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a b s t r a c t

This paper surveys the supportive technologies currently available for ground mobile robots used for
autonomous mapping in agriculture. Unlike previous reviews, we describe state-of-the-art approaches
and technologies aimed at extracting information from agricultural environments, not only for
navigation purposes but especially for mapping and monitoring. The state-of-the-art platforms and
sensors, the modern localization techniques, the navigation and path planning approaches, as well as
the potentialities of artificial intelligence towards autonomous mapping in agriculture are analyzed.
According to the findings of this review, many examples of recent mobile robots provide full navigation
and autonomous mapping capability. Significant resources are currently devoted to this research area,
in order to further improve mobile robot capabilities in this complex and challenging field.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, the research interest in precision agriculture is
rowing since global warming, climate change, and population
ncrease are demanding the production optimization, waste min-
mization, and sustainability enhancement. Climate change is
ndeed increasing weather fluctuations, natural disasters, and de-
ertification, thus making agriculture production more challeng-
ng (Abbass et al. [1]). The agricultural demand is also stressed by
he population increase, which is expected to grow from 7 to 10
illion in 2050, as predicted by the United Nations (Searchinger
t al. [2]). Moreover, the 70% of the world population is supposed
o live in urban areas by 2050, leading to a lack of rural workers
Phasinam et al. [3]). As a result, the demand for automation is
rowing, and novel strategies and technologies are needed not
nly to optimize farming productivity, but also for monitoring
nd inspecting plants and crops (Oliveira et al. [4]).
Mobile robotics can be of extreme importance in the context

f precision agriculture [5,6] to automate different tasks (e.g., har-
esting, weeding, sowing, and planting), and to boost production
ield, while minimizing the waste of resources (e.g., water, nu-
rients, and pesticides), as stated by Elsayed et al. [7]. Sensorized
obile robotic solutions are increasingly used also for mapping
nd monitoring, since they can detect with high accuracy the
patial heterogeneity of agricultural terrains and crops.
Traditional remote sensing techniques adopted to perform

apping in agriculture are generally based on images taken by
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satellites [8–10], aircrafts [11], and unmanned aerial vehicles
(UAVs) [12,13]. Alongside these technologies, which can mainly
provide data from a top view, ground mobile robots are starting to
be used for monitoring and mapping in the complex operational
context of agriculture. Robotic solutions, indeed, can acquire data
from crops and plants at a close range and from different view-
points, are less weather dependent than airborne platforms, are
not subjected to strict legislative regulations, and have a higher
payload with respect to UAVs.

In this work, we provide a critical review of the supportive
technologies for ground mobile robots for autonomous mapping
in the challenging field of agriculture, by building on the work
by Tiozzo et al. [14]. This article differs from existing reviews
in terms of its focus: autonomous mapping applications in agri-
culture. With autonomous mapping we refer to the ability of a
mobile robotic system to acquire data and build a map of the
surrounding environment without external intervention. More in
detail, the mapping application is here focused on the monitoring
and inspection of real-world agricultural crops and plants. We
consider as supportive technologies both hardware (platforms and
sensors), and software (localization, path planning, and artifi-
cial intelligence methods) supporting the purpose of mapping in
agriculture. In this survey, we propose to address the following
research questions:

• What are the state-of-the-art hardware technologies for au-
tonomous robotic mapping in agriculture?

• What are the modern localization and mapping approaches
for mobile robotics in agriculture?
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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• What are the path planning strategies for autonomous nav-
igation in agriculture?

• How is artificial intelligence applied for robotic mapping and
monitoring purposes in agriculture?

• What are the future developments and challenges to im-
prove autonomy and reliability of robotic platforms in agri-
culture?

Several works assessing mobile robotics for agriculture can be
found in the literature. However, to the best of our knowledge,
the existing reviews are either out of the topic of this paper,
out of date, or narrow in scope. Table 1 presents the review
papers written on mobile robotics in agriculture over the last
five years, which are more related to the topic of this article. A
broad introduction to robotics applications for monitoring and
phenotyping in precision agriculture is provided in [15–17], refer-
ring to the technologies developed in the last 20 years. The three
aforementioned publications cover destructive measurements for
plant inspection (e.g., leaf picking by robotic arms) in addition to
mobile robotic systems. On the contrary, in the work by Sishodia
et al. [18] particular focus is given to non-destructive techniques
through remote sensing technologies. While mobile robots are
briefly mentioned in [18], the majority of the methods described
in that article are designed to work with data from sensors
installed in the field or from aerial and satellite systems.

Robotic platforms exploited for field operations are described
in [4,19–21], focusing, however, on multipurpose robots that
were not primarily designed for inspection and monitoring. In-
sights on sensors needed by robotic platforms to perform mon-
itoring tasks can be found in [22,23], with special focus on the
work by Guo et al. [24] that applies light detection and ranging
(LiDAR) technology for three-dimensional observations. Although
centered on sensing technologies, these articles provide little
information on how to build a three-dimensional map, especially
when employing robots as mobile mapping systems. Further-
more, simultaneous localization and mapping (SLAM) methods
used by mobile robots in agriculture and forestry are discussed
in [25–27]. However, these papers cope with the SLAM problem
only for navigation, with no discussion on the issues posed by
the complex operational context and no explanation on how the
obtained map can be useful for agricultural purposes.

The problem of autonomous navigation for mobile robots in
agriculture is addressed in the work by Santos et al. [28], and
expanded by Li et al. [29] for navigation in orchards, and by
Hrabar et al. [30] for vineyards. Moreover, an overview of crop
row navigation techniques is given by Bonadies et al. [31]. Please
note that these publications are confined to strategies suited to a
specific scenario, and do not provide insights on their applicabil-
ity in other environments. The availability of similar navigation
techniques for unmanned aerial vehicles and quadrupedal robots
is reported in the works [12,32], respectively.

The aforementioned articles discuss what characteristics a mo-
bile robot needs to be autonomous, but they do not furnish details
about how to use the onboard sensors for monitoring and map-
ping. Furthermore, computer vision techniques in agricultural
automation are explored by Tian et al. [33], but only the image
acquisition methods and sensors are classified, dealing marginally
with image-based deep learning algorithms. Future uses of deep
learning in agricultural production management based on large-
scale data are discussed by Darwin et al. [34], and additional
information on the use of artificial intelligence techniques in
precision agriculture can also be found in the works cited in
[6,35,36]. These studies are helpful for understanding the chal-
lenges that artificial intelligence techniques need to face in differ-
ent agricultural scenarios. However, there is a lack of information
on the advantages and disadvantages of mobile robots as well as
2

discussion regarding the viability of the suggested methods on
these platforms.

Finally, the literature reports works in which the importance
of big data and Internet of Things applications to optimize agri-
cultural production is stressed, as in [1,2,5]. In the latter three
studies, though, terrestrial, aerial sensors and satellites take prece-
dence over autonomous mobile platforms.

In this review, we cover the aspects that should be consid-
ered in the development of an autonomous mobile robot for
inspections in agricultural environments. Moreover, we describe
real-world operations in complex and challenging scenarios. The
main contributions of this work are: (a) a comprehensive catego-
rization and comparison of hardware systems that characterize
a mobile robotic mapping platform to be used in agriculture;
(b) a discussion on standard localization techniques and cutting-
edge alternatives to handle the challenges posed by complex
agricultural scenarios; (c) an extension to the mapping prob-
lem to include the information useful for phenotyping purposes;
(d) an overview of how classic path planning methods need to be
extended and modified to ensure their robustness even in these
challenging environments; and (f) a selection of artificial intelli-
gence (AI) methods for agricultural perception, which have been
tested by mobile robots in the field. As a conclusion, we identify
current trends, highlight unexplored paths in the literature, and
suggest future research directions.

Fig. 1 summarizes the proposed classification of fundamental
aspects to be considered for autonomous mobile robotic mapping.
First, the robotic platform requires computing capabilities and
onboard sensors to gather geometric, visual, and spectral data
from the surrounding scenario. To georeference the collected data
and produce a map of the environment, a robust and accurate
localization strategy should be applied. Moreover, the robot needs
reliable path planning strategies for autonomous navigation pur-
poses. Finally, thanks to AI, the robot can recognize and classify
objects in the explored environment.

This article is structured as follows. In Section 2, the methodol-
ogy adopted for the literature review is presented. In
Section 3, robotic platforms and sensors for autonomous mapping
in agriculture are described. Section 4 deals with the localization
problem and the reconstruction of maps for monitoring purposes
in agriculture. Global and local path planning approaches, as well
as exploration strategies adopted in agricultural environments
are addressed in Section 5. Section 6 discusses recent applications
of data-driven pattern recognition approaches, mainly based on
images and three-dimensional geometric data, to agricultural
monitoring and mapping tasks. Section 7 highlights future trends
and research directions. Finally, the conclusions are given in
Section 8.

2. Methodology

We consulted the Scopus database and analyzed the scien-
tific articles published from January 2012 to December 2022.
The following combinations of words were used in searching
within article titles, abstracts, and keywords: ‘‘agriculture’’ AND
‘‘artificial intelligence’’ AND ‘‘mapping’’ (140 papers found), ‘‘agri-
culture’’ AND ‘‘artificial intelligence’’ AND ‘‘mobile robot’’ (15
papers), ‘‘agriculture’’ AND ‘‘autonomous’’ AND ‘‘navigation’’ (480
papers), ‘‘agriculture’’ AND ‘‘localization’’ AND ‘‘mapping’’ (149
papers), ‘‘agriculture’’ AND ‘‘mobile robot’’ (391 papers). A total
number of 1175 works, including multiple counts of the same pa-
per, were found. A paper belonging to different queries is counted
in all the queries. Uniqueness is then checked by importing the
results from Scopus to the Mendeley Desktop software v.1.19.8
and removing duplicates with the appropriate tool. A total of
1031 unique papers was found.
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Table 1
Review papers and their focus on the topic of mobile robotics in agriculture over the last five years.
Author Year Ref. Focus of the review

Monitoring

Ammoniaci et al. 2021 [15] Monitoring techniques and data processing for precision
viticulture

Atefi et al. 2021 [16] Robotic technologies for plant phenotyping
Botta et al. 2022 [17] Perception and tasks in precision agriculture
Sishodia et al. 2020 [18] Applications of remote sensing in precision agriculture

Platforms and sensors

Duckett et al. 2018 [19] Robotics in Agri-Food industries
Fountas et al. 2020 [20] Robotic platforms for field operations
Guo et al. 2020 [24] LiDAR sensor observations of agricultural environments
Magalhães et al. 2022 [22] Active perception for fruit harvesting robots
Oliveira et al. 2021 [4] Advances in agricultural robotics
Tardaguila et al. 2021 [23] Smart applications and digital technologies in viticulture
Vougioukas et al 2019 [21] Advances in agricultural robotics

Localization

Aguiar et al 2021 [25] Simultaneous localization and mapping in agriculture and forestry
Ding et al. 2021 [26] Simultaneous localization and mapping in agriculture

Navigation and path planning

Bonadies et al. 2019 [31] Crop row navigation methods
Ferreira et al. 2022 [32] Localization, mapping, and path planning for quadruped robots in

vineyards
Gao et al. 2018 [27] Localization, mapping, and path planning for wheeled robots in

agriculture
Gyagenda et al 2022 [12] UAV navigation techniques
Hrabar et al. 2021 [30] Autonomous navigation in vineyards
Li et al. 2021 [29] Autonomous navigation in orchards
Santos et al. 2020 [37] Path planning for ground robots in agriculture

Artificial intelligence

Darwin et al. 2021 [34] Recognition of bloom in crop images using deep learning models
Linaza et al. 2021 [35] Data-driven artificial intelligence applications for precision

agriculture
Pathan et al. 2020 [36] Artificial cognition for applications in smart agriculture
Subeesh et al. 2021 [6] Precision agriculture using artificial intelligence and internet of

things
Tian et al. 2020 [33] Computer vision in precision agriculture

Other

Abbass et al. 2022 [1] Climate change impacts and sustainable mitigation measures
Goel et al. 2021 [5] Internet of things and data-driven technology in smart agriculture
Searchinger et al. 2019 [2] Solutions for sustainable food production
The trend of the number of published articles over the years
ccording to the keyword search is shown in Fig. 2 (a paper
elonging to different combinations of keywords can be counted
ultiple times). As it can be seen from the figure, the trend
f research articles including localization and mapping issues,
nd particularly the use of mobile robots in agriculture, is fast
ncreasing, with most of the papers published within the last four
ears. The green line of the graph, which refers to the keywords
earch ‘‘agriculture’’ AND ‘‘artificial intelligence’’ AND ‘‘mobile
obot’’, is rather stationary. This shows that mobile robots in agri-
ulture are still not considerably relying on artificial intelligence
echnologies, which have been instead increasingly applied in
everal fields in the last decade.
From the total number of publications retrieved, we then

elected only the ones that pertain to autonomous mapping.
ven though not all the robotic solutions discussed in this article
re capable of accurately reconstructing an agricultural environ-
ent in 3D, they are still mentioned if they implement novel

echniques for localizing the robot, navigating in the field, or
xtracting information from the acquired data that could make
he mobile robot more autonomous during a mapping session.
orks addressing the use of mobile robots to specifically perform

gricultural tasks such as harvesting or pruning are not included,
nless the robot is equipped with particularly useful sensors and
apabilities for mapping and monitoring.
The works analyzed in this review are chosen to limit the

cope of the paper to wheeled and tracked mobile robots.
3

Quadrupedal robots can be also adopted for agricultural moni-
toring tasks, as stated by Ferreira et al. [32], but are not included
in this survey. The outcome of the whole shortlisting process was
the selection of 148 articles.

3. Hardware technologies

In this section, the hardware technologies currently avail-
able for mapping and surveying agricultural environments are
reviewed. We describe mobile robotic platforms, sensors, and
embedded computers to be used onboard.

3.1. Robotic platforms

Robotic platforms, also referred to as unmanned ground vehi-
cles (UGVs), are designed with diverse kinematic solutions to bet-
ter adapt to rough agricultural terrains. These solutions comprise:
tracked skid-steered (Fig. 3(a)), wheeled skid-steered (Fig. 3(b)),
four-wheel steering (Fig. 3(c)), and Ackermann steering (Fig. 3(d))
vehicles. Tracked skid-steered vehicles (e.g., Gao et al. [38]) are
mainly used to avoid getting stuck due to sinking in soft ground,
since tracks, compared to wheels, reduce sinkage and increase
traction. On the contrary, tracked mobile robots are not utilized
in wheat fields or similar crops, to prevent the compaction of
plants. To clarify, both tracked and wheeled skid-steered are
differentially driven solutions. The Ackermann steering geometry
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Fig. 1. Overview of the topics covered in this survey.
Fig. 2. Number of papers over the year of publication, from January 2012 until and including December 2022, database Scopus.
s widespread (e.g., [39–42]), as it overcomes the need for wheels
o slip sideways when performing a curve. Skid-steered solutions
e.g., [43,44]) and four-wheel steering solutions (e.g., [45–48])
re advantageous in small or cluttered environments. For these
easons, skid-steered and four-wheel steering kinematic solutions
re frequently employed in under-canopy (Manish et al. [49]) and
reenhouse navigation (Baek et al. [50]).
4

Robotic platforms can be divided into three main categories:
custom mobile robots, such as the platforms designed in [49,53–
56] (Fig. 4(a), 4(c), 4(g), 4(h), and 4(i)), sensorized agricultural
machines, like the ones developed in [57,58] (Figs. 4(b) and 4(d)),
and commercial solutions, including those described in [59–61]
(Figs. 4(e) and 4(f)).
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(a) UGV with crawler mechanism (tracked
skid-steered) [38].

(b) Greenhouse UGV (wheeled skid-steered) [51].

(c) Bosh Bonirob (four-wheel steering) [52]. (d) John Deere TE Gator (Ackermann) [39].

Fig. 3. Examples of robotic platforms with different kinematic solutions and sensor suites.
An example of a custommobile robot used for fruit monitoring
n precision agriculture is shown in the work by Beloev et al. [62].
hat robotic platform is built with 3D printed components and
xploits the Ackerman steering solution. Another interesting cus-
om robot (Fig. 4(a)) is RobHortic [53]. It uses proximal sensors
o inspect the presence of pests and diseases in horticulture
rops, while being controlled remotely. Thanks to a calibrated
rtificial illumination system, its measurements are unaffected
y natural light. Furthermore, PhenoBot [63] introduces the in-
ovation of carrying sensors on a telescoping and self-balancing
ast to collect agricultural data at various heights. The mast is
laced between the front and the rear part of PhenoBot, which
re connected by an articulated steering joint. Moreover, Pire
t al. [55] present the robot used to acquire the Rosario dataset,
hich contains stereo images and data from localization sensors
aptured in soybean fields. That robotic system features four
atteries that are charged by photovoltaic cells placed at the top
f the vehicle, as is shown in Fig. 4(h).
The second category includes agricultural vehicles and tractors

quipped with drive-by-wire systems and sensors. Examples of
hese machines are reported in Figs. 3(d) and 4(d). In the work by
all et al. [39], an electric John Deere TE Gator with Ackermann
teering, shown in Fig. 3(d), is made completely autonomous by
eans of a RoPro Design interface. Furthermore, in the work by
ai et al. [64], an electric-driven agricultural tracked robot is
quipped with an Advantech MIC-7700 industrial computer as
ontrol unit.
The third group considers commercial mobile robots utilized

o map agricultural areas. These systems are described in Ta-
le 2, including dimensions, weight, travel speed, and driver
nformation. One of the most widespread platforms is the Husky
200 by Clearpath Robotics (Fig. 4(f)), used, for example, in [65–
7]. The Husky A200 is a medium-sized UGV, available with a
ensor suite integrated directly by the manufacturer, comprising
lobal Navigation Satellite System (GNSS) receiver, LiDAR sensor,
tereo camera, and inertial measurement unit (IMU). A smaller
5

solution from Clearpath Robotics is Jackal (see e.g., [68,69]). Both
these robots are provided with an onboard computer with the
Robot Operating System (ROS) preinstalled, for out-of-the-box
autonomous capabilities. Similar solutions are developed by Ag-
ileX Robotics, as for instance the Scout 2.0 used in Jiang et al. [70],
which, contrary to the Husky robot, is equipped with suspensions
and features four-wheel drive with independent motors (the
Husky model has only two motors).

The commercial robots previously mentioned are sensorized
mobile platforms designed for generic outdoor applications. Other
companies build solutions specifically for agriculture. Among
them, Thorvald (Fig. 4(e)), described by Fentanes et al. [46], can
quickly be customized to adapt to a particular environment, such
as a greenhouse, an open field, or a vineyard. Another interesting
robot is Bonirob (Fig. 3(c)), developed by Bosch, Amazone, and the
Osnabrück University of Applied Sciences [52]. Bonirob features
a complete sensor suite and proved to be capable of building
a large scale agricultural dataset, which details can be found in
the work by Chebrolu et al. [52]. Moreover, Bonirob provides
high maneuverability thanks to its four-wheel steering kinematic
solution and makes use of visual servoing and a penetrometer to
detect soil compaction.

The results of the literature review are summarized in the
pie charts shown in Figs. 5 and 6. The 54.1% of mobile robotic
platforms are customized solutions built for agricultural tasks,
31.7% are sensorized machines (e.g., tractors), and the remaining
14.2% are commercial robots. Regarding the kinematics solu-
tions, the most widespread is the wheeled skid-steered (44.0%
of the considered systems), followed by the Ackermann steering
(35.7%). Four-wheel steering (11.4%), and tracked skid-steered
robots (8.9%) are less common.

3.2. Sensors

In the following, the onboard sensors that can be used by
a robotic platform to survey agricultural areas and crops are
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(a) Custom mobile robot [53]. (b) Sensorized machine [57]. (c) Custom mobile
robot [49].

(d) Sensorized
tractor [58].

(e) Commercial robot (Thorvald) [59]. (f) Commercial robot (Clearpath
Husky) [61].

(g) Custom robot [54]. (h) Custom robot [55]. (i) Custom robot [56].

Fig. 4. Examples of mobile robotic platform solutions.
Table 2
Commercial robotic platforms employed in the papers analyzed in this review.
Commercial robot Kinematics Dimensions Weight Max speed Programming language ROS Ref.

[mm] [mm] [Kg] [m/s]

AgileX Scout 2.0 Wheeled skid-steered 930 × 699 × 349 68 1.5 C++ ✓ [70]
Bosh Bonirob Omnidir. 1500 × 1000 × 500 400 2.22 C++, Python ✓ [52,71–75]
Clearpath Husky A200 Wheeled skid-steered 990 × 670 × 390 50 1 C++, Python, Matlab ✓ [37,43,60,

65–67,76–
85]

Clearpath Jackal Wheeled skid-steered 508 × 430 × 250 17 2 C++, Python, Matlab ✓ [68,69,86,
87]

CoroWare Explorer Wheeled skid-steered 230 × 210 × 160 n.r. 0.6 C ✓ [88]
Robotnik Summit-XL Wheeled skid-steered 720 × 614 × 416 65 3 C++, Python ✓ [89,90]
Saga Robotics Thorvald Omnidir. 1500 × 1350 n.r. n.r. C++, Python ✓ [46,91,92]
Sterela Air-cobot Wheeled skid-steered 1450 × 800 × 1200 230 2 n.r. n.r. [93]
Traxxas X-Maxx Ackermann 518 × 417 × 419 4.2 13.5 n.r. ✗ [42,82,94]
Oz Naio Technologies Wheeled skid-steered 1300 × 470 × 830 150 0.5 C++, Python ✓ [93,95]
6
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Fig. 5. Pie chart of the mobile robotic platforms classification.

Fig. 6. Pie chart of the kinematics solution classification.

escribed. Tables 3, 4 and 5 list the published specifications of the
ost common LiDAR, visual and spectral sensors used by mobile
latforms in agriculture.

.2.1. Direct georeferencing systems
Localization sensors are used for autonomous navigation and

or the direct georeferencing of the acquired data. These systems
re mainly based on GNSS and IMU technologies.
Nowadays, satellite-based localization systems are quite ma-

ure and cheap. Thus, GNSS receivers have found numerous appli-
ations in agriculture (e.g., tractor autonomous navigation [96]).
n more detail, GNSS estimates the 3D absolute position (e.g., with
espect to the world geodetic system WGS84) of the receiver by
easuring the range from at least four satellites. The most well-
nown and employed GNSS constellation is the Global Positioning
ystem (GPS), operated by the United States Department of De-
ense [97,98]. One of the main drawbacks of GNSS positioning lies
n the low reliability in densely vegetated areas, due to multi-
ath propagation of the signals that reduces the position accuracy
hen compared to clear sky conditions (Kaartinen et al. [99]).
In addition to the absolute position, by mounting three anten-

as on a mobile platform, it is possible to retrieve the 6-degree-
f-freedom (DOF) pose of the robot, typically with an update rate
f 1 Hz (Hirokawa et al. [100]). In [57,101], the authors estimate
he vehicle yaw using methods based on multiple onboard GNSS
eceivers.

In agricultural applications, the attitude (roll pitch, yaw) of
he robot is more often derived using a 9-DOF IMU, as discussed
y Lan et al. [102]. The latter is a device that integrates a tri-
xial accelerometer (measuring linear accelerations), gyroscopes
measuring angular rate), and a magnetometer (commonly used
s a heading reference). IMU sensors typically output data at a
ate of up to 1 kHz. However, in slowly moving systems, IMU
ata are usually acquired at lower frequencies to reduce the
rift [49,103].
7

The size and weight of IMUs, together with their low power
consumption, make them ideal for the integration even in a small
robotic platform. Anyway, when mounting a 9-DOF IMU, it must
be taken into account that a locally disturbed magnetic field
might introduce inaccuracies in the orientation detected by the
magnetometer. The amplitude of the disturbance is determined
by the relative location and orientation of the measuring equip-
ment in relation to ferromagnetic materials, permanent magnets,
and strong currents (Vitali et al. [104]). Additionally, extrinsic
calibration (the process of aligning and recording the reference
frames) should be performed to estimate the position of the
IMU relative to the center of rotation of the robot or the sensor
(e.g., LiDAR) to which the IMU is coupled. Otherwise, the position,
velocity and acceleration readings are inconsistent and cannot be
used for sensor coupling.

3.2.2. LiDAR sensors
Geometric information on vegetation is mainly retrieved by

means of LiDAR sensors, which allow to reconstruct the map
of the surrounding scenario in the form of a point cloud. The
LiDAR working principle is based on the measurement of the
time taken by a laser pulse sent by the sensor and reflected by
the environment to come back to the instrument. This approach
to retrieve range measurements is implemented through micro-
electro-mechanical systems or optical phased arrays. LiDAR sen-
sors usually employed in agriculture are either spindle-type (a
360◦ field of view is guaranteed by a optomechanical rotating
system) or hybrid solid-state (that achieve deflection through
an internal moving mirror). Moreover, LiDAR systems can be
distinguished in 2D (28.1% of the considered works, Fig. 7) or 3D
(16.7%) according to whether they have a single laser ring that
performs measurements on a plane, or multiple rings. As shown
in Table 3, the most widespread commercial solutions among the
2D and 3D LiDAR devices are the SICK LMS 111 and the Velodyne
VLP16, respectively.

The high measurement range of LiDAR sensors (e.g., up to
100 m for the common Velodyne VLP16) enables their use for
mapping in both closed environments, such as greenhouses [41,
50,51,70,81,87,105], and outdoor scenarios, such as vineyards
[37,47,66,76–78,82,83,90,91,101,103,106–115] and orchards
[38,40,44,79,80,88,95,116–120].

2D LiDAR sensors are useful for localization and collision
avoidance, such as in the presence of moving humans or dy-
namic barriers in the robot environment [37,41,47,83,121–124].
To extend their applicability to build 3D point clouds, 2D LiDAR
sensors must be mounted in a way that the laser plane is placed
orthogonal to the robot trajectory (Fig. 8), as in [56,101,107,
113,118,125–127]. However, 3D LiDAR devices constitute a more
suitable solution for map reconstruction. In fact, these sensors
directly provide a dense point cloud of the surroundings and have
a larger field of view (FoV) in comparison to 2D LiDAR devices
(Table 3). The main limitation of LiDAR solutions in outdoor envi-
ronments arises when performing the survey in rainy conditions,
as raindrops may reflect or refract laser beams, resulting in noisy
and inaccurate point clouds (Wichmann et al. [128]).

In these conditions, radar has advantages as a robotic percep-
tion modality with respect to LiDAR, since it is less susceptible to
dust, fog, rain, and snow (Wichmann et al. [128]). For instance,
the PELICAN radar tested by Rouveure et al. [129] provides a
view of 360◦ of the surroundings in a range of 5 : 100 m.
However, this kind of radar can only build 2D images of the
surrounding environment. Besides, radars have better penetration
in vegetation than LiDAR sensors and cameras, and can detect
occluded targets (Cheng et al. [130]).
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Table 3
Overview of the LiDAR sensors integrated in the robotic platforms covered in this review. The * indicates hybrid solid-state LiDAR sensors.
LiDAR sensor model Resolution FoV Scan rate Measurement

range
Accuracy Ref.

[deg] [deg] [Hz] [m] [mm]

2D LiDAR sensor

HOKUYO URG-04LX-UG01 0.36◦ 240◦ 55 0.02 : 5.6 ±30 [82]
HOKUYO UST-20LX 0.25◦ 270◦ 200 0.06 : 20 ±40 [105]
HOKUYO UTM-30LX 0.25◦ 270◦ 200 0.01 : 30 ±50 [43,44,47,54,88,

90,91,120,126,
131]

SICK LMS 111 0.25◦/0.5◦ 270◦ 25/50 0.5 : 20 ±30 [40,58,65,66,123,
127,132–137]

SICK LMS 151 0.25◦/0.5◦ 270◦ 25/50 0.5 : 50 ±12 [124]
SICK LMS 200 0.25◦/0.5◦/1◦ 180◦ 75 0 : 80 ±15 [106,125]
SICK LMS 291 0.25◦/0.5◦/1◦ 180◦ 75 0 : 80 ±35 [136]
SICK LMS 511 0.1667◦ 190◦ 100 0.2 : 80 ±50 [51,135,138]
SICK TIM 310 1◦ 270◦ 15 0.05 : 4 ±30 [115]
SICK TIM 561 0.33◦ 250◦ 15 0.05 : 10 ±20 [122]
SICK TIM 781 0.33◦ 270◦ 15 0.05 : 25 ±60 [41]

3D LiDAR sensor

HOKUYO YVT-X002 n.r. 210◦
× 40◦ 20 0.3 : 25 ±100 [139]

Nippon Signal FX-6* n.r. 50◦
× 60◦ 8/16 0 : 16 [140]

Nippon Signal FX-8* 0.63◦/1.43◦
× 0.86◦/2.06◦ 60◦

× 50◦ 4/20 0.3 : 5 ±50 [52]
Ouster OS1–16 0.1◦

: 0.2◦
× 2.075◦ 360◦

× 33.2◦ 10 : 20 0.8 : 120 n.r. [141]
Robosense RS-LiDAR-32 0.1◦

: 0.4◦
× 0.33◦ 360◦

× 40◦ 5 : 20 0.4 : 200 ±30 [142]
Velodyne VLP16 0.1◦

: 0.4◦
× 2◦ 360◦

× 30◦ 5 : 20 0 : 100 ±30 [38,45,49,52,64,
72,73,87,91,105,
117,141,143]

Velodyne HDL32E 0.1◦
: 0.4◦

× 1.33◦ 360◦
× 40◦ 5 : 20 1 : 100 ±20 [57]

Velodyne HDL64E 0.08◦
× 0.04◦ 360◦

× 26.8◦ 5 : 14 0 : 120 ±20 [144,145]
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Fig. 7. Pie chart of the onboard sensors. Many platforms use more than one
sensor at the same time.

3.2.3. Visual sensors
Visual sensors offer RGB images that can be used for local-

ization, obstacle avoidance, and mapping. Moreover, a live video
transmitter and a camera system installed on the robot are ben-
eficial for manual piloting and viewing the robot in operation
[146,147].

As summarized in Fig. 7, visual sensors include monocular
(19.0% of the analyzed papers), stereo (9.5%), and depth cameras
(13.8%). Stereo cameras comprise two image sensors, perceiving
depth simulating human binocular vision. In low-textured scenes,
depth accuracy of the stereo vision can be improved using infra-
red (IR) patterns, as with the Intel RealSense D435 exploited in
[41,45,62,68,148–150] (Table 4). Aghi et al. [68] use the RGB-D
images from that camera to implement a local motion planner for
autonomous navigation in vineyards, whereas the camera is used
for 3D reconstruction by Vulpi et al. [150]. However, it is worth
noting that camera sensors making use of IR light are most likely
applied for indoor navigation, as the maximum measurable depth
is low and the technology is sensitive to sunlight.

Depth cameras provide range values by means of structured
light or time-of-flight (ToF) sensors. Among depth cameras, one
8

of the most widespread devices in agricultural scenarios is the
Kinect V2, used for instance in [43,52,89–91,105,151–153]. For
instance, the Kinect V2 is used as a mobile laser scanner by Rosell-
Polo et al. [152] and adopted by Matsuzaki et al. [151] to perceive
the types of obstacles for autonomous navigation purposes.

In the context of mapping, monocular cameras can be used
to create a 3D reconstruction of the surrounding area using a
structure-from-motion (SfM) approach, which integrates pictures
collected from many viewpoints (Sylvain et al. [154]). In addition,
a multi-camera system, composed of many sensors externally
calibrated, can be employed to gain a broader field of view, as in
[39,150]. Nowadays, a 360◦ field of view can be obtained through
ommercial systems, such as the Giroptic 360CAM mounted on
he sensorized tractor in the work by Kragh et al. [57] to acquire
dataset with both static and moving obstacles, or the Ladybug3
amera (Fig. 4(i)) used by Underwood et al. [56] as a support for
bstacle avoidance and crop row detection. However, no exam-
les of omnidirectional or wide-field-of-view vision systems for
isual odometry in agriculture are found in the literature.
Visual sensors are usually compact and operate adequately in

extured environments. For outdoor applications, it must be taken
nto account that they are not suited for bad weather conditions
r low light scenes, as stated by Patricio et al. [155]. Moreover,
he measurement range of ToF cameras is considerably smaller
han that of LiDAR sensors.

.2.4. Spectral sensors
The spectral response of vegetation depends on the absorption

f electromagnetic radiation by the pigments, and it represents an
mportant indicator, in the context of agriculture, for character-
zing the state of health of the plants (Bannari et al. [161]). To
his end, analyzing the visible part of the light spectrum is not
ufficient, and one should resort on the disparity in reflectance
etween the red and near-infrared (NIR) bands, as well as on the
pectral reflectance in the transition zone (the so-called red edge)
o gain important information regarding the vegetation status
French et al. [135]).
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Fig. 8. Example of 2D LiDAR configurations adopted to build 3D maps [44].
Table 4
Overview of the visual sensors integrated in the robotic platforms covered in this review.
Visual sensor model Technology Resolution Pixel size Fps Depth range Ref.

[pixel] [µm] [Hz] [m]

Monocular camera

Canon EOS 600D CMOS 5184 × 3456 4.29 3.7 ✗ [53]
Flir Blackfly S GigE CMOS 720 × 540 6.9 291 ✗ [81]
Grasshopper3 GS3-U3-23S6C-C CMOS 1920 × 1200 5.86 163 ✗ [45]
IDS UI-5240CP Rev.2 CMOS 1280 × 1024 5.30 60 ✗ [39]
Imaging Source DFK 21BUC03 CMOS 744 × 480 6 76 ✗ [116]
Logitech C920 PRO HD CMOS 1080 × 720 3.98 30 ✗ [57,122,156]
Logitech Pro 9000 CMOS 1600 × 1200 n.r. 5 ✗ [88]
Mako G-125C CCD 1292 × 964 3.75 30 ✗ [76]
Nikon D80 CCD 3872 × 2592 n.r. 5.89 ✗ [66]
Sony A7R CMOS 7360 × 4912 4.88 60 ✗ [49]

Stereo camera

FireWire Bumblebee2 CCD 640 × 480/1024 × 768 7.4/4.65 48/18 n.r. [133]
Multisense S21 CMV2000 CMOS 1024 × 544 n.r 10 1.5 : 50 [57]
Stereolabs ZED CMOS 1920 × 1080/1280 × 720/

672 × 376
2/4/8 30/60/100 0.5 : 25 [47,55,157,158]

Stereolabs ZED2 CMOS 2208 × 1242 : 672 × 376 2 15 : 100 0.3 : 20 [159]

360 camera

Giroptic 360CAM n.r. 1920 × 960/3840 × 1920 n.r. 25 ✗ [57]
Point grey Ladybug3 CCD (×6) 1616 × 1232 (each sensor) 4.4 16 ✗ [56]

Depth camera

ifm O3M150 ToF 64 × 16 n.r 50 n.r. [160]
Intel RealSense D435/D435i IR pattern RGB 1920 × 1080,

D 1280 × 720
1.4 30 0.3 : 3 [41,45,61,62,68,

148–150]
Intel RealSense L515 ToF RGB 1920 × 1080,

D 1024 × 768
n.r. 30 0.25 : 9 [62]

KinectV2 ToF RGB 1920 × 1080,
D 512 × 424

n.r. 30 0.5 : 4.5 [43,52,89–91,
105,151–153]
Specific spectral cameras are therefore built to capture visible
nd NIR wavelengths, usually exploited to compute vegetation
ndexes, i.e., combinations of image bands that enhance vegeta-
ion properties. The NDVI (Pettorelli et al. [162]), for instance,
s the normalized difference between the reflectance in the red
isible (670 nm), and in the NIR (780 nm) [163]. An area without
egetation gives NDVI values close to 0, whereas values close to 1
re found in correspondence of high density of leaves or healthy
anopies. Moreover, the normalized difference red edge (NDRE),
omputed considering NIR and red edge wavelengths (730 nm),
s sensitive to leaf chlorophyll content, plant vigor, and stress
etection (Thompson et al. [163]). Several vegetation indexes are
iscussed by Poccas et al. in [164], where the authors analyze
he use of each indicator for a variety of crop species and offer
etails on their benefits and drawbacks. Furthermore, the work by
ong et al. [165] provides instructions on how to adopt red-edge
easurement to estimate leaf density using the leaf area index.
In 10.0% of the considered papers (Fig. 7), spectral sensors

re taken into account, allowing to collect the data employed for
egetation index calculation. The radiometric resolution is the key
arameter for the classification of spectral cameras into multi-
pectral (less than 20 narrow bands), or hyperspectral (hundreds
9

of narrow bands). To obtain a radiometrically trustful reflectance
map, multispectral cameras are provided with a light sensor that
measures the incoming radiation from the sun. This informa-
tion is subsequently exploited for the radiometric calibration of
the captured images, that makes it possible to compare images
taken with different illumination conditions. The light sensor, also
known as sun or sky sensor, must be installed on the mobile
robot looking upward and apart from active sensors to prevent
interference (e.g., LiDAR sensors), as in [56,110,160].

Among the applications of mobile robots equipped with mul-
tispectral cameras, we can cite the work by Clamens et al. [89],
where a multispectral camera is used in a vineyard to generate
NDVI colored images. In [53,123], crop field images are acquired
with the sensor pointing downward, the NDVI index is computed
and thresholding is then applied to identify pixels that belong to
vegetation, as shown in Fig. 9. Furthermore, the robot Bonirob
(Fig. 3(c)), which features a four-channel multispectral camera
onboard, is used to detect plants and assess the crop status by
Fawakherji et al. [71], and to gather an open-access dataset of
multispectral images by Chebrolu et al. [52]. The multispectral
cameras employed in the aforementioned studies have a number
of channels ranging from 4 to 8, as summarized in Table 5.
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Table 5
Overview of the spectral sensors integrated in the robotic platforms covered in this review.
Spectral sensor model Resolution Number of

bands
Spectral range Ref.

[pixel] [nm]

Multispectral camera

JAI AD-130GE 1280 × 960 4 400 : 1000 [52,71]
Parrot Sequoia 1280 × 960 4 530 : 810 [123]
Silios Technologies CMS-V 1280 × 1024 8 550 : 830 [53,89]

Hyperspectral camera

InSpectral-VNIR Infaimon SL n.r. 133 410 : 1130 [53]
Resonon Pika II n.r. 230 400 : 900 [56,144]

Thermal camera

ThermaCAM FLIR P640 640 × 480 1 780 : 1000 [110,160]
Teledyne FLIR A65 640 × 512 1 750 : 1300 [57]
UDOO MIPI 5MP IR AF 2592 × 1944 1 780 : 1000 [42,82]

Agriculture-specific sensor

Ag Leader Optrx Cropa n.r. n.r. 670 : 780 [108,118,134]
Apogee SI-131 1 × 1 1 800 : 1400 [135]
Apogee SI-421 1 × 1 1 800 : 1400 [110,160]
Crop Circle ACS-435 n.r. 3 670/730/780 [135]
SRS Meter Groupb n.r. 4 532 : 810 [137]

aThe Optrx Crop sensor directly outputs NDVI and NDRE index values.
bThe central wavebands of SRS Meter Group are specific for NDVI and PRI indexes.
Hyperspectral cameras are adopted to capture data in orchards
and crop fields in [53,56,96,144], respectively. The radiometric
resolution of these sensors is remarkably higher than multispec-
tral devices. For instance, the camera used in [56,144] is sensitive
to wavelength in the range 400 : 900 nm, with a resolution
f approximately 2 nm. The storage speed of the data logger,
hich needs to be sufficient to prevent data loss during acqui-
ition, is one of these sensors main bottlenecks. For this reason,
ven though the InSpectral-VNIR device has a greater resolution,
ubero et al. [53] capture only 133 bands in the domain of 410 :

1130 nm.
Due to the large amount of data collected, post processing,

and dimension reduction are often required to retrieve relevant
information with both multispectral and hyperspectral cameras.
In contrast, a solution for real-time processing is offered by spec-
troradiometers, which are sensors that collect sections of the
light spectrum necessary for vegetative index calculations. They
are employed, for example, by the robot Vinescout in a vineyard
in [110,160]. The work by French et al. [135] describes the use of
spectroradiometers for cotton phenotyping, whereas Perez-Ruiz
et al. [137] present a comparable sensor to determine NDVI and
Photochemical Reflectance Index (referred to as PRI and obtained
with the 532 : 570 nm light spectrum) values on wheat canopies.
However, in [135,137], the data are not analyzed online, and
a post processing step is performed. Please note that sensors
able to estimate crop health in real-time thanks to NDVI and
NDRE indices are already available on the market. The Optrx Crop
sensor, exploited for example in [108,118,127,134,166], is among
them.

Moreover, thermal cameras (used only in 2.4% of the consid-
ered research works) allow one to obtain further information on
vegetation, such as water state and stress. In particular, a review
of current and potential uses of thermal sensors in precision
agriculture can be found in the article by Khanal et al. [167].

Finally, the research work by Cubero et al. [53] shows that the
NIR channel can be captured using standard digital RGB cameras.
More in detail, replacing the red filter with a NIR one on a Canon
EOS 600D camera provided equivalent findings to those achieved
from multispectral cameras, and may be efficiently applied to
crop health monitoring.
10
3.3. Cutting-edge embedded computers

Autonomous mapping is a task that requires perception, lo-
calization, and motion planning methods. Additionally, more ad-
vanced intelligence capabilities based, for example, on artifi-
cial neural networks can improve the mapping results, as will
be explained in Section 6. To run those algorithms, the robot
must be equipped with adequate computing power, provided
by cutting-edge embedded computers. Common hardware solu-
tions employed by mobile robots in the agricultural context are
mainly based on Intel Core processors [38,41,46,51–53,64,65,75,
84,86,117,136,139,140,147,168–174], often coupled with NVIDIA
graphic boards [81,105,107,114,123,148,151,158,175–177]. ARM-
based computing units are nowadays achieving computing capa-
bilities that are suitable to accomplish several tasks, as demon-
strated in [70,178]. Common ARM-based solution are Raspberry
Pi and UDOO models, exploited in [62,111,131,179], respectively.
As the size and weight of the computer are crucial factors in the
design of mobile robots, Mini ITX motherboards, used in [43,60,
133], are often an excellent alternative to ARM architectures.

In the last years, the advances in the computing power of
embedded systems gave birth to the concept of Edge AI, which
consists of running trained AI models on embedded computers
online. In this context, Intel offers a family of hardware accelera-
tors, used for instance by Zhang et al. [178], which are compatible
with typical embedded computers such as the Raspberry Pi. To
give an example, the Raspberry Pi 3 B+ can be improved with
Neural Compute Sticks hardware accelerators (Figs. 10(a) and
10(b)). Similarly, the new hardware model Raspberry Pi 4 is used
with the Google Coral USB accelerator by Simoes et al. [180].

Moreover, NVIDIA provides a family of embedded computers
with dedicated GPU. Among the NVIDIA boards, one can find the
Jetson TK1 and TX2, used respectively in [47,87,181], as well as
the Jetson Nano (Fig. 10(c)), exploited in [50,76,149,182], and the
Jetson AGX Xavier (Fig. 10(d)), used by Mazzia et al. [183]. The
latter can be considered one of the most powerful solution among
the computers used by mobile robots analyzed in this survey. The
Jetson Nano is instead a cheaper solution designed with the goal
of lowering the board dimensions and cost, while increasing ener-
getic performance. Moreover, the recent Raspberry Pi 4, equipped
with a ARM Cortex-A72 CPU, has a performance closer to the
Jetson Nano. More detailed specifications of embedded systems
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Fig. 9. Example of multispectral image processing [89].
nd hardware accelerators can be found in the article by Mazzia
t al. [183].

. Localization and mapping

In this section, methods for locating a mobile robot in its sur-
ounding environment and thus to georeference the acquired data
re described, together with the types of map that can be built,
seful for phenotyping tasks. An overview of advantages and dis-
dvantages of localization methods is shown in Table 6, whereas
apping applications covered in this review are summarized in
able 7.

.1. Robot localization

The localization algorithms are required to estimate the robot
ose throughout the mapping session. Generally, in indoor sce-
arios the robot moves on a surface that can be considered
lanar: estimating its 2D position over the ground plane and its
aw is thus sufficient for navigation. However, agricultural terrain
annot always be considered planar and, for mapping purposes,
t is mandatory to retrieve the sensor position and orientation in
three-dimensional space, i.e., the localization algorithm must
utput 6-DOF poses.
On the one hand, incremental localization techniques are
ased on data giving the robot pose in a local frame, compatible

11
with the prior positions. On the other hand, global localiza-
tion methods provide poses in a known, fixed frame (Panigrahi
et al. [184]). The localization based on wheeled odometry, used
in an orchard in the work by Bayar et al. [40], is the simplest
incremental approach, but inaccuracies and drift increase over
time. This is related to wheel slip, which is difficult to measure
and variable in real-world agricultural contexts. On the contrary,
global methods can rely on GNSS standalone solutions, described
in Section 4.1.1, or on the coupling of the satellite-based approach
with IMUs, as illustrated in Section 4.1.2.

In addition, the literature reports a variety of techniques for
robot localization that exclude wheel-to-surface contact. The
most notable are visual odometry (VO) and LiDAR odometry (LO),
described in Sections 4.1.3 and 4.1.4, respectively. Commonly, ap-
proaches exploiting visual or LiDAR data can be considered SLAM
algorithms. With SLAM, we refer to the problem of retrieving
the pose of the robot, while concurrently reconstructing a 2D or
3D model of the surroundings. The pie chart shown in Fig. 11
summarizes the most common localization methods employed in
the papers covered in this review.

Furthermore, methods based on alternative data sources that
can be found in the literature are reported in Section 4.1.5. Finally,
Section 4.1.6 provides examples of how multiple techniques can
be combined to cover the drawbacks of each standalone method.

4.1.1. Global navigation satellite system
As introduced in Section 3.2.1, robot localization can be di-

rectly performed using a single GNSS receiver (as in the 4.5% of
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Fig. 11. Bar plot of the localization approaches reported in Table 7 (in this figure IMU stands for IMU-based localization).
he considered systems, Fig. 11). This approach is implemented
n a robotic platform by Fentanes et al. [46], and tested for
apping an uncultivated field, a crop field, and for water status
onitoring in a vineyard by Krus et al. [58], Saiz Rubio et al. [110],
nd Fernandez Novalez et al. [160], respectively. However, the
ccuracy provided by this system is significantly influenced by
he data acquisition and processing. When using a single receiver,
ndeed, the estimated 3D coordinates can be affected by errors
f up to a few meters. To achieve centimeter-level accuracy,
ifferential GNSS techniques can be employed. In this case, one
eceiver (the reference station) is located in a precisely known
nd fixed position and provides the onboard receiver (also called
over) with corrections. The latter can be implemented in real
12
time (from which the term Real-Time Kinematic-GNSS) thanks to
a communication radio link, or in post-processing mode.

The RTK-GNSS is exploited for localization in orchards
[125,126,171], in cotton fields [135,138], in corn fields [63], and
in vineyards [90,107,108,152]. Moreover, the RTK-GNSS approach
is coupled with wheel odometry for localization in an orchard
(Daglio et al. [134]), and in a carrot field (Cubero et al. [53]).
Obviously, the installation of receivers in the surrounding envi-
ronment constitutes a drawback of the method, because of the
cost of using multiple sensors and the need to place the reference
station in a known location. Nevertheless, a cost-effective solu-
tion is represented by GNSS correction service providers based
on networks of ground reference stations, available world wide.
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Finally, in agricultural sites, it should be considered that veg-
etation could cause signal blockage (as in indoor environments)
and multi-path reflection (Lan et al. [102]), decreasing the avail-
ability of the system (the total amount of time in which the
receiver reports a solution over the whole test duration) and
limiting its applicability.

4.1.2. Inertial measurement unit
Inertial measurement units exploit the so-called dead reckon-

ing to calculate the current pose of a moving object, i.e., the result
is obtained using the previously determined pose and integrating
subsequent estimates of acceleration, speed, and heading direc-
tion over elapsed time. In long measurement sessions, retrieving
the position of the robot only by means of dead reckoning can
lead to a drift, which is the difference between where the UGV is
really located and where the UGV assumes to be (Table 6). Par-
ticularly with vibrations, and double integration, the position es-
timates become quickly useless. Furthermore, it should be noted
that the measured signals are related to the unknown true values
by scale factors and biases, which are functions of temperature.
Therefore, due to the variability of weather conditions, sensor
bias could be problematic in agricultural scenarios. For these
reasons, in agriculture IMUs are never used for dead-reckoning
by themselves.

The use of IMUs coupled with other sensors is widespread in
mobile robotics for agriculture (found in 47.2% of the considered
robots, Fig. 11), since IMUs directly provide the orientation of the
robot, which is generally not available by means of a satellite-
based positioning solution. IMU also fills the gap between two
GNSS measurements over time, thanks to the higher update rate.
By integrating GNSS measurements, it is possible to reduce the
trajectory estimation drift that the dead reckoning approach typ-
ically experiences. Thus, the coupling of IMU and GNSS may
overcome the drawbacks of both solutions alone.

The literature reports applications of the IMU coupled with a
single GNSS receiver for the localization in vineyards [106,143],
orchards [144], crop fields [75,93], uncultivated fields [45,57,172],
and for under canopy localization [49]. Moreover, the RTK-GNSS
approach is combined with an IMU to perform localization among
crop rows [48,96], in vineyards [114,185], orchards [159], maize
fields [140], and gardens [176]. Finally, it is worth citing examples
of wheel odometry integrated to the RTK-GNSS - IMU localiza-
tion solution for applications in an uncultivated field [39], in a
citrus groove [43], in a garden [186], in a vineyard [111], and in
orchards [118,119].

As a consequence of the vehicle vibrations, very noisy path
estimations are generally provided by IMUs in rough terrains
(unless special filters are used, as in the work by Gao et al. [186]).
As a result, visual- and LiDAR-based approaches mentioned below
are frequently preferred.

4.1.3. Visual-based localization
Nowadays, visual odometry represents one of the most

widespread solutions for localization (exploited in 21.3% of the
works considered in this article, Fig. 11), with the goal of re-
trieving the pose of the camera by analyzing the captured image
sequence. Plug-and-play VO solutions are also available on the
market, thanks to cameras that directly integrate algorithms
able to output the sensor poses, as the one employed by Smitt
et al. [148] in a greenhouse, by de Silva [61] in a crop field, and
by Beloev et al. [62] in an orchard.

In general, the VO methods can be divided into two classes:
appearance- and feature-based. Appearance-based approaches
rely on photometric consistency to match two subsequent im-
ages. These methods are computationally more onerous and often
13
require GPU-based processing (Debeunne et al. [187]). Conse-
quently, feature-based approaches are favored for application on
robotics and autonomous systems.

Feature-based methods involve extracting local keypoints (such
as corners, lines, and blobs) and their descriptors from each im-
age, matching or tracking them across consecutive image frames
by comparing the identified features. Matches established across
multiple images are then used to estimate the camera motion.
For instance, a feature-based method is applied in [67,82] for
localization in vineyards and in [72] in a crop field. A commonly
used algorithm for feature extraction and matching is the so-
called SIFT (Scale-Invariant Feature Transform), that is invariant
to scale, rotation, and illumination of images (Se et al. [188]). A
VO method based on SIFT features and tested in a peanut field
can be found in the work by Dong et al. [189]. Alternatively,
template matching can be employed, as in [156]. This approach
entails finding the location of a template window, extracted from
an image, in the subsequent picture.

Several open-source feature-based VO algorithms are available
online and are tested in real-word agricultural scenarios. ORB-
SLAM and its variants (e.g., ORB-SLAM2) [190,191] are among
the most used, due also to their ability of correcting the ac-
cumulated drift of the estimated trajectory by exploiting loop
closure (i.e., the recognition of regions already visited). This is
identified through the bag-of-words algorithm, which counts how
often a visual feature occurs in a picture and converts such
image into a histogram of the so-called codewords, i.e., repre-
sentatives of similar features. The comparison among images is
thus performed thanks to the histograms stored in the database,
simplifying the process of place recognition and loop closure de-
tection. ORB-SLAM is tested, for example, in crop fields [192], and
orchards [175,193]. The robustness of this method is improved in
the latest version of the algorithm, ORB-SLAM3, released in De-
cember 2021 [194], and tested on the Rosario dataset by Cremona
et al. [195]. ORB-SLAM3 combines information from camera and
IMU, improving the localization estimations significantly.

Another widespread VO framework is Real-Time Appearance-
Based Mapping (RTAB-Map [196]), which supports inputs from
RGB-D, stereo and, additionally, LiDAR sensors. It combines two
main algorithms: a loop closure detector and a graph optimizer.
However, loop closure is exploited in a limited number of lo-
cations to achieve real-time performance in large-scale environ-
ments. RTAB-Map is employed in greenhouses in [41,105,151],
and in vineyards in [47], where the authors combine the VO mod-
ule of RTAB-Map, wheel odometry, and LiDAR data to enhance the
results.

The previously mentioned approaches are compared by Hroob
et al. [91] in a virtual vineyard, where the trajectory generated
using RTAB-Map proves to be the most accurate in a scenario
with multiple loop closures, with the robot traversing multiple
vine rows in a zig-zag pattern before going back to its starting
point. Instead, ORB-SLAM2 fails this task. Comelli et al. [197] carry
out a similar work with the Rosario dataset [55], and state that
the analyzed algorithms perform poorly in terms of accuracy and
robustness compared to the urban or indoor situations where
they are often evaluated.

To conclude, we would like to point out that the highly repet-
itive appearance of the environment, the strong vibration pro-
duced by the rough terrain, and the movement of the leaves
caused by the wind can limit the performance of the VO algo-
rithm [195]. To overcome these issues, other data sources are
currently being investigated to solve the SLAM problem: LiDAR
and radar, as it is reviewed in Sections 4.1.4 and 4.1.5.
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.1.4. LiDAR-based localization
In the literature, several SLAM algorithms based on the point

louds generated by LiDAR sensors can be found, an approach em-
loyed in 29.2% of the papers considered in this review (Fig. 11).
ocalization based on LiDAR sensors is beneficial since they are
haracterized by the independence from illumination, a FoV up
o 360◦, and long-range detection.

The extended Kalman filter (EKF) is a classical method for
ocating a robot using 2D LiDAR sensors (or the horizontal ring
f a 3D LiDAR sensor). The filter prediction step retrieves the
ose using dead reckoning, and the update step refines the pose
stimate using the measured location of a recognized landmark
Thrun et al. [198]). This method permits the evaluation of the
-DOF pose of the robot in the ground plane, and is particularly
uited for mobile robots with limited computational capabilities.
owever, in real-world agricultural contexts, it is not always
imple to extract features from the LiDAR data to be utilized
s landmarks. This technique can therefore be exploited in en-
ironments characterized by clearly visible and separate stems,
s in the orchard in [79,136], or when crop rows are easily
etectable and lines can be used as landmarks, as is the case
f vineyards in [66]. Furthermore, the lack of robustness of this
ethod may be overcome by employing artificial reflecting tar-
ets as landmarks [65,120], or by coupling calibrated images and
iDAR measurement and searching for distinctive features in the
mage frames, as tested in orchards by Cheein et al. [133].

An alternative solution is offered by the Rao-Blackwellized
article filter, whose details are explained in [199,200]. This tech-
ique relies on the whole bi-dimensional horizontal scan, and is
xploited in virtual agricultural environments in [80,122,145,153]
nd in greenhouses in [41,70,87]. However, it was designed for
avigation in structured areas, and it is therefore not employed
n real-world outdoor agricultural contexts, which are usually
nstructured.
More recent LiDAR SLAM systems directly exploit three-

imensional point clouds, thus being applicable in many sce-
arios with fewer limitations. In state-of-the-art algorithms, the
LAM problem is generally solved on the front-end by scan
atching. This approach finds the optimal 6-DOF transformation

hat minimizes the overall distance between two point clouds,
sing, e.g., Gauss–Newton based methods such as the Levenberg–
arquardt optimizer [201]. As the correspondences between
oints belonging to subsequent scans are unknown, they need
o be guessed, and the problem is solved iteratively, as in the
ost popular approach for point cloud alignment, the Iterative
losest Point (ICP) algorithm [202]. For example, ICP is tested in
ineyards to refine the localization output of a particle filter by
guiar et al. [77], and to improve GNSS-IMU localization in [103].
Furthermore, LiDAR SLAM algorithms often store the map

nd the path of the robot in a graph structure, with nodes cor-
esponding to the poses of the robot, and edges representing
patial constraints between contiguous nodes (e.g., the estimated
ransformation among the two point clouds). Thus, a back-end
ptimization stage is generally performed, using ad-hoc libraries
e.g., GTSAM [203]) to minimize the sum of errors over all con-
traints, as tested in a greenhouse in the work by Ohi et al. [81].
oreover, loop closure can be handled in a similar manner to

educe the trajectory drift.
To speed up the computation, 3D LiDAR SLAM is usually ex-

cuted using downsampled point clouds obtained, for example,
s the set of centroids of voxels of predefined dimension. Sub-
equently, features (e.g., points belonging to planes or edges)
an be extracted from the voxelized point cloud, as in the ap-
roaches implemented by the LiDAR Odometry and Mapping
LOAM) [204] and the Lightweight and Ground Optimized LOAM

LeGO-LOAM) [205] algorithms. For instance, LOAM is used in [84]

14
to locate a robot developed to recognize the position of flowers
in a greenhouse. Moreover, two similar algorithms (referred to
as LIO-SAM [206] and Static Mapping [207]) are compared by
Hroob et al. [91] in a virtual vineyard, with findings indicating
the estimate of an appropriate path shape, but significant drift
accumulation.

Most of the state-of-the-art SLAM solutions (e.g., RTAB-Map,
LOAM, LeGO-LOAM, LIO-SAM) can integrate data provided by ad-
ditional sources, as it is described in more detail in Section 4.1.6.
For instance, the IMU can be used to roughly estimate the mo-
tion of the robot between two subsequent LiDAR scans (Zhang
et al. [204]).

The literature suggests that algorithms based on the afore-
mentioned LiDAR SLAM methods, but specifically modified to
be used in agriculture, outperform the original formulations. For
instance, LeGO-LOAM inspired versions, optimized for orchards,
are proposed in [38,64]. Gao et al. [38] compare the modified
algorithm with LOAM, LeGO-LOAM, and LIO-mapping [208] to
demonstrate its better performance. Furthermore, an algorithm
specifically implemented for vineyards is compared with LeGO-
LOAM by Aguiar et al. [78]. An updated version of LOAM is
optimized for maize fields by Dong et al. [142], where only
points belonging to stalks are used for scan matching. The stalk
segmentation is performed by discarding ground points and then
applying clustering algorithms on the remaining points.

As a further alternative, LiDAR SLAM can be performed using
the NDT (Normal Distribution Transform [209]) representation of
the 3D point clouds, as in [210]. This method associates a normal
distribution with voxels, which is used to model the probability of
measuring a point inside it. NDT is computationally less onerous
than ICP-based scan matching, but does not degrade the SLAM
result. Examples of robots using the NDT approach are found
in [73,139], but are only tested in artificial outdoor scenarios that
do not mimic an agricultural environment.

Please be aware that all of the discussed methods may perform
poorly in environments with long corridors, leading to frequent
scan matching failures and inaccurate robot location estimates.
Moreover, they are usually not employed in agricultural fields
with low plant heights.

4.1.5. Other localization methods
Alternative data sources for localizing a mobile robot in agri-

culture are radars, ultrasonic sensors, and wireless beacons (de-
vices that broadcast their identifier). These devices are adopted to
measure landmarks so that the EKF-based localization described
in Section 4.1.4 can be performed.

The radiation pattern of radars makes them robust to the
variations in pitch and roll of the robot in natural and non-flat
environments (Rouveure et al. [129]). In the article by Radcliffe
et al. [211], an ultrasonic sensor pointing sideways is exploited
to retrieve the distance of the robot with respect to a fixed card-
board. Moreover, measurements from four HC-SR04 ultrasonic
sensors are used together with GNSS and IMU for localization in
a vineyard in [212].

Furthermore, wireless beacons (i.e., solutions based on Time
Difference Of Arrival (TDOA) approach, such as DecaWaves) pro-
vide localization with 30 cm of accuracy and are immune to
weather and illumination conditions [213]. For instance, in the
work by Duarte et al. [94], the range and angle between land-
marks and the receiver are estimated using radio frequency-based
beacons. Moreover, a mobile robot based on ultra-wideband posi-
tioning is tested in a greenhouse with four fixed beacons installed,
as illustrated by Yao et al. [214]. Such methods can constitute a
cheap alternative to LiDAR-based approaches, but they are less
accurate with respect to the solutions listed in Section 4.1.4
[213,214]. Moreover, ultrasonic sensors and wireless beacons are

suited only for small-scale areas.
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Garrido et al. [51] use a markedly different method to localize
the robot in a greenhouse: a 360-degree prism is mounted on
top of the vehicle shown in Fig. 3(b), and it is tracked by a total
station by measuring ranges and angles both in the horizontal and
vertical planes. Although accurate, this solution is expensive and
can be used only in the surroundings of the total station.

4.1.6. Data fusion
All the localization methods previously described have their

own advantages and drawbacks, as summarized in Table 6. A
multi-sensor fusion strategy offers significant benefits over the
use of a single data source. Firstly, by combining multiple sensor
data, it is possible to obtain a higher temporal resolution than the
one achievable with some sources (see, e.g., the low update rate of
GNSS systems, highlighted in Section 3.2.1). Moreover, this should
help in reducing the effect of noise in sensor measurements and
possibly fill gaps in individual sensor data. It is worth noting
that data acquired from different sensors are associated to differ-
ent reference frames, making the transformation into a common
reference system a crucial processing step (Fung et al. [215]).

Multi-sensor fusion is historically handled by Bayesian filters,
such as Kalman filters. One of the characteristics of Kalman filters
is that the estimated confidence should grow when numerous
sources are used, due to the properties of multivariate Gaussians
multiplication. Different sensor configurations merged by means
of the EKF are reported in Table 7, whereas examples of the
use of Kalman filters on direct georeferencing systems are found
in [44,45,75,86,88,111,114,186,216,217]. Moreover, VO is coupled
with wheel odometry in [82], and with LO in [47] to localize the
robot in a vineyard and an orchard, respectively. An alternative
formulation to the EKF is the extended information filter (EIF),
used by Cheein et al. [133] to fuse LO and VO. The EIF could be
useful to avoid numerical problems in case of large uncertainty
in sensor readings and motion prediction models. An EIF is also
used to generate pose estimates from RTK-GNSS, IMU, and the
RealSense T265 tracking camera in Vulpi et al. [150]. In addition,
the literature describes agriculture case studies in which the EKF
is used to increase LO [64,66,73,79,136,145] and VO [73,157]
reliability using direct georeferencing systems.

Since the pose estimate of Bayesian filters depends not only
on current measurements, obtained through various sensors such
as GNSS, but also on the previous iteration of the algorithm, often
an error accumulation can occur. This leads to the requirement of
a different approach, such as the so-called factor graph. A factor
graph is a bipartite graph that connects factors to variables. The
variables denote the unknowns in the estimation task, and the
factors represent the probabilistic information acquired through
measurement or previous knowledge of those variables. Thus,
unlike classical Bayesian filters, a factor graph encodes proba-
bilistic information for every robot pose throughout the survey,
not just the latest pose estimate. This permits the use of loop-
closure constraints to prevent errors from accumulating when the
robot revisits an area of the environment that has already been
explored. The mathematical definition of factor graphs is beyond
the scope of this article, for further details we refer the reader
to [218–220]. For example, a factor graph is used to fuse VO, RTK-
GNSS, and IMU data in peanut fields in [189], LO, RTK-GNSS, and
IMU data in orchards in [38], and LO, IMU, and wheel odometry
in vineyards in [84].

Furthermore, in LO algorithms based on data provided by ro-
tating 3D LiDAR sensors (described in Section 4.1.4), the acquired
point clouds are often paired with data from an IMU even more
tightly [221]. In fact, readings of linear acceleration and angular
velocities are used to retrieve the motion of the LiDAR sensor
during a 360◦ scan, and to perform the undistortion of the point
cloud, i.e., to correct the 3D coordinates of the points to take into
15
Table 6
Advantages and disadvantages of localization methods.
Method Advantages Disadvantages

RTK-GNSS • Accurate positioning
• No drift over time

• Low update rate
• Only position available

with one receiver
• Base station required
• Not working in indoor

environments
• Not working with vegetation

causing signal blocking

IMU • High update rate
• Low power

consumption
• Low size and weight

• Drift over time
• High noise in rough terrain
• Dependent on the initial

state
• Sensitive to magnetic
interference

• Calibration required

Visual
odometry

• High update rate
(hardware and
software dependent)

• Loop closure enabled
• Low powe
r consumption

• Low size and weight
• Cheap

• Sensitive to weather and
illumination

• Sensitive to rapid changes in
viewing angle

LiDAR
odometry

• High update rate
(software dependent)

• Loop closure enabled
• Independent from

illumination
• Up to 360◦ FoV
• Long range detection

• Sensitive to rain
• High power consumption
• Bad performance in long

corridors

account the changing of the sensor position during a single scan
[204]. Otherwise, in the absence of IMU data, undistortion can
be applied by assuming linear motion of the LiDAR between two
successive acquisitions [196].

In summary, it can be said that sensor fusion is crucial for
precise robot localization in real agro-ecosystems. Every sensor
has disadvantages that may be solved by coupling it with another
data source, either in a loose manner using Kalman-based filters
or more tightly, using a factor graph.

4.2. Mapping in agriculture

This section discusses the types of maps (summarized in
Table 7) built by mobile robots for inspection and monitoring
purposes in agriculture. In the context of plant phenotyping, 3D
models can be used when a detailed assessment of the canopy
morphology is desired. In order to achieve this, SLAM methods,
mentioned in Section 4.1, can be applied to build a complete
point cloud of the surveyed environment. For instance, LiDAR
SLAM algorithms are used to generate maps in [73,78,81,84,114],
even though the obtained models are mostly exploited for nav-
igation purposes. The literature review carried out in this paper
reveals that half of the research works analyzed are focused on
retrieving maps not only for autonomous navigation, but also
for monitoring. Furthermore, depending on the required map
accuracy, a refinement stage can be necessary to enhance the map
built by online SLAM methods. Please note that not all robotic
platforms rely on a SLAM algorithm able to produce the map
online (as in [44,49,51,56,58,107,125,126,138,140,143,152,179]).
In these cases, an offline data processing step is needed. Alter-
natively to LiDAR data, the 3D model can be built also by using
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fM with RGB images captured by a single camera moving along
he row, as in the work by Jay et al. [154]. However, visual
ensors for mapping are less common than LiDAR devices. In
act, as highlighted in [222], a 3D reconstruction based on SfM is
egatively affected by slight displacements of the plants during
ata acquisition, caused, e.g., by wind moving the leaves.
The original point cloud data can contain a high number of

oisy points and outliers, resulting from inaccuracies in sensor
eadings, motion-induced distortions and improper scans regis-
ration. Since they can have a significant impact on the subse-
uent assessment of canopy properties, a post-processing step is
dvisable before producing the final outputs.
The statistical outlier removal filter (SOR) is a commonmethod

o refine the point cloud. It initially calculates the average dis-
ance between each point and its neighbors. Then, it rejects the
oints that are farther than the average distance plus a specified
ultiple of the standard deviation. SOR can be used in a variety of
nvironments, without crop restrictions, as shown by the authors
f [64,135] in wheat fields and orchards, respectively.
An alternative outliers removal strategy is implemented by the

andom sample consensus algorithm (RANSAC) [223]. The funda-
ental idea of RANSAC is that the dataset consists of ‘‘inliers’’

data whose trend can be described by a set of model parameters),
nd outliers are data that do not match the model. RANSAC is
sed, for instance, by Gao et al. [38] to remove noisy points from
n orchard point cloud. RANSAC also assumes that it is possible
o estimate the parameters of a model that best fits the data
iven a set of inliers. Thus, it is also useful to detect the ground
nd remove points that belong to it, as those points are useless
or phenotyping. Considering a plane model to be fitted, RANSAC
s used for ground removal in [44,51,64,138–140]. Alternatively,
oints belonging to the ground may be identified using the cloth
imulation filter (CSF) [224], which makes it possible to achieve
igh precision without configuring a multitude of algorithm set-
ings, as in the work by Gao et al. [38]. In the CSF, the point cloud
s first flipped along the altitude axis. Then, the digital surface
odel of the ground is found simulating the physics of a piece
f cloth leaning on the terrain due to gravity. The CSF is better
uited for real-world agricultural scenarios where the ground is
arely considered planar.

The effects of the above mentioned filters are depicted in
ig. 12. The portion of the whole point cloud (Fig. 12(a)), obtained
y a mobile robot running a LiDAR SLAM algorithms, is first
iltered with the CSF to exclude ground-related points (Fig. 12(b)).
ubsequently, the SOR filter is applied for further refinement
Fig. 12(c)).

Mesh surfaces, as an alternative to point clouds, can be used to
btain a continuous representation of the vegetation structure, al-
owing volume information to be retrieved. Widespread triangu-
ation methods, exploited for shape reconstruction from a dense,
norganized set of data points, are the convex hull algorithm
nd its generalization, the alpha-shape method, whose outcomes
re shown in Fig. 13. The convex hull approach, that consists of
etermining closed curves that include the line segments linking
ach pair of points inside the curve, is exploited in the literature
o represent the geometry of vineyards [103,143] and orchards
44,124,125,217]. Furthermore, the alpha-shape approach is used
n [64,107,125] for vineyards and orchards, respectively.

The reconstructed model can also be represented as a 3D
ccupancy grid, discretizing the environment with a grid of small
egular geometries (square cells). Based on the number of points
ontained in each cell, the occupancy grid stores probabilistic
ata indicating whether it is occupied or not. For example, the
iterature reports agricultural environments depicted with 3D
ccupancy grid in [101,113,159,179].
To evaluate the health state of plants and its spatial variation,

eometric maps should additionally include spectral information,
16
as done in [41,47,67,77,105,148,151,152,174,175,189,192]. In par-
ticular, the robots in [41,105,151] use the Visual SLAM module of
RTAB-Map (described in Section 4.1), for building maps in green-
houses. Furthermore, Aguiar et al. [76] developed and tested an
open-source algorithm (VineSLAM) specifically for photorealistic
reconstruction of vineyard corridors. RGB features can also be
combined to assign a Green-Red Vegetation Index (GRVI) to each
point of the 3D map, as in the work by Vulpi et al. [150].

When utilized for plant condition assessment, visual and
spectral information is often represented in the form of orthopho-
tos or mosaics, as illustrated in [53,56,60,108,123,140,160]. Bi-
dimensional maps representing georeferenced NDVI index values
are produced, for instance, for carrot [53] and wheat [137] fields,
vineyards [108,143], and orchards [56]. Moreover, maps of the
NDRE and the PRI indexes are provided in [108,137].

The maps in [53,56,137] are retrieved from measurements
taken with the spectral sensor looking downward. However, lat-
eral configurations of the sensing device enable a more thorough
assessment of the vegetation status when the plants are arranged
in rows. This configuration is adopted to create a water stress
status map of an orchard in [110,160], combining multiple vege-
tative indexes with the method proposed in Ihuoma et al. [225].
Moreover, in the work by Clamens et al. [89] the robot success-
fully creates images of grapevines with superimposed NDVI index
(Fig. 9) by means of calibrated multispectral and depth cameras,
while the mobile platform developed in [119,127,166] manages
to assemble a 3D point cloud maps with NDVI values.

Starting from the 3D reconstruction, summary metrics are
frequently computed to directly evaluate quantitative proper-
ties of vegetation. Among them, the canopy height can be de-
rived straightly from the normal to the ground. In fact, knowing
the height of plants can be useful, e.g., in pesticide or water
dosages (Fernández-Novales et al. [160]). In scenarios character-
ized by a homogeneous plant density, such as cotton [135,138]
and wheat [132,137] fields, it is common to produce maps repre-
senting the height distribution of plants. Moreover, height maps
of orchards (Fig. 13) are reported in [44,56,125,126].

Volume measurements are preferred for estimating growth
and predicting yields of plants arranged in rows, such as vine-
yards and orchards. Given a representation of the environment
as a point cloud, a suitable technique is the one employed in
[112,126], in which the authors use prisms of adjustable lengths
stacked vertically to approximate the plants shape and to com-
pute the width and the volume of trees. Instead, when using
meshes to represent the vegetation structure, the volume is di-
rectly recovered from the geometry boundaries, as done in [44,
58,64,107,125,143]. Finally, in case the environment is known as
a 3D occupancy grid, the volume is computed by simply summing
the volume of each occupied cubic cell [101,113].

Another geometric parameter indicating plant growth is the
Leaf Area Index (LAI), which relates the total leaf area to the total
arable land area [226]. The literature reports case studies in which
the LAI is derived from point clouds in vineyards [103,106,108],
and in wheat fields [49,60].

5. Path planning strategies

Agricultural crops and terrains are challenging for autonomous
UGV navigation, since these environments are highly variable
and unstructured. The global and local path planning algorithms,
which are tested in agriculture, are discussed in Sections 5.1 and
5.2. Section 5.3 describes the techniques specifically developed
for autonomous navigation between parallel plant rows, whereas
Section 5.4 surveys exploration strategies. An overview of path
planning strategies for autonomous navigation in agriculture is
shown in Table 8.
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Fig. 12. Post processing of a point cloud obtained by means of LiDAR SLAM [38].
Fig. 13. Point cloud, mesh surface and 2D map of canopy volume and height of an orange grove [125]. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
.1. Global path planning

With the term global path planing we refer to the methods
exploited to find a feasible and collision-free path towards a goal
point, when obstacles in the environment are known a priori [28].
Therefore, after the route has been defined, the robot navigates
using a localization and path following strategy.

A simple solution is to exploit GNSS way points that generally
need to be previously collected teleoperating the robot in the
field, as in [44,53,56,62,90,110,114,117]. This method is appro-
priate for open fields where the GNSS signal is not blocked by
vegetation. When used in vineyards or orchards, GNSS way-point
17
based navigation is generally coupled with a row following algo-
rithm (Section 5.3). In contrast, GNSS way-point based navigation
cannot be used to define routes in indoor environments such as
greenhouses.

Since the surroundings of a robot in greenhouses are more
structured, autonomous navigation may be accomplished using
indoor-developed path planning algorithms. Once a representa-
tion of the working area is provided, goal points that must be
reached by the robot can be manually selected. The path planner
then calculates the path to the goal.

For instance, in the work by Ohi et al. [81], the path is ob-
tained by discretizing the greenhouse environments by means
of a Voronoi diagram. Otherwise, probabilistic approaches may
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Table 7
Overview of the localization methods and the mapping applications described in the papers covered in this review.
Author Year Ref. Environment Localization method Mapping application Feature extraction

Aguiar et al. 2021 [77] Vineyard LO (ICP with Particle
Filter refinement)

3D reconstruction (RGB
features)

Aguiar et al. 2022 [78] Vineyard LO 3D reconstruction Semiplane extraction
Arita et al. 2016 [139] Garden LO (Normal Distribution

Transform)
Tree measurement Ground detection

(RANSAC)
Astolfi et al. 2018 [145] Vineyard (Gazebo) GNSS + IMU + LO

+ Wheel odometry
(fused with EKF)

Ball et al. 2016 [39] Uncoltivated field IMU + RTK-
GNSS + Wheel
odometry

Bayar et al. 2015 [40] Orchard Wheel odometry
Beloev et al. 2021 [62] Controlled VO Crop detection and

mapping
Crop detection (CNN)

Bietresato et al. 2016 [127] Controlled Wheel odometry 3D reconstruction,
volume measurement

Bietresato et al. 2016 [166] Controlled IMU + RTK-
GNSS + Sonar

3D reconstruction with
NDVI information

Blanquart et al. 2020 [132] Wheat field Height and density
measurement

Blok et al. 2019 [65] Vineyard LO (Particle filter and
KF)

Cerrato et al. 2021 [86] Vineyard IMU + RTK-GNSS (fused
by EKF)

Chakraborty et al. 2019 [143] Vineyard IMU Volume and height
measurement

Chen et al. 2021 [175] Orchard VO 3D reconstruction (RGB
features)

Fruit detection (CNN)

Cheein et al. 2014 [124] Olive groove GNSS + LO 3D reconstruction
(mesh)

Choudhary et al. 2021 [41] Greenhouse LO + VO 3D reconstruction (RGB
features)

Clamens et al. 2021 [89] Vineyard Multispectral images and
point cloud
co-registration

Colaco et al. 2017 [125] Orange crop RTK-GNSS 3D reconstruction,
volume measurement

Comelli et al. 2019 [197] Rosario dataset VO Visual SLAM comparison
Cubero et al. 2020 [53] Carrot field RTK-GNSS + Wheel

odometry
Pests and diseases
detection (NIR and NDVI)

Daglio et al. 2019 [134] Apple trees RTK-GNSS + Wheel
odometry

Flower charge estimation

Darwin et al. 2021 [34] Rosario dataset VO Visual SLAM comparison
Dogru et al. 2018 [79] Orchard IMU + RTK-GNSS + LO

(fused by EKF)
Dong et al. 2017 [189] Peanut field IMU + RTK-GNSS + VO

(fused by factor graph)
3D reconstruction (RGB
feature)

SIFT feature

Dong et al. 2022 [142] Maize field IMU + LO 3D reconstruction Ground detection and
stalk segmentation

Duarte et al. 2016 [94] Controlled Wireless beacons
Eiffert et al. 2021 [45] Uncoltivated field GNSS + IMU (fused by

EKF)
Emmi et al. 2021 [93] Different crops

fields
Topological map Crop detection (CNN)

Fei et al. 2022 [171] Orchard RTK-GNSS
Fentanes et al. 2018 [46] Pasture field GNSS Soil exploration and

compaction mapping
Fernandez-Novalez et al. 2021 [160] Vineyard GNSS Vineyard water status

monitoring
Freitas et al. 2012 [136] Orchard LO + Wheel odometry

(fused by EKF)
French et al. 2016 [135] Cotton field RTK-GNSS Cotton phenotyping (NIR

and thermal info)
Gai et al. 2021 [63] Corn field RTK-GNSS
Gan et al. 2018 [43] Citrus grove IMU + RTK-

GNSS + Wheel
odometry

(continued on next page)
,

be used, in which a sample way point is selected and approved
at each iteration if it does not result in a collision with an
obstacle. In the probabilistic roadmap (PRM) method, used by
Zhang et al. [178], the generation process is based on a uniform
probability distribution and stops when an adequate number of
18
connected components is achieved or after the maximum number
of iterations is reached.

The algorithms based on roadmaps are called multi-query [228]
since given the network of paths, solutions can be found to navi-
gate to other goal points in the sampled space. In order to identify
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Table 7 (continued).
Author Year Ref. Environment Localization method Mapping application Feature extraction

Gao et al. 2021 [38] Orchard IMU + RTK-GNSS + LO
(fused by factor graph)

3D reconstruction Plane detection (Cloth
Simulation Filter and
RANSAC)

Gao et al. 2022 [186] Garden IMU + RTK-
GNSS + Wheel
odometry (fused by EKF,
autoencoder NN)

Garrido et al. 2015 [51] Greenhouse, maize
rows

IMU + Total station (ICP
registration)

3D reconstruction

Habibie et al. 2017 [80] Orchard (Gazebo) LO Bi-dimensional map with
fruit location

Fruit detection

Hroob et al. 2021 [91] Vineyard IMU + LO + VO SLAM comparison
Imperioli et al. 2018 [72] Crop rows GNSS + VO + Wheel

odometry (fused by
factor graph)

Iqbal et al. 2020 [44] Orchard (Gazebo) GNSS + LO (fused by
EKF)

3D reconstruction,
volume and height
measurement

Iqbal et al. 2020 [217] Controlled IMU + RTK-
GNSS + Wheel
odometry (fused by EKF)

3D reconstruction

Lv et al. 2022 [157] Open field GNSS + IMU + VO
+ Wheel odometry
(fused by EKF)

Jiang et al. 2022 [70] Greenhouse IMU + LO + Wheel
odometry

Kai et al. 2021 [64] Orchard IMU + LO (fused by EKF,
loop closure capable)

3D reconstruction Ground detection
(RANSAC)

Kragh et al. 2015 [172] Uncoltivated field GNSS + IMU
Kragh et al. 2017 [57] Uncoltivated field GNSS + IMU
Krus et al. 2020 [58] Different crops GNSS 3D reconstruction,

volume measurement
Ground detection
(RANSAC)

Le et al. 2019 [73] Building garden IMU + LO (NDT, fused
by EKF, loop closure
capable)

3D reconstruction Ground and object
segmentation
(LeGO-LOAM)

Lowe et al. 2021 [103] Vineyard GNSS + IMU + LO Density measurement Ground detection and
rows segmentation

Mammarella et al. 2022 [212] Vineyard GNSS + IMU + Ultra-
sonic sensors (fused by
EKF)

Manish et al. 2021 [49] Wheat fields GNSS + IMU 3D reconstruction
Martínez-Casasnovas
et al.

2017 [126] Olive orchard RTK-GNSS Volume measurement

Marden et al. 2014 [66] Vineyard GNSS + IMU + LO
(fused by EKF)

Mark et al. 2017 [47] Vineyard LO + VO + Wheel
odometry (fused by EKF)

3D reconstruction (RGB
features)

Mashhadani et al. 2020 [121] Controlled
(Gazebo)

LO

Masuzawa et al. 2017 [105] Greenhouse LO + VO (loop closure
capable)

3D reconstruction (RGB
features)

Ground and object
segmentation
(LeGO-LOAM)

Matsuzaki et al. 2018 [151] Greenhouse VO 3D traversability
mapping

Pixel wise labeling

Moral-Martinez et al. 2016 [106] Vineyard GNSS + IMU LAI estimation
Moreno et al. 2020 [107] Vineyard RTK-GNSS 3D reconstruction
Narvaez et al. 2018 [174] Garden 3D reconstruction (RGB

features)
Terrain classification (SVD)

Navarro et al. 2016 [90] Vineyard RTK-GNSS
Ohi et al. 2018 [81] Greenhouse IMU + LO 3D reconstruction (RGB

features)
Pagliai et al. 2022 [108] Vineyard RTK-GNSS MMS and UAV 3D map

comparison (NDVI and
NDRE)

Perez-Ruiz et al. 2020 [137] Cultivars of wheat Wheel odometry Wheat phenotyping (NIR
and NDVI)

Reina et al. 2017 [67] Vineyard and
Olive groove

VO 3D reconstruction (RGB
features)

Terrain classification
(SVM)

Reiser et al. 2017 [179] Controlled Wheel odometry 3D reconstruction
Ristorto et al. 2017 [118] Orchard IMU + RTK-GNSS 3D reconstruction (NDVI

information)
Rosellpolo et al. 2017 [152] Vineyard RTK-GNSS 3D reconstruction (RGB

features)
Saiz-Rubio et al. 2021 [110] Vineyard GNSS Vineyard water status

monitoring

(continued on next page)
19
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Table 7 (continued).
Author Year Ref. Environment Localization method Mapping application Feature extraction

Santos et al. 2016 [111] Vineyard IMU + RTK-
GNSS + Wheel
odometry + Landmarks
(fused by EKF)

Santos et al. 2020 [82] Steep slope
vineyard

LO, + VO (fused by EKF) 3D reconstruction Trunk detection

Sanz et al. 2013 [112] Vineyard, orchard Leaf area density
estimation

Shafiekhani et al. 2017 [60] Maize crop Maize phenotyping
(eye-in-hand)

Shalal et al. 2015 [88] Orchard IMU + Wheel odometry
(fused by EKF)

Trunk mapping Trunk detection (Visual-
and LiDAR-based)

Shu et al. 2021 [192] Soybean field VO 3D reconstruction (RGB
features)

Siebers et al. 2018 [113] Vineyards GNSS + IMU + Wheel
odometry

3D reconstruction,
volume measurement

Silwal et al. 2021 [114] Vineyard IMU + RTK-GNSS (fused
by EKF)

3D reconstruction Bud detection (R-CNN)
and canes detection (SVM)

Skoczen et al. 2021 [176] Garden IMU + RTK-GNSS
Smitt et al. 2021 [148] Greenhouse IMU + VO + Wheel

odometry
3D reconstruction (RGB
features)

Fruit segmentation (CNN)

Sun et al. 2018 [138] Cotton field RTK-GNSS Height measurement Ground detection
(RANSAC)

Tagarakis et al. 2022 [159] Orchard IMU + RTK-GNSS 3D reconstruction
Underwood et al. 2017 [56] Orchard IMU + RTK-GNSS 3D reconstruction (NIR

and NDVI)
Velasquez et al. 2016 [131] Corn crop LO
Vidoni et al. 2017 [119] Orchard IMU + RTK-

GNSS + Wheel
odometry

Health status monitoring
(NIR and NDVI)

Vulpi et al. 2022 [150] Vineyard IMU + RTK-GNSS + VO
(fused by EIF)

3D reconstruction (RGB
features)

GRVI

Wendel et al. 2018 [144] Mangoes orchard GNSS + IMU Maturity estimation Fruit detection (CNN)
Winterhalter et al. 2021 [75] Crop rows GNSS + IMU + yaw

from row detection
(fused by EKF)

Xue et al. 2014 [227] Crop rows Radar
Yamasaki et al. 2022 [96] Crop rows IMU + RTK-GNSS
Yang et al. 2019 [84] Orchard/Vineyard IMU + LO + Wheel

odometry (fused by
factor graph)

3D reconstruction

Yao et al. 2021 [214] Greenhouse Wireless beacons (TDOA)
Zaman et al. 2019 [156] Orchard VO
Zhang et al. 2014 [120] Orchard LO + Wheel odometry
Zhao et al. 2020 [193] Orchard VO
the best solution, all the calculated feasible paths are represented
with a graph in which way points (nodes) are connected by
feasible primitives (edges), e.g., lattice planner [229]. By assigning
weights to the edges, it is possible to optimize parameters like
time, traveled distance, energy, and distance from obstacles with
search algorithms like Dijkstra or A*, as in [70,81,87,121].

On the contrary, the rapidly exploring random tree (RRT)
ethod, exploited by Choudhary et al. [41], attempts to solve a
pecific instance of motion, hence it aims to look at just a sub-
et of the environment pertaining to the specified path. Finally,
enetic algorithms, inspired by natural selection, crossover, and
utation, can also be adopted to solve the global path planning
roblem in agriculture. For instance, the PRM strategy together
ith an algorithm referred to as the Non-dominated Sorting
enetic Algorithm are applied in [230] to determine the best
outes for a mobile robot in a greenhouse. Tests performed by
ak et al. [87] demonstrate that the A* method is more suitable
n greenhouses compared to Dijkstra and RRT.

However, the literature describes several test cases in which
ndoor-developed algorithms are tested not only in greenhouses,
ut also for outdoor agricultural navigation. For example, the PRM
nd the lattice planner are used by Ball et al. [39] to provide
inematically feasible paths to an Ackermann steering robot,
hereas Dijkstra is tested on an omnidirectional robot in Eiffert
t al. [45], both in an uncultivated field. Moreover, A* is used in
n uncultivated field in [231] by an Ackermann steering robot,
20
and Dijkstra and A* are used to provide collision-free paths to
a differential robot navigating in a vineyard by Mark et al. [47].
In addition, modified versions of the above-mentioned classical
approaches, tailored to outdoor agricultural scenarios are found
in the literature. For instance, the A* algorithm is extended for
the navigation in steep slope vineyards to be aware of the center
of gravity of the UGV and terrain slope, as well as to avoid soil
compaction, in [37,82,83].

Traditional global path planners usually rely on prior knowl-
edge of the environment (at least a 2D occupancy grid) in which
the robot navigates. An occupancy grid map can be generated by
means of onboard sensors or using 3D point clouds acquired dur-
ing exploratory surveys by UAV, as in the work by Mammarella
et al. [212]. However, sometimes a 3D map is required, e.g., in
steep slope vineyards [82].

Lastly, when the robot must travel repeated pathways during
continuous monitoring surveys, it may be practical to store the
computed paths in a topological map. Topological maps consti-
tute a set of locations that can be connected with each other.
In this case, they can be represented as graphs, where nodes are
associated with exact locations, whereas edges represent possible
physical paths between these locations. Topological maps differ
from graph search-based global path planners in that edges are
represented by complete point-to-point paths rather than prim-
itives. For instance, Santos et al. [111] use a topological map
with nodes representing vine rows to improve the localization
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Fig. 14. Venn diagram reporting the percentage of mobile robots considered in
this work that exploit each navigation capability.

and navigation. Furthermore, in the work by Emmi et al. [93], a
topological map that stores the gateway, alleyway, and lane end
locations is used to improve navigation in a broccoli field. Finally,
in [81], the map is used to store paths to flowers in a greenhouse.

5.2. Local path planning

Local path planning is required to deal with uncertainties and
naccuracies in the knowledge of the environment as well as to
void obstacles whose movements are unknown. The objective of
ocal path planners for obstacle avoidance is to change the global
ath and provide collision-free velocities to control the robot.
Widespread approaches of local path planning include the

rtificial potential field (tested in a virtual greenhouse by Harik
t al. [122], and in an open field to avoid bumps in the ground by
all et al. [39]), and the dynamic window approach (DWA) [232],
hich relies on a cost function evaluated in the robot local area
sing range measurements to define the risk of collision. The
WA planner, for each iteration, generates samples of linear and
ngular velocities to be sent to the robot. Then, the resulting
aths are simulated so as to eliminate those that would lead to a
otential collision. The best local path is determined by weighing
he proximity of obstacles and the global path. DWA is used in
reenhouses in [70,81,87], and vineyards in [86].
An alternative solution is the elastic band (E-band) method

xploited in [41], to navigate in a greenhouse. More in detail, the
-band algorithm considers the global path as an elastic band
n which two forces are acting, an internal contraction force
imulating the tension in a stretched elastic and a repulsive force
o repel the band from the obstacles [233]. Furthermore, Choud-
ary et al. [41] use the Reeds-Shepp curve methods [234], since
heir robot is provided with an Ackermann steer. Reeds-Shepp is
uitable for robots with non-holonomic constraints operating in
imited spaces such as greenhouses, vineyards and orchards rows,
s it generates various combinations of switch-back trajectories
ith high computational efficiency.
Please note that the above-mentioned collision avoidance

ethods rely only on range measurements on a plane and do
ot account for the 3D geometry of the object or any potential
bstacles below or above the plane. To overcome this limitation,
antos et al. [83] use 3D LiDAR data and project points within
certain height range over a plane to take into account every
ossible collision of the robot. Moreover, in the work by Santos
t al. [83] global paths are modified with an approach based
n Bézier curves. To sum up, only 25.9% of the considered mo-
ile robots integrate local path planning strategies, as shown in
ig. 14.
21
5.3. Row following

Path planning methods aimed at making the UGV follow the
row can be used for autonomous navigation in environments
characterized by crop rows. Moreover, a global path planning
algorithm is no longer necessary if the robot detects the end of
the row and engages a U-turn path to enter in the following line
(as performed in [173] exploiting the detection of AprilTag coded
targets).

Row following can be accomplished by estimating the pose of
the robot between the rows and by sending velocity commands
with the aim of keeping it on the centerline. For instance, the
robot navigates based solely on lateral distance measurements
between the plants and the robot itself in [60,109]. However,
EKF and particle filters (Section 4.1.4) provide the basis for more
reliable solutions using the distance from the centerline and yaw
as state variables, as demonstrated in [39,40,65,75,136,235].

In general, the challenge to be addressed involves using sensor
data and computer vision algorithms to locate a roadway for the
robot. The lane lines can be found by using LiDAR, depth, or RGB
sensors. Once the position of the crop edges on the left and right
sides of the robot is found, a center point identifying the location
of the row center is calculated. The error between the determined
center point and the predefined setpoint in front of the robot
is fed through standard control loops in all of the test cases
described in this section (with the exception of case [131], which
uses a fuzzy logic controller) to determine the wheel velocities
required to move the robot to the center, thereby reducing the
error to zero.

Regarding LiDAR-based approaches for the row following, a
popular practice is to project the measured points on a horizon-
tal plane to generate two clouds that can be fitted with lines
(Fig. 15(a)) using, e.g., the RANSAC algorithm. RANSAC-based line
detection is exploited in vineyards [66,90], and orchards [117].
RANSAC is also used to detect crop row lines on depth images by
Zhang et al. [120] and RGB images (pre-processed with the Sobel
operator) by Zhang et al. [116]. Moreover, an algorithm similar
but more efficient than RANSAC, referred to as PEARL, is described
by Isack et al. [236]. PEARL is tested for navigation in an orchard
using LiDAR sensor data by Malavazi et al. [95]. Alternatively, the
least square line fitting is applied to point clouds in [44,237],
and tested in a real agricultural scenario by Gasparino et al. [54].
Planes can also be used as mathematical models to fit crop rows,
as done for navigation in corn fields by Gai et al. [63].

Moreover, a method based on the row-sensing template, which
is the expected observation of a depth sensor when it is properly
aligned with the centerline, is used by Fei et al. [171]. Similar
approaches can be applied also to data provided by LiDAR sensors.
For instance, in [238], the mobile robot uses 2D laser scanners and
approximates the vineyard rows by square pattern. Despite the
approach proposed in [238] is not tested with a real agricultural
robot, the simulated environment is realistic since it is designed
from a real point cloud of the vineyard acquired with a terrestrial
laser scanner. Finally, the robot in [158] navigates by finding the
tree trunks by detecting their shadows, which are materialized
by concavities in the point cloud obtained with the depth sensor
pointing forward.

Generally, using the Hough transform [239] on images, it is
possible to identify the lines that follow the crop row edges. The
image should be first converted to binary applying an algorithm
for edge detection. Canny edge detection [240], for instance, may
be used to discern edges from the remainder of an image. The
result of the Canny edge detection method is a binary picture
with the edges of objects represented by white pixels and the
remaining portion of the image represented by black pixels. Once
the edges of the crops within the picture have been identified, the
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Fig. 15. Representations of row following methods.
-

ough transform may be used to calculate the equation of the
ane lines (Fig. 15(b)), as in [43,169,241,242]. Hough transform
s also applied to LiDAR data to track the robot pose among crop
ows in [141]. Moreover, a method to improve the outcome of the
ough transform by considering multiple crop rows is presented
n [141]. Alternatively, Radcliffe et al. [211] propose an approach
o navigate in vineyards by detecting the sky with a color mask
nd using the centroid of that region of interest as the row
enter point. Ruangurai et al. [243] demonstrate that a principal
omponent analysis-based method provides better results than
he Hough- and RANSAC-based on paddy field images.

Choosing a smaller area inside the picture to conduct the
ough transform might increase efficiency, since lines are pre-
ented from being computed in incorrect areas of the image. In
ddition, utilizing filters to eliminate noise from the photo or iso-
ating green masks before running the Canny edge detection may
nhance the result for the specific image (Bonadies et al. [31]).
owever, image preprocessing and the Hough transform settings
re specific to the scenario. Thus, the development of an algo-
ithm that works in agriculture does not ensure the robustness
f the method in different scenarios. More innovative approaches
discussed in Section 6) fall into the field of AI, and are used for
ow following by the authors of [68,69,86,181].

Most advanced row following algorithms also include a solu-
ion to detect the end of the row to make the robot engage the
ext one [40,120,136,168,173,235]. Row-end detection methods
xploit drastic changes in the data distribution acquired by the
ensor compared to those sensed inside the row.
As summarized in Fig. 16, LiDAR-based row following is the

redominant strategy (50.0% of the considered works), followed
y visual-based (38.9%), and depth-based (11.1%) methods. To
rap up this section, the path-planning architectures for mobile
obots in agriculture include global, local, and row-following al-
orithms. Nevertheless, only the 3.6% of the considered robotic
ystems include all these three navigation strategies (Fig. 14).

.4. Exploration

In the context of mapping in agriculture, with exploration
e refer to the autonomous motion of the robot towards an
nknown part of the environment, which has not been already
apped. Furthermore, the process of exploration aims at gath-
ring data from an environment in order to reduce uncertainty
bout its boundaries (Bajcsy [245]). When the surrounding en-
ironment is not completely explored yet, the ground robot,
ocalized in the currently mapped environment through SLAM,
hould choose the next way point towards unknown areas. The
ecision is influenced by factors such as the effort required to
each the destination (e.g., distance) and the gain proportionate

o the difference in the quantity of information provided by the

22
Fig. 16. Pie chart of the row following strategies.

map before and after navigating to the desired destination (Lluvia
et al. [246]).

In this context, frontiers (areas at the boundary of explored
space) can be used for autonomous way point identification
[247,248]. Computer vision methods such as edge detection and
region extraction can be applied to search for frontiers (Keidar
et al. [249]). Moving to successive frontiers, the robot grows its
world knowledge (using SLAM) until no more borders are dis-
covered and the environment has been considered fully explored.
This method is used for example in the work by Al-Mashhadani
et al. [121], but it has not been tested in a real agricultural
environment yet.

Furthermore, Dornhege et al. [250] extend the notion of frontier
based exploration to 3D environments by adding the concept of
unknown 3D volumes. Another example is given by Senarathne
et al. [251], who describe a 3D exploration method based on
the idea of surface boundaries. In a 3D occupancy grid, a surface
boundary can be defined as a voxel of a mapped area having at
least one of its six sides exposed to unmapped space. However,
no test cases of mobile robots using the aforementioned 3D
exploration methods to build maps in agricultural scenarios are
reported in the analyzed works.

In addition, the literature describes exploration methods that
aim to direct the robot to a way point that maximizes the amount
of new information gained from the environment. Among these
approaches, the next-best-view algorithm is used in an open field
by Fentanes et al. [46], and described by Bircher et al. [252].
In next-best-view methods, the way point selection can be im-
proved by taking into account the traveling distance and the
expected battery level once the navigation task is completed. An
algorithm of this kind is proposed and tested both in a digital twin
and in a real strawberry orchard by Polvara et al. [253].
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Table 8
Overview of the state-of-the-art path planning methods for autonomous navigation in agriculture.
Author Year Ref. Environment Kinematics Path planning strategies

Adhikari et al. 2020 [181] Crop rows Ackermann Row following (visual-based)
Aghi et al. 2020 [68] Vineyard Wheeled

skid-steered
Row following (visual-based)

Aghi et al. 2021 [69] Vineyard Wheeled
skid-steered

Row following (visual-based)

Ball et al. 2016 [39] Uncultivated
field

Ackermann Global (Lattice planner ROS
[229]); local (Artificial
potential field); row following
(Visual-based)

Bayar et al. 2015 [40] Orchard Ackermann Row following (LiDAR-based)
with U-turn

Beloev et al. 2021 [62] Controlleda Wheeled
skid-steered

Global (GNSS way points);
local (depth-based obstacle
avoidance)

Blok et al. 2019 [65] Vineyard Wheeled
skid-steered

Row following (LiDAR-based)

Cerrato et al. 2021 [185] Vineyard n.r. Global (custom algorithm:
Adaptive Row Crops Path
Generator (ARC-PG)

Cerrato et al. 2021 [86] Vineyard Wheeled
skid-steered

Global (GNSS way points);
local (DWA); row following
(visual-based)

Chen et al. 2021 [169] Greenhouse Tracked
skid-steered

Row following (visual-based)

Choudhary et al. 2021 [41] Greenhouse Ackermann Global (RRT*,A*); local (E-band
and Reeds-Shepp curve)

Cubero et al. 2020 [53] Carrot field Wheeled
skid-steered

Global (GNSS way points)

Dang et al. 2022 [235] n.r. n.r. Row following (LiDAR-based)
with U-turn

Danton et al. 2020 [237] Controlled Ackermann Row following (LiDAR-based)
Eiffert et al. 2021 [45] Uncultivated

field
Omnidirec-
tional

Global (PRM, Dijkstra); local
(RNN based obstacle
avoidance)

Fei et al. 2022 [171] Orchard n.r. Row following (depth-based)
Fentanes et al. 2018 [46] Pasture field Omnidirec-

tional
Exploration (Next-Best-View)

Freitas et al. 2012 [136] Apple orchard Ackermann Row following (LiDAR-based)
Gai et al. 2021 [63] Corn and

sorghum field
Wheeled
skid-steered

Row following (depth-based)

Gan et al. 2018 [43] Citrus grove Wheeled
skid-steered

Row following (visual-based)

Gasparino et al 2020 [54] Maize field Ackermann Row following (LiDAR-based)
Guzman et al. 2016 [90] Vineyards Wheeled

skid-steered
Global (GNSS way points); row
following (LiDAR-based)

Harik et al 2018 [122] Greenhouse
(Gazebo)

Wheeled
skid-steered

Global (GNSS way points);
local (Artificial potential field)

Hu et al. 2021 [244] Crop rows n.r. Row following (visual-based)
Iberraken et al. 2022 [238] Vineyard

(Gazebo)
Omnidirec-
tional

Row following (LiDAR-based)

Iqbal et al. 2020 [44] Orchard
(Gazebo)

Wheeled
skid-steered

Global (GNSS way points); row
following (LiDAR-based)

Jeon et al 2022 [231] Uncultivated
field

Ackermann Global (A*)

Jiang et al. 2022 [70] Greenhouse Wheeled
skid-steered

Global (Dijkstra); local (DWA)

Li et al. 2022 [173] Crop rows Wheeled
skid-steered

Row following (visual-based)
with U-turn

Liang et al. 2022 [242] Open field Ackermann Row following (visual-based)
Mahmud et al. 2019 [230] Greenhouse Omnidirec-

tional
Global (Genetic algorithm)

Malavazi et al. 2018 [95] Orchard n.r. Row following (LiDAR-based)
Mammarella et al. 2022 [212] Vineyard Four-wheel

steering
Global (RRT*); local (DWA)

(continued on next page)
Exploration algorithms, while generally providing a highly
irregular path, could be useful in the first mapping session when
the robot has no prior knowledge of its surroundings. In sub-
sequent mapping operations, the classical global path planners
can be applied to retrieve optimal paths, allowing the robot to
navigate autonomously. Moreover, since drift caused by frequent
changes in the robot direction can result in inaccurate maps, it
23
may be advantageous to balance exploration and place revisit-
ing operations, as mentioned by Holz et al. [254]. To this end,
active loop-closure techniques, such as in the work by Stachniss
et al. [255], should be included in the exploration strategy. Active
loop-closure requires the robot to revisit previously traversed
loops in order to reduce uncertainty in pose estimates and obtain
more accurate maps.
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Table 8 (continued).
Author Year Ref. Environment Kinematics Path planning strategies

Mao et al. 2022 [117] Orchard Wheeled
skid-steered

Global (GNSS way points); row
following (LiDAR-based)

Marden et al. 2014 [66] Vineyards Wheeled
skid-steered

Row following (LiDAR-based)

Mark et al. 2017 [47] Vineyard Four-wheel
steering

Global (GNSS way points);
local (E-band)

Masuzawa et al. 2017 [105] Greenhouse Wheeled
skid-steered

Person following

Nehme et al. 2021 [141] Crop rows Ackermann Row following (LiDAR-based)
Ohi et al. 2018 [81] Greenhouse Wheeled

skid-steered
Global (Voronoi diagram,
Dijkstra); local (DWA)

Pak et al. 2022 [87] Greenhouse Wheeled
skid-steered

Global (Dijkstra, RRT, A*); local
(DWA)

Peng et al. 2022 [168] Orchard Ackermann Row following (depth-based)
Petiteville et al. 2018 [158] Orchard Ackermann Row following (depth-based)
Radcliffe et al. 2018 [211] Orchard Wheeled

skid-steered
Row following (visual-based)

Ruangurai et al. 2022 [243] Paddy field Ackermann Row following (visual-based)
Riggio et al. 2018 [109] Vineyard Wheeled

skid-steered
Row following (LiDAR-based)

Saiz-Rubio et al. 2021 [110] Vineyard Wheeled
skid-steered

Global (GNSS way points)

Santos et al. 2016 [111] Vineyard Ackermann Row folowing (LiDAR-based)
Santos et al. 2019 [37] Vineyards Wheeled

skid-steered
Global (A* with COM-based
weights); local (A*)

Santos et al. 2020 [82] Vineyards Wheeled
skid-steered

Global (A* with COM-based
weights); local (A*)

Santos et al. 2022 [83] Vineyards Wheeled
skid-steered

Global (A* with COM-based
weights); local (Bezier
curves-based approach)

Shafiekhani et al. 2017 [60] Maize crop Wheeled
skid-steered

Row following (LiDAR-based)

Sharifi et al. 2015 [241] Orchard n.r. Row following (visual-based)
Silwal et al. 2021 [114] Vineyard Ackermann Global (GNSS way points)
Underwood et al. 2017 [56] Orchard Omnidirec-

tional
Global (GNSS way points)

Velasquez et al. 2016 [131] Corn crop Wheeled
skid-steered

Row following (LiDAR-based)

Zhang et al. 2014 [120] Orchar Ackermann Row following (LiDAR-based)
with U-turn

Zhang et al. 2012 [116] Orchard Ackermann Row following (visual-based)
Zhang et al. 2022 [178] Greenhouse Wheeled

skid-steered
Global (PRM)

aEnvironment with artificial features designed to test the algorithm.
6. Applications of artificial intelligence

In autonomous inspections, the abilities that a robot can learn
sing artificial intelligence approaches can be useful for im-
roving the robustness and safety of autonomous navigation, as
ell as retrieving data for phenotyping. In fact, the robot must
e able to distinguish between data that are useful for plant
onitoring. In order to associate semantic information to data
athered by sensors, in this section we focus the review on data-
riven pattern recognition approaches. In particular, as shown in
ig. 1, the main tasks covered in this paper regarding artificial
ntelligence are classification, segmentation, and object detection,
ainly based on images and LiDAR data.
Through data classification, the robot can gain a better un-

erstanding of its surroundings, which is the basis for real-time
ecision support systems. The classification problem is concerned
ith assigning acquired data to predetermined classes. Regard-

ng the classification task, popular methods are Support Vector
achine (SVM) and Convolutional Neural Network (CNN). On
ne hand, a SVM is a machine learning technique that conducts
upervised learning for data group categorization. On the other
and, CNN are deep artificial neural networks that are typically
mployed for image recognition and processing, due to their
bility to identify patterns in images.
For example, in order to perform the appropriate guiding or

ontrol actions, the mobile robot must be cognitively capable of
24
comprehending the surrounding terrain type and its features. The
literature reports research works in which SVMs are used to clas-
sify the type of terrain by means of RGB-D images in the work by
Narvaez et al. [174]. In addition, the classifier proposed by Reina
et al. [67] benefits from a multi-modal ground representation
that incorporates exteroceptive (RGB) and proprioceptive (wheels
torque, slip, and acceleration) data inside an SVM-supervised
framework. CNNs can also be used for classification in the agricul-
tural domain, for example, to discriminate diseased plants from
healthy ones (Metre et al. [256]). However, to the best of our
knowledge, there are no examples in the literature of agricultural
mobile robotic systems able to directly classify diseased plants.
Nevertheless, a CNN is used for the estimation of fruit ripening
level using hyperspectral images by Wendel et al. [144].

Unlike classification models, which label an image with its
most representative element, segmentation algorithms provide
pixel-by-pixel information on a specific object. The precise con-
tours of an item within an image are identified using segmenta-
tion, as shown in Fig. 17(a). Segmentation is generally achieved
using CNNs with a particular architecture called encoder–decoder
(Fig. 18). To obtain a more accurate interpretation of the data,
the encoder is tasked with extracting information from groups
of neighboring pixels. The decoder must then restore the orig-
inal resolution of the image and identify each pixel according
to the class to which it belongs. The literature reports robots
capable of performing segmentation on images of sweet peppers
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(a) Sweet pepper segmen-
tation [92].

(b) Apple detection [183]. (c) People motion prediction for
safe in field navigation [45].

Fig. 17. Examples of applications of CNN (a), (b), and RNN (c).
Fig. 18. Example of encoder–decoder CNN architecture for image segmentation [181].
.

in a greenhouse (Fig. 17(a)) in [92,148,257], and sugar beets
in [92,257]. Moreover, by using encoder–decoder architectures
for segmentation, the image preprocessing for row following can
be made more robust to the variability of illumination and field
context (Fig. 18), as demonstrated in [61,181].

The segmentation through encoder–decoder CNNs can be per-
formed also on point clouds, assigning labels to each point (Maset
et al. [258]). For example, in the work by Matsuzaki et al. [151],
the robot is able to segment points belonging to leaves or branches
Alternatively, SVM may be used for this task. The work by Kragh
et al. [172] shows an example of segmenting a point cloud to
distinguish between terrain and vegetation-related features.

Furthermore, object detection and recognition architectures
are common in agriculture since they can identify and locate
one or more types of plants within an image. Object detection
is a computer vision task that recognizes items in images and is
typically performed using CNNs. While classification is related, it
is more specific in that it detects distinct objects within an image
and uses bounding boxes to determine their locations (Fig. 17(b)).
Regarding agricultural applications of object detection, the liter-
ature reports mobile robots capable of locating tomatoes [62],
passion fruits, lychees, and pineapples [175], apples [183], broc-
coli, cabbage [93,123], vine trunks [93,182], and vine shoots
[114,177]. Moreover, a variant of an object detection CNN (R-
CNN [259,260]) is used to find the number of leaves in a sugar
beet field in [74], and to recognize weeds in a corn field [85].

In addition, object detection can be used to recognize people
and obtain a semi-autonomous navigation strategy based on per-
son following. In the work by Masuzawa et al. [105], for instance,
a person-following approach is implemented on the mobile robot
using the YOLOv2 CNN (Redmon et al. [261]). Assigning semantic
value to the portions of pixels within images can be also useful for
improving navigation strategies. Images from onboard cameras
pointing forward can be used to recognize the position of the
center of the row in a vineyard (Fig. 15(c)), as tested by Cerrato
et al. [86].

Safety in navigation can be increased if CNNs are used to
locate trunks or people (Fig. 17(c)) for obstacle avoidance, as
25
implemented by Aguiar et al. [76] and Skoczen et al. [176], respec-
tively. More in detail, the robot by Aguiar et al. [76] uses a light
version of YOLOv3 [262] (Tiny YOLO-V3) that permits boosting
the frame rate at which inference can be carried out, reducing
computational cost. Tiny YOLO-V3 represents a trade-off between
accuracy and inference speed, overcoming the YOLOv3 inferior
performance at inference stage on embedded computers. Further-
more, the SSD MobileNet 640 × 640, with transfer learning from
the COCO 2017 database, is used as detection algorithm of peach
trunks in orchard rows by Simoes et al. [180]. Details on the CNN
architectures used in the aforementioned works can be found in
the following articles [259–269].

Artificial neural networks can also be applied to automate
the choice of way points on occupancy grid images (task also
done with SVM by Santos et al. [270]), as described by Cerrato
et al. [185]. Another category of neural networks that has been
shown to be useful in obstacle avoidance are the so-called recur-
rent neural networks (RNNs). The RNNs, through an internal loop,
are capable of keeping track of information about previous inputs.
In the work by Eiffert et al. [45], for example, an RNN is used in an
uncultivated field to increase safety in activities shared between
humans and robots.

The methods previously described are supervised, i.e., they
require training datasets that are usually manually labeled. An
example is the one created by Kurtser et al. [149] to train neural
networks for the recognition of grapes. However, manually col-
lecting and annotating datasets (large enough to train a neural
network) is a laborious task, especially in agricultural environ-
ments. For this reason, a technique called transfer learning is
often adopted, such as in [76,81]. Transfer learning involves fine-
tuning network layers or performing additional training with a
small dataset to make it suitable for inputs other than those
used for training. Furthermore, nowadays there are auto-labeling
techniques that can be used to help with dataset creation, such
as the one proposed by Matsuzaki et al. [271]. Auto-labeling
solutions exploit neural networks that can learn from each an-
notation performed and offer tentative annotations for workers
to eventually modify and confirm.
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Fig. 19. Venn diagram reporting the percentage of mobile robots considered in
this work that exploit each capability.

To summarize, AI techniques are integrated into 24.4% of the
onsidered papers, permitting the solution of problems even be-
ond pure localization and mapping (e.g., object detection), as it is
hown in Table 9. Fig. 2 highlights that the trend is growing since
uch kind of algorithms and dedicated hardware are spreading
ore and more in the last few years.

. Future developments and challenges

According to the findings of this review, we can state that
0.0% of the considered mobile robotic solutions are capable
f performing the mapping task autonomously, as shown in
ig. 19. This percentage is computed as the intersection of the
wo Venn diagrams representing localization and mapping and
utonomous navigation approaches implemented in robotic plat-
orms for mapping in agriculture. It is worth noting that this value
s related to a time span of 10 years, and full navigation and map-
ing autonomy is more frequent in current robotic systems. This
ection looks at what the future holds for hardware technologies,
ocalization and mapping methods, path planning, and artificial
ntelligence in this challenging and complex field.

Most agricultural robots use differential-type kinematics, which
esults in fewer constraints on the robot feasible trajectories.
urthermore, custom robots specifically designed for agricultural
pplications are commonly used. The use of modular commercial
obots that adapt to the field to be analyzed, such as Thorvald, is
ecoming more common.
Among the most widely used sensors are the Velodyne VLP16

iDAR sensor and the RealSense D435 depth camera. Multispec-
ral cameras are also integrated into mobile robots to acquire
roximity spectral images.
In terms of computational units, the Jetson by NVIDIA mod-

les are cutting-edge, allowing for more efficient extraction of
nformation from sensor data via parallel computing. Moreover,
uch modules permit to exploit CUDA features, that are necessary
o run most the existing open-source AI algorithms. Among the
etson solutions, future mobile robots for agriculture are expected
o include the new Jetson Orin series for sensor management,
hich represents one of the cutting-edge commercial embedded
omputers, thanks to a 12-core CPU and a powerful GPU (Sipola
t al. [273]).
To increase the autonomy and sustainability of agricultural

obile platforms, solar panels can be embedded as power sources
53,56,157]. The autonomy issue could be resolved in the future
26
by using alternative energy sources to supply low-power sensors,
such as hydrogen fuel cells (Gonzalez et al. [274]).

Thanks to the new global wireless standard (5G), high-volume,
real-time data streaming will also be available, and it is pre-
dicted that cloud storage will replace hard drives for data storage
and management (Dharmasena et al. [275]). Swarm robotics and
Internet of Things solutions could also be used to map large
areas and solve the problem of low battery autonomy (Albiero
et al. [276]). A system for autonomous agricultural tasks might
alternatively consist of a main explorer robot and a secondary
robot guided by a map provided by the master robot.

To the best of our knowledge, no study has been conducted in
which a robot (or a fleet of mobile robots) creates a digital twin of
a whole agricultural ecosystem from which simulations of plant
growth patterns and plant health can be obtained using field-
collected data. Furthermore, future developments may involve
combining the 3D map with data that mobile robotic systems
have not previously considered, such as plant temperature (which
provides information about water stress), soil and plant moisture,
soil carbon concentration, and greenhouse gases exchange.

In terms of localization, visual SLAM approaches have been
found to be more common in open fields or fields defined by the
presence of low crops. Conversely, LiDAR SLAM is increasingly
being used in vineyards and orchards. In some instances, these
LiDAR SLAM algorithms are tweaked to better fit agricultural
contexts (e.g., in orchard by Gao et al. [38]). Cutting-edge visual
and LiDAR SLAM algorithms (yet to be tested or poorly tested
in agricultural scenarios) are reported in Table 10. Appearance-
based VO is not used yet since it is onerous, although it could
be tested in Jetson modules with GPU accelerators. LiDAR SLAM
algorithms are mainly developed for indoor or road environments
(e.g., KITTI), and use feature extraction techniques such as ground,
edges, planes. As a result, more research is needed to determine
whether extracting these characteristics is beneficial for agricul-
tural contexts, or if better results can be obtained by retrieving
alternative features or not using them at all. In addition, it is
uncertain which scan matching approach is more accurate for
agricultural LiDAR SLAM (NDT, point-to-plane ICP). To the best
of our knowledge, a comparison using a ground truth from a
terrestrial laser scanner has not been performed to evaluate the
retrieved map yet.

The current state of the art for combining position estimations
from several sensors is to use factor graphs rather than Kalman
filters, which enables a more tight integration of the different sen-
sors. Concerning the 3D reconstruction, recent applications see
UAV-UGV collaboration to build a more complete 3D map by col-
lecting data from multiple viewpoints [49,159]. Point clouds with
vegetation indices, from multi/hyperspectral cameras, assigned to
each point are not found in literature yet.

In terms of autonomous navigation, collaboration with drones
or between multiple mobile robots could provide additional infor-
mation to strengthen the knowledge and perception of the envi-
ronment to be mapped. The effectiveness of multi-robot systems
using a fleet navigation method could also be improved by im-
plementing AI solutions and supervisory management strategies.
Global path planning strategies could consider terrain character-
istics for improving smoothness in the motion of the robot, thus
reducing the noise in acquired data, especially when navigating
in harsh agricultural soils. Future developments in the field of
autonomous navigation in agricultural scenarios will consider
more robust and AI-based solutions for row following and U-turn
at the end of each row, as this problem is treated, for instance,
in [40,120,136,168,173,235], but not consolidated yet.

Considering artificial intelligence, current research focuses
mostly on the creation of lightweight architectures that can op-

erate on embedded devices. However, the lack of labeled datasets
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Table 9
Overview of the machine learning and deep learning techniques exploited by the mobile robotics systems covered in this survey.
Author Year Ref. Method Environment Application

Adhikari et al. 2020 [181] Encoder–decoder
DNN

Crop rows Row following

Aghi et al. 2020 [68] CNN Vineyard Row following
Aghi et al. 2021 [69] CNN (MobileNetV3

[269])
Vineyard Row following

Aguiar et al. 2020 [76] CNN Vineyard Trunk detection
Aguiar et al. 2021 [182] CNN Vinayard Trunk detection
Ahmadi et al. 2021 [257] Encoder–decoder

DNN (U-Net [268])
Greenhouse, sugar
beets field

Crop segmentation with a
spatio-temporal module

Beloev et al. 2021 [62] CNN (Faster R-CNN
[259])

Controlled Tomatoes detection

Cerrato et al. 2021 [185] CNN Vineyard Way points generation for
global path planning

Cerrato et al. 2021 [86] CNN Vineyard Row following
Chen et al. 2021 [175] CNN (EfficientNet

[263])
Orchard Fruit detection

Cruz et al. 2022 [123] CNN Crop rows Cabbage detection
Eiffert et al. 2021 [45] RNN Uncultivated field Motion prediction for obstacle

avoidance
Emmi et al. 2021 [93] CNN (YOLOv3 [262]) Crop field Crop detection
Gao et al. 2022 [186] Autoencoder NN Garden Data denoising for localization
Halstead et al. 2021 [92] CNN (Mask R-CNN

[260])
Greenhouse, sugar
beets field

Crop and fruit segmentation
and mapping

Hu et al. 2021 [244] CNN (YOLOv4) Crop rows Row following
Kragh et al. 2015 [172] SVM Uncultivated field Vegetation and terrain

classification from point clouds
Masuzawa et al. 2017 [105] CNN (YOLOv2 [261] Greenhouse People detection for person

following
Matsuzaki et al. 2018 [151] Encoder–decoder

DNN
Greenhouse Point cloud segmentation of

branches and leaves
Matsuzaki et al. 2022 [271] DNN Greenhouse Auto-labeling for semantic

segmentation
Mazzia et al. 2020 [183] CNN (YOLOv3-tiny

[264])
Controlled Apple detection and hardware

comparison
Narvaez et al. 2018 [174] SVM Garden Terrain classification
Ohi et al. 2018 [81] CNN (Inceptionv3

[265])
Greenhouse Flower detection

Reina et al. 2017 [67] SVM Vineyard and olive
groove

Terrain classification

Santos et al. 2020 [82] CNN Vineyard Trunk detection
Shu et al . 2021 [192] Encoder–decoder

DNN
Soybean field Simulating RGB-D SLAM

Silva et al. 2021 [61] Encoder–decoder
DNN (U-Net)

Crop rows Row following

Silwal et al. 2021 [114] CNN (Faster R-CNN) Vineyard Bud detection
Simones et al. 2022 [180] CNN (SSD MobileNet

640 × 640)
Orchard Trunks detection

Skoczen et al. 2021 [176] CNN (DeepLabv3+
[266])

Garden Obstacle detection

Smitt et al. 2021 [148] CNN (Mask R-CNN) Greenhouse Fruit segmentation
Wendel et al. 2018 [144] CNN Orchard Estimating mangoes maturity
Weyler et al. 2021 [74] CNN (Mask R-CNN) Sugar beets field Plants detection and leaves

count
Yandun et al. 2021 [177] CNN Vineyard Bud detection
Zaenker et al. 2021 [272] CNN (Yolact [267]) Orchard Sweet pepper segmentation

and pose estimation
Zhang et al. 2021 [85] CNN (Faster R-CNN) Crop field Crop detection
is often the bottleneck in the development and integration of
AI methods. For this reason, recent research has also aimed at
generating synthetic data (Fawakherji et al. [71]) to be used in the
training of neural networks or AI-based tools to automate the la-
beling process (Matsuzaki et al. [271]). Finally the training process
could be boosted by self-attention mechanisms (e.g., transform-
ers [287]), which differently weight the significance of each part
of the input data.

A further application of neural networks includes the extrac-
ion of information directly from multispectral images, which
s not fully covered in the literature for autonomous mobile
obots yet. Additionally, AI can be used to optimize the en-
rgy management of the robot and extend its autonomy in field
perations. Finally, AI methods are expected to be applied for
27
increasing safety in human–robot collaboration tasks, especially
in the context of motion prediction.

8. Conclusion

This paper examined the current supportive technologies for
ground mobile robots used for autonomous mapping in
agriculture. Unlike previous reviews, we described cutting-edge
approaches and technologies for extracting information from
agricultural environments, not just for navigation but also for
mapping and monitoring. Advanced platforms and sensors, mod-
ern localization techniques, navigation and path planning meth-
ods, and the potentialities of artificial intelligence for autonomous
mapping in agriculture have all been analyzed. This work revealed
that mobile robotics in agriculture is a present and active field of
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Table 10
Up-to-date open-source SLAM algorithms.
Algorithm Ref. Year Approach Github link ROS Tested in

agriculture

DLO [277] 2022 LiDAR, inertial https://github.com/vectr-
ucla/direct_lidar_odometry

✓ ✗

DTAM [278] 2011 Visual https://github.com/akshitj1/dtam ✗ ✓

DV-LOAM [279] 2021 LiDAR, visual https://github.com/kinggreat24/dv-loam ✗ ✓

F-LOAM [280] 2021 LiDAR https://github.com/wh200720041/floam ✓ ✗

hdl_graph [210] 2019 LiDAR, inertial https://github.com/koide3/hdl_graph_slam ✓ ✗

LeGO-LOAM [205] 2018 LiDAR, inertial https://github.com/
RobustFieldAutonomyLab/LeGO-LOAM

✓ ✓

LiODOM [281] 2022 LiDAR https://github.com/emiliofidalgo/liodom ✓ ✗

LIO-SAM [206] 2020 LiDAR, inertial https://github.com/TixiaoShan/LIO-SAM ✓ ✓

LOAM [204] 2014 LiDAR https://github.com/cedricxie/LOAM ✓ ✓

LVI-SAM [282] 2021 LiDAR, visual https://github.com/TixiaoShan/LVI-SAM ✓ ✓

LSD-SLAM [283] 2014 Visual https://github.com/tum-vision/lsd_slam ✓ ✓

ORB-SLAM [190] 2015 Visual https://github.com/raulmur/ORB_SLAM ✓ ✓

ORB-SLAM2 [191] 2017 Visual https://github.com/raulmur/ORB_SLAM2 ✓ ✓

ORB-SLAM3 [194] 2021 Visual, inertial https://github.com/UZ-SLAMLab/ORB_SLAM3 ✓ ✓

PL-VIO [284] 2018 Visual, inertial https://github.com/HeYijia/PL-VIO ✓ ✗

RTAB-Map [196] 2019 LiDAR or
visuala

https://github.com/introlab/rtabmap_ros ✓ ✓

Stereo DSO [285] 2017 Visual https://github.com/JiatianWu/stereo-dso ✗ ✓

SVO [286] 2014 Visual https://github.com/uzh-rpg/rpg_svo ✓ ✗

aRTAB-Map provides multiple modules.
research driven by the need to optimize agricultural production,
reduce waste, and improve sustainability, as dictated by climatic
and social factors.
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