V ]

R̂s 0.40 [Ω] 0.42 [Ω]

Figure 6.11: dead-time compensation control scheme.

6.3.3 Additional remarks on current or voltage injection

The measurement accuracy during the identiőcation procedure must be as high as possible,

especially in the lower current region (i.e. around ithr) where the capacitive effects provide

the most important contribution to the transition of the leg output voltage during the dead
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time. Unfortunately, the capacitive effect introduces a phase lag on the current waveform

with respect to the symmetry point of the PWM waveforms, thus requiring the sampling

point to be shifted ahead in order to guarantee a proper measurement of the actual average

value of the current within the PWM period. This situation is roughly sketched in Fig. 6.12.

If a current feedback control loop is used for the injection during the identiőcation phase, the

asymmetry which is introduced causes a misbehavior of the current regulation, which would

try to control an average current which differs from the reference one by the quantity ierr in

the őgure. An open-loop voltage injection could be employed instead, where the reference is

a slowly increasing staircase amplitude voltage, and the current is sampled. This does not

fully solve the problem of the current sampling inaccuracy, but having an open-loop system

for the injection procedure might, in some applications, be the best solution. This topic is

however beyond the scope of this chapter, but some additional remarks will be provided in

a later section, where a compensation solution for the sampling point shift will be proposed

an discussed.

Figure 6.12: Effects of the capacitive lag on average current sampling.

6.4 Current Threshold Identiőcation Techniques

The quality of the parameters needed for the dead-time compensation is strongly related

to the correct knowledge of the threshold current, a value that cannot be known a-priori.

Previous literature addressed the importance of this issue, [57], but only the simplest solution

was adopted, i.e. that value is roughly guessed based on nominal parameters of the system

and approximated analytical expression Eq. 6.44. Unfortunately, this expression is a function

of the same parameter to be identiőed, namely the overall equivalent capacitance.

Two methods for high-accuracy automatic identiőcation the current threshold value are

proposed and validated hereinafter, the őrst one based on an iterative process while the

second one based on seeking the minimum of a proper cost function. Both algorithms

converge to same values for the estimated parameters îthr and Ĉout, Ûsw and R̂s, even though
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the latter is more computationally expensive compared to the iterative one.

ithr =
2Cout(Udc − Uce0 + Uf0)

Tdt

≈ 2CoutUdc

Tdt

(6.44)

6.4.1 Iterative method

The threshold current ithr can be computed analytically as reported in Eq. 6.44, but since

the capacitance value is not known at őrst, the regression is iterated in order to őnd a new

value of capacitance and to update the threshold current until convergence is reached. The

method is explained in detail hereinafter, its ŕow chart being reported in Fig. 6.13.

An initial current threshold guess îthr(0) is chosen in order to allow the startup of the algo-

Figure 6.13: Flow-chart of the iterative method for threshold current identiőcation.

rithm. The required accuracy in the knowledge of this term is not critical for the convergence

of the algorithm, and its order of magnitude is easily predictable by assuming that the over-

all output capacitance as seen from the output terminal of the leg is roughly corresponding

to that of power switches. The dc link voltage is usually measured, and the dead-time is a

system deőned parameter.

Given the őrst guess, a regression is computed for the current samples such that ix > 2ithr,

őnding in this way the estimates Ĉout(k) , Ûsw(k) and R̂s(k). The newly computed value of

Ĉout (k) is used as a guess to compute the next current threshold Eq. 6.45 and iterate the

process:

îthr(K + 1) =
2Cout(k)Udc

Tdt

(6.45)

The exit condition is based on the difference between two estimates of the threshold current

being below a certain tolerance, Eq. 6.46. Convergence assures Ĉout(k) , Ûsw(k) and R̂s(k)

estimates to be enough accurate for compensation.

|̂ithr(K + 1)− îthr(K)| < εthr (6.46)
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A convergence diagram of the proposed iterative algorithm in an actual experimental case

is reported Fig. 6.14, showing the estimated threshold current at different iterations (blue

curve), together with the actual value (red curve). Only 4 iterations are needed in order to

reach the actual current threshold value of 0.34A, starting from the initial guess of 0.5A, as

calculated by system parameters and capacitance guess value.

Figure 6.14: Dynamics of the iterative algorithm for the identiőcation of ithr.

6.4.2 Minimum error seeking by dual-regression

A second algorithm is proposed for the identiőcation of the current threshold value, based

on the minimization of a proper cost function. The main idea is explained hereinafter.

Given the distortion function measured using the orthogonal axis injection as seen in subsec-

tion. 6.3.2, it is possible to build a proper cost function whose minimization gives information

on the actual threshold current. Since the distortion fd (ix) can be written in the two inter-

vals Λ0 (low current region) and Λ1 (high current region), as already reported in Eq. 6.43,

it is possible to introduce two different MLRs. The idea is to compute the two regressions

moving the threshold value at each iteration and őnding the value that provides the mini-

mum error between the regression functions and measured data, as sketched in ŕow chart

of Fig. 6.15. Obviously, the absolute values of the error are considered. In order to gain

additional insight of the method, some experimental results in two different situations are

depicted in Fig. 6.16, namely the choice of the estimated threshold (̂ithr) is greater (top

diagram) and smaller (bottom diagram) than the actual one (ithr). The actual (measured)

V-I characteristic is drawn (solid lines) together with the results of the two MLRs in the

low and high current regions (dotted lines). The absolute values of the difference between

measured characteristic and regressions are calculated and reported in red. Please note that

its value is not exactly zero when the measured characteristic and regressions are intersect-

ing, as it should be. This is due to the discretization of the measured data in the horizontal

axis (the point corresponding to the measurement is not available in general in any point of

the regression). Nevertheless, this is not signiőcantly affecting the accuracy of the threshold

estimation and can be further reduced by reducing the quantization of the current axis. By

adopting the voltage expressions Eq. 6.47, where the terms UΛ0
x and UΛ1

x are the leg volt-

ages measured in low and high current regions respectively, the terms λΛj
i can be used to
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Figure 6.15: Flow chart illustrating the minimization of the cost function for current threshold
estimation.

Figure 6.16: Experimental results of the minimum seeking of the threshold current: measured V-I
characteristic (solid curve) and results of MLRs (dotted curve) for the estimated threshold (̂ithr)
greater (top diagram) and smaller (bottom diagram) than the actual one (ithr).

108



6.5. Leg Voltage Lag due to Capacitive Effects: Current Sampling Compensation Strategy

estimate the parameters in Eq. 6.43, as reported in Eq. 6.48 and Eq. 6.49, where notation

□̂ is intended for estimated parameters.

Ûx =

{

UΛ0
x = λΛ0

0 sign(ix) + λΛ0
1 ix +

λΛ0
2

ix
if |ix| < ithr

UΛ1
x = λΛ1

0 sign(ix) + λΛ1
1 ix +

λΛ1
2

ix
if |ix| > ithr

(6.47)

λΛ0
0 = Ûsw

λΛ0
1 = R̂s +

T 2

dt

4ĈoutTsw

λΛ0
2 = 0

(6.48)

λΛ1
0 = Ûsw + Udc

Tdt

Tsw

λΛ1
1 = R̂s

λΛ1
2 = − ĈoutU2

dc

Tsw

(6.49)

Finally, the calculation of the cost function is reported in Fig. 6.17 by sweeping the estimated

threshold value adopted for the MLRs in the two regions up to the rated value of the machine

current. One can notice that the minimum value is corresponding to the actual threshold

value ithr, proving a complete agreement with the iterative method and the effectiveness of

the solution. It is worth noticing that this method is however more computationally intensive

than the iterative one.

Figure 6.17: Experimental results of the minimum seeking of the threshold current: cost function
plot as a function of the threshold current value (sweep up to the rated current of the machine).

6.5 Leg Voltage Lag due to Capacitive Effects: Current

Sampling Compensation Strategy

Accurate compensation of leg voltage distortion allows to match the average voltage within

a switching period to the reference one (output of the current controller). However, the ca-

pacitive behavior of the leg switching node (mainly due to the switching devices), introduces

a phase lag on the actual instantaneous leg voltage. This, in turn, shifts ahead the current

waveform (fundamental and ripple) with respect to the ideal symmetry point of the PWM
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carrier, normally considered as the optimal sampling point for the average phase current.

The obtained current samples are no more corresponding to the average values within the

switching period. Indeed, a similar issue can be experienced during machine operation at

high fundamental to switching frequency due to the back EMF, as reported in [78]. However,

only the őrst effect has been considered in this chapter, being closely related to the dead

time, and a proper compensation strategy is proposed. Either the sampling instant or the

PWM waveforms can be shifted in a controlled way, based on a proper analytical model,

thus allowing to recover a correct measurement of the average value of the phase current.

Figure 6.18: Leg voltage shapes for any combination of output current sign and amplitude during
the dead time.

The high side PWM signal and the corresponding shape of the leg voltage in a switching

period are depicted in Fig. 6.18, for a certain value of the leg node capacitance and four

different current values, namely positive and negative, higher or lower than the threshold

value. The dead time on both semi periods are shown with green areas, whilst the light

blue ones highlight the behavior of the leg voltage due to the capacitive effect, resulting in a

modiőcation of both the average leg output voltage and the symmetry point of the waveform.

One can notice that, based on the choice of dead time insertion strategy (e.g. delaying the

rising edges, as in this example, or introducing a symmetrical dead-time), the resulting leg

voltage is modiőed (e.g. shifted ahead in this example) and the correct average current

value can be obtained by either delaying the sampling point (as shown in the őgure) or

advancing the PWM signals. If this second case is considered (that provides some additional

beneőts as brieŕy discussed hereinafter), the advance time can be analytically calculated by

imposing the symmetry condition of the average leg voltage within each PWM switching

period, Eq. 6.50.

∫ Ts/2

0

Ux0(t)dt =

∫ Ts

Ts/2

Ux0(t)dt (6.50)

The contribution of the light blue areas Ar and Af can be analytically calculated, leading

to Eq. 6.51 and Eq. 6.52. The switch voltage Usw has been neglected to simplify the calcu-

lations (this assumption does not introduce a substantial error). By forcing the symmetry
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condition Eq. 6.50, the time advance (tadv) for each current region can be computed, as

reported in Eq. 6.53.

Ar =







0 if ix ≥ 0

− T 2

dtix
4Cout

if − ithr ≤ ix < 0

TdtUdc +
U2

dcCout

ix
if ix < −ithr

(6.51)

Af =







U2

dcCout

ix
if ix ≥ ithr

TdtUdc − T 2

dtix
4Cout

if 0 ≤ ix < ithr

TdtUdc if ix < 0

(6.52)

tadv =

{

tΛ0adv =
Tdt

2
− Tdt−|ix|

4ithr
if |ix| < ithr

tΛ1adv =
UdcCout

2|ix| if |ix| > ithr
(6.53)

It is worth noticing that delaying or advancing must be applied to each leg current sam-

pling or PWM waveform respectively, as a function of system parameters and the actual

current value of each leg, based on model Eq. 6.53. It is also important to notice that the

latter solution (i.e. advancing of PWM signals) allows to regain symmetrical leg voltages,

with additional advantages in terms of current ripple minimization, and it is therefore prefer-

able with respect to the former solution. This compensation becomes particularly important

close to the zero-crossings of the currents and with low inductance loads, since ripple current

is high and an incorrect current sample is obtained with respect to the actual average value

if no compensation is adopted. Reduction of the current ripple by PWM advancing (espe-

cially near zero crossings, as said), deőnitively allows to improve the quality of the controlled

currents.

Simulation results are reported in Fig. 6.19. to provide a validation of the proposed cur-

rent sampling compensation strategy in case of PWM advancing based on Eq. 6.53 and a

constant capacitance model for the power switches. Triangular carrier and ideal sampling

instant (i.e. the peaks of the carrier signal), instantaneous leg voltages, their average values

within each half switching period and one phase current are reported without (left diagram)

and with (right diagram) proper advancing on the PWM signals on each leg. The actual

average values of the a leg output current is also drawn. One can notice how the value of the

instantaneous current in the ideal sampling point is quite far from the average values without

the PWM advancing strategy. When the advancing is active, a perfect match is obtained,

as clearly visible in the right diagram, thus proving that the compensation is effective. Also,

the average voltage values are identical within each half switching period, demonstrating

that PWM advancing allows to recover the symmetry of the leg voltages, in turn minimizing

the current ripple as shown in the bottom subplots.
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Figure 6.19: Current sampling compensation strategy: without (left) and with (right) PWM
advancing.

6.6 Experimental Results

Experimental validation of the dead time compensation strategy was done by a commercial

drive feeding both an induction and a permanent magnet synchronous machine.

A őrst set of tests have been performed with the induction machine, fed by a rotating voltage

space vector (whose amplitude is comparable to the level of voltage distortion introduced

by the dead time) and a controlled rotating current space vector. The results of the volt-

age injection are reported in Fig. 6.20, where the comparison between the resulting phase

currents is shown without and with the compensation, respectively, leading to a reduction

of the total harmonic distortion (THD) from 9.4 percent to 3.6 percent. The amplitude

of the current in the second case is obviously higher due to a reduced (negligible) effect of

dead time on the actual phase voltages with the compensation active. The results of the

controlled rotating current space vector are reported in Fig. 6.21, where the comparison

between the resulting reference voltages is shown without and with the compensation, re-

spectively, leading to a reduction of the total harmonic distortion (THD) from 8.2 percent

to 4.2 percent. The current is closed loop controlled, therefore its shape is almost sinusoidal

in both cases. The amplitude of current and voltage is also very different between with and

without compensation.

The last test conditions have also been adopted to analyze the effects of the estimated

capacitance value on the effectiveness of the compensation. In the test results of Fig. 6.22

two detuned values are adopted with respect to the nominal (i.e. the value estimated by the

regression algorithm), namely -50 percent and +100 percent. It is relatively clear that the

quality of the compensation decreases in both the situation, as expected, leading to a THD

level of 5.8 percent and 6.9 percent respectively.

Indeed, compensation of inverter non-linearities has also a beneőcial effect on the response
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Figure 6.20: Phase currents for open loop rotating voltage space vector injection (induction
machine, fs = 2Hz, Us = 35V , Tdt = 4µs, Tsw = 100µs).

Figure 6.21: Reference voltages for closed loop rotating current space vector control (induction
machine, fs = 2Hz, |i| = 2A, Tdt = 4µs, Tsw = 100µs).

Figure 6.22: Reference voltages for closed loop rotating current space vector control in case of
detuned capacitance value in the compensation model.
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of the current control loop, as demonstrated hereinafter in a second set of tests done with

the permanent magnet machine at 20Hz electrical frequency. A standard cascaded speed

and current control is considered, with two different values for the load torque, namely 0.9

and 3.7Nm. The current regulators have been intentionally tuned for a lower bandwidth, in

order to emphasize the effects of the dead time on the current control performance for the

sake of a better evaluation of the effectiveness of the compensation strategy. The results are

reported in Fig. 6.23. The current is relatively distorted when compensation is not applied,

since the rejection of the (voltage) non linearity effects on the current control loop is poor

due to the the chosen bandwidth. Injection of the compensation voltages allows to improve

the shape of the current in both the load conditions. Quantitative comparison is reported in

Table. 6.2, where the THD and the relative amplitude of 5th and 7th harmonic is reported in

dBc (i.e. with respect to the fundamental value), showing almost 3 times lower THD with

compensation.

Figure 6.23: Phase currents without and with dead time compensation under two different load
torque (0.9Nm top diagrams, 3.7Nm bottom diagrams.

Table 6.2: Performance Comparison.

Load Torque Compensation THD 5th harm 7th harm

0.9 [Nm] With 7.5 percent -23 dBc -50 dBc
0.9 [Nm] Without 2.5 percent -51 dBc -48 dBc
3.7 [Nm] With 3.8 percent -30 dBc -36 dBc
3.7 [Nm] Without 1.3 percent -43 dBc -53 dBc
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6.7 Conclusion

A recent approach for dead-time compensation adopting an analytical model of the physical

behavior of the inverter non-linearities has been considered. Model parameters are derived

from a self commissioning procedure, based on proper voltage injection and processing, both

affecting the accuracy of achievable compensation. One of the crucial aspects of this approach

is the autonomous selection of the threshold current of the measured voltage to current char-

acteristics, a value whose reliable knowledge is mandatory for the accurate identiőcation of

the non-linearity model. Two new methods that assure minimal error estimation have been

proposed and validated in this chapter, allowing the full self commissioning of the compen-

sation algorithm. Also, a different type of voltage injection has been proposed, allowing a

more effective estimation of the voltage to current characteristic and direct compensation

of each leg voltage as a function of the corresponding current. Finally, the effects of the

non-linearities on the accuracy of current sampling and control loops have been analyzed,

and an original compensation strategy was proposed and validated. Theoretical analysis

and developments have been reported, together with accurate simulations and experimental

results based on a commercial drive.
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Chapter 7

Conclusion

In this thesis, the advanced control of Interior Permanent Magnet Synchronous Motor and

Synchronous Reluctance Motor is studied.

The thesis is started by an introduction in Chapter. 1. In this chapter a literature review is

presented for IPM and SynR machines, their main features, advantages, main applications.

The magnetic structure of IPM and SynR motors are examined in Chapter. 2. Based on

advantages and disadvantages of these motors they have been compared. Following this

evaluation of the PMSM analytical model, mechanical and electrical equations are obtained.

Furthermore,the behaviour of the motor in MTPA and ŕux-weakening regions is presented

in this chapter.

In Chapter. 3, A fair evaluation of the accuracy and performance of RSI and VSI and a

direct comparison between them is proposed. Simulations have been carried out for two

types of motors. To avoid possible errors due to interpolation of ŕux maps and measures

inaccuracy, an analytical model of SynRM is developed and used to test the accuracy of the

two algorithms. As can be seen from the results, if no compensation for tracking error is

applied to VSI algorithm, RSI has better accuracy.

VSI accuracy for estimating the MTPA is affected by the knowledge of some machine param-

eters and should be considered indeed an estimation method based on the model knowledge,

while RSI entirely relies on extremum seeking approach. In the VSI method, the steady-

state MTPA error is mainly due to variation of magnetic parameters, which were supposed

constant. In order to address this issue, a compensation strategy for the tracking error

is introduced, resulting in a substantial improvement of accuracy, allowing to increase the

accuracy of this method even in the case the machine ŕux maps are known with poor reso-

lution. A further improvement is proposed, which allows analytical tuning and adaptation

of the tracking loop gains, assuring both stability and the same dynamical performance in

the whole machine operating range.

From the dynamical point of view, the model of an IPMSM is used to test the dynamical

behavior of the two algorithms. Another test is carried out on a real SynRM to investigate

the accuracy of the two algorithms even when quantization of ŕux maps is low. Experimental

tests have been carried out on the real IPMSM in order to prove simulation results. As can
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be seen from the results, accuracy of the VSI algorithm is worse with respect to that of RSI,

when no Ld LUT contribution is applied. However, since the saliency of the IPMSM is lower

with respect to SynRM, the error is relatively small.

As a future works, the RSI and improved VSI can be tested on the Permanent Magnet as-

sisted Synchronous Reluctance Motors (PMa-SyRMs).

In Chapter. 4, a new analytical solution is presented to control the motor torque in the

maximum-torque-per-ampere and ŕux-weakening region with a torque constraint. The con-

troller is designed to operate in wide speed range; MTPA, ŕux weakening and MTPV regions.

Based on the proposed solution the complexity of the quartic equation of dq axis current

is decreased signiőcantly. The method is compared with another analytical solution, ex-

perimentally to investigate them based on the computation time. By using the proposed

method, the computation time is decreased 56% versus Ferrari’s method for MTPA region.

In ŕux weakening region the difference of computation time for the proposed method and

Ferrari’s solution is 51%. Furthermore, the novel solution is applied to an IPMSM in MTPA

region experimentally considering constant and adaptive q-axis inductance. As a results, the

proposed method track the MTPA trajectory with a high accuracy.

As the future works, the novel method is going to be tested experimentally in ŕux-weakening

region. In addition, the minimum vector solution can be studied analytically in MTPV re-

gion.

In Chapter. 5, GMDH method is presented to approximate the ŕux-linkages of the IPMSM.

Using this method can be done online where the inputs are the dq axis currents. The method

is compared with a polynomial method. The simulation results conőrm that the accuracy of

GMDH is higher than polynomial method due to error percentage. Based on the results the

error percentage for d− and q−axis ŕux-linkages using GMDH is less 3 times and 2 times re-

spectively compare to polynomial approximation method. The GMDH method approximate

the ŕux-linkages maps of IPMSM (achieving approximately half the RMSE error, Table I),

while polynomial methods are accurate only for SynRM.

As the future work, the GMDH method can be used for SynRM motor to approximate the

ŕux maps. Furthermore, the approximated ŕux maps can be applied to the controller instead

of constant value of the motor parameters or LUT.

In Chapter. 6, a recent approach for dead-time compensation adopting an analytical model

of the physical behavior of the inverter non-linearities has been considered. Model param-

eters are derived from a self commissioning procedure, based on proper voltage injection

and processing, both affecting the accuracy of achievable compensation. One of the crucial

aspects of this approach is the autonomous selection of the threshold current of the measured

voltage to current characteristics, a value whose reliable knowledge is mandatory for the ac-

curate identiőcation of the non-linearity model. Two new methods that assure minimal error

estimation have been proposed and validated in this chapter, allowing the full self commis-

sioning of the compensation algorithm. Also, a different type of voltage injection has been

proposed, allowing a more effective estimation of the voltage to current characteristic and

direct compensation of each leg voltage as a function of the corresponding current. Finally,
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the effects of the non-linearities on the accuracy of current sampling and control loops have

been analyzed, and an original compensation strategy was proposed and validated. Theoret-

ical analysis and developments have been reported, together with accurate simulations and

experimental results based on a commercial drive.
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