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Abstract

Despite the strong prognostic stratification of circulating tumor cells (CTCs) enumeration in metastatic breast cancer (MBC), current clinical
trials usually do not include a baseline CTCs in their design. This study aimed to generate a classifier for CTCs prognostic simulation in ex-
isting datasets for hypothesis generation in patients with MBC. A K-nearest neighbor machine learning algorithm was trained on a pooled
dataset comprising 2436 individual MBC patients from the European Pooled Analysis Consortium and the MD Anderson Cancer Center to
identify patients likely to have CTCs > 5/7 mL blood (StagelVas9ressive vs StagelVn®er) The model had a 65.1% accuracy and its prognostic
impact resulted in a hazard ratio (HR) of 1.89 (Simulated®oessie vs Simulated™®" P < .001), similar to patients with actual CTCs enumeration
(HR 2.76; P < .001). The classifier's performance was then tested on an independent retrospective database comprising 446 consecutive
hormone receptor (HR)-positive HER2-negative MBC patients. The model further stratified clinical subgroups usually considered prognostic-
ally homogeneous such as patients with bone-only or liver metastases. Bone-only disease classified as Simulated®9resse had a significantly
worse overall survival (OS; P < .0001), while patients with liver metastases classified as Simulated™®®" had a significantly better prognosis
(P < .0001). Consistent results were observed for patients who had undergone CTCs enumeration in the pooled population. The differential
prognostic impact of endocrine- (ET) and chemotherapy (CT) was explored across the simulated subgroups. No significant differences were
observed between ET and CT in the overall population, both in terms of progression-free survival (PFS) and OS. In contrast, a statistically
significant difference, favoring CT over ET was observed among Simulated?eressie patients (HR: 0.62; P = .030 and HR: 0.60; P = .037, re-
spectively, for PFS and OS).

Key words: clinical trial model; machine learning; liquid biopsy; biomarker; K-nearest neighbor.

Implications for Practice

Circulating tumor cells (CTC)-based risk stratification may have a role for future treatment strategies, as it enables the selection of
subgroups with differential response potential. Machine learning can simulate CTCs-based staging in scenarios of particular interest to
identify subpopulations for hypothesis generation which may benefit from higher intensity treatments due to a more aggressive outcome
and inform future clinical trials designs.

Background

Metastatic disease occurs in approximately 20%-50% of Table 1. Patients’ characteristics across the CTCs enumeration
patients with early breast cancer (BC) and in 6%-10%  SUbgroups.

of newly diagnosed BC cases. Different disease subtypes
account, at least partially, for the variability in overall sur-
vival (OS) which can range from months to several years.'? ER 001
As increasing knowledge is generated regarding new thera-

Variable Stage [Vindolent Stage [Vassressive P-value

i s itis ] cant to identif dictive fact Negative 372 (3.22%) 244 (23.99%)
peutic agents, it is important to identify new predictive factors Positive 859 (69.78%) 773 (76.01%)
that help treatment selection. To date, the most established
predictive markers in metastatic breast cancer (MBC) are PR ' 076
the expression of HR and HER2. Patients with HR-positive/ Negative 553 (44.92%) 419 (41.20%)
HER2-negative MBC often respond to endocrine therapy Positive 678 (55.08%) 598 (58.80%)
(ET) alone or in combination with targeted agents with gener- ~ HER2 <.001
ally fewer side effects and toxicities than chemotherapy (CT). Negative 896 (72.79%) 808 (79.45%)
ET-based therapies in combination with CDK4/6 inhibitors Positive 335 (27.21%) 209 (20.55%)
are therefo;e. the preferred treatment approgch in most cases Bone involvement <001
of HR-positive MBC, reserving CT for patients with exten-
. . . . . No 557 (45.25%) 222 (21.83%)
sive symptomatic visceral disease and/or defined endocrine . .
resistance. To date, there are no predictive biomarkers driving .Yes_ 674 (54.75%) 795 (78.17%)
treatment choice regarding targeted therapies such as inhibi- Liver involvement <.001
tors of cyclin-dependent kinase (CDK) 4/6. No 818 (66.45%) 502 (49.36%)
While circulating tumor cells (CTCs) are recognized Yes 413 (33.55%) 515 (50.64%)

as an independent prognostic marker for OS, their role in
sup portin_g Clinica.l management of MBC,: is still not well The Stage IV"®lnt and Stage IV subgroups are characterized by
defined.>* A previous effort to prospectively evaluate the  ggnificantly different characteristics both in terms of tumor biology and
clinical utility of CTCs enumeration in MBC was performed  clinical behavior.

in the SWOG 0500 trial. In this study, clinicians were guided Abbreviations: ER, estrogen receptor; PR, progesterone receptor.

to maintain or switch chemotherapy regimen based on an
early CTCs evaluation after 21 days of therapy.® Although
the study showed no OS differences in patients with persist-
ently elevated CTCs that changed CT regimen, the prognostic
potential of CTCs was further confirmed. The study’s sam-
pling timeframe, however, was not strictly biology driven,
since CTCs dynamics is not just treatment-induced but also
likely the result of tumor biology evolution.” Moreover, the
CT selection was driven by the clinician’s choice and not by
biology-defined targets.

The strong prognostic stratification achieved by CTCs enu-
meration can have potential applications in identifying pa-
tients that will likely benefit from intensive treatments, while
reserving less toxic treatments for those with an inherently
indolent disease.®

Current clinical trials usually do not include a baseline
CTCs enumeration in their design, primarily due its perceived
costs and technical complexity, notwithstanding software so-
lutions that minimize inter-operator variability. Therefore,
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there is an unmet need to evaluate biomarker-assisted
decisional algorithms.’

The aim of this study was to generate a classifier to simu-
late the prognostic stratification of CTCs in existing datasets
for hypothesis generation in precise MBC scenarios. This clas-
sifier has the potential to inform and potentially drive future
clinical trials design.

Methods

Study Population and Ethical approval

The model was trained on a pooled dataset based on data from
2436 individual MBC patients from 17 European Centers
participating in the European Pooled Analysis Consortium
(EPAC) and the MD Anderson Cancer Center (MDACC).
The database characteristics were previously published.*

The anonymized data were transferred to the Robert H.
Lurie Comprehensive Cancer Center-Bioinformatics Core
Facility. A retrospective Institutional Review Board-approved
protocol was used to access and analyze the data. CTCs enu-
meration was performed through the CellSearch platform
(Menarini Silicon Biosystems, PA) and the patients were clas-
sified accordingly based on a § CTCs per 7.5 mL cut off in
Stage [Vaegressive (5 > CTCs) and Stage [Vindelent (5 < CTCs).>*

Features Selection andTraining of the Machine
Learning Classifier

K-nearest neighbor (KNN) is a supervised machine learning
algorithm that can be used to solve both classification and
regression problems. After a training phase during which
labeled data are analyzed, the model abstracts a function
that can be used to infer an appropriate output when new
unlabeled data are evaluated. The KNN algorithm classi-
fies objects based on their proximity in the feature space
through a majority vote of its neighbors. The object is there-
fore assigned to the class that is most common among its
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KNN, where K is a positive integer that is typically small. If
K = 1, then the object is assigned to the class of its nearest
neighbor.

Baseline features linked to tumor biology were tested
through Chi square test for association with respect to Stage
IVassresive and consistently selected based on both clinical and
statistical significance (Table 1).

The model was then trained based on estrogen receptor
(ER) status (positive vs negative, 1% threshold), pro-
gesterone receptor (PR) status (positive vs negative, 1%
threshold), HER2 status (positive vs negative), treatment
line (continuous variable), bone and liver involvement (yes
VS no).

Patients with all the necessary features (2248) were then
3:1 randomly assigned to a training set (1687) and a valid-
ation set (561) (Supplementary Fig. 1).

The model was built using R (The R foundation for
Statistical Computing. version 3.3.1) and the “caret”
package.!’

CTCs Simulation on an Independent Database

The classifiers’ performance was tested on an independent
retrospective database of 446 consecutive HR-positive
HER2-negative MBC patients treated with first-line ET or
CT at the University Hospitals of Naples and Udine, Italy,
between 2004 and 2014. Patients’ characteristics were previ-
ously published.!! This study was previously approved by the
Review Committees of each center. CTCs risk stratification
was simulated through the “caret” package.*®

Statistical Analysis
Categorical variables were reported as frequency distribution,
whereas continuous variables were described through median
and interquartile range (IQR).

Overall survival (OS) was defined as the time from base-
line CTCs enumeration to death from any cause or date of

S Stage |Vagressive yg Stage |Vinlent: HR 2.70; 95%Cl 2.12 - 3.46; P<.0001
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Figure 1. Comparison between the CTC-based risk stratification (Stage V¥t vs Stage [V2e9essie) and the KNN simulation (Simulated@ent vs
Simulated®resse), The model was capable to simulate a comparable risk stratification with respect to CTCs enumeration both for StagelVn®en (CTCs vs
Simulation HR 1.18, 95%Cl 0.93-1.51, P = .177) and StagelV?e@ressve (CTCs vs Simulation HR 0.88, 95%Cl 0.70-1.09, P = .242).
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last follow-up. Progression-free survival (PFS) was defined
as the time from baseline CTCs enumeration to disease pro-
gression (according to RECIST criteria) or death from any
cause or date of last follow-up. Censoring was applied to pa-
tients without an endpoint event at the last follow-up visit.
Survival was represented by Kaplan-Meier estimator plot and
analyzed by log-rank test and by uni- and multivariable Cox
regression models.

Changes in the predictive power of the Cox regression
models using the simulated CTCs enumeration were investi-
gated through Harrell’s ¢ concordance statistics.

Differences in distribution of CTCs enumeration, ac-
cording to the simulated CTCs status across MBC subtypes,
were tested through the Mann-Whitney U test.

Statistical analysis was conducted using StataCorp 2016
Stata Statistical Software: Release 15.1 (College Station, TX,
USA), and R (The R foundation for Statistical Computing.
version 3.3.1).

Data Availability

The datasets supporting the conclusions of this article are
available from the corresponding author on reasonable
request.

The Oncologist, 2022, Vol. 27, No. 7

Results

From the initial cohort of 2436 patients, 2248 (92.4%) had
no missing data and were therefore eligible for the model
training (Table 1).* Consistent with previously reported data,
CTCs enumeration was associated with specific baseline char-
acteristics. In particular, Stage [Vl patients were more
likely to be ER positive (P =.001), HER2 negative (P < .001),
and have bone or liver metastasis (P < .001).

CTCs Enumeration Can Be Simulated Through
Machine Learning

Based on these premises, a KNN model was trained with
a resulting 65.1% accuracy (95% CI [CI]: 61.0%-69.0%),
72.6% sensitivity (95%CI: 68.95-76.33%) and a 55.9% spe-
cificity (95%CI: 51.8-60.0%) (Supplementary Table S1).

The proportion of correctly classified observations was
higher in patients without detectable CTCs (78.3% classified
as Simulated IVi"d) than in patients with CTCs enumer-
ation higher than the 75th percentile (21 CTCs; 62.6% clas-
sified as Simulated?seressive),

In the validation cohort, the prognostic impact of the
CTCs enumeration was hazard ratio (HR) 2.76 (95%CI
2.18-3.49; P < .001) for Stage IVueeresive yg Stage [Vindolent,
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Figure 2. CTCs enumeration simulation across MBC subtypes. Patients classified as Simulated?e¢ressve (Agg) had a significantly higher CTCs enumeration

683 460 241 110 47 10
668 362 158 64 23 7

Aggressive

Number at risk
Indolent

382 278 144 79 42 19
162 94 46 24 10 1

Number at risk

Indolent 287 143
Aggressive 65 26

62 35 13
8 2 0

o

with respect to Simulated [Vt (Ind) in HR-positive MBC (A), HER2-positive MBC (B) and TNBC (C). Patients classified as Simulated?oaressive
experienced a significantly worse prognosis (D).
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Consistently, the classifier resulted in a HR of 1.89 (95%CI
1.50-2.38; P < .001) for Simulatedsesic vys Simulated
Ideulem (Flg 1)

Patients classified as Simulated®#c had a significantly
higher number of CTCs with respect to Simulated [Vindolen
(median CTCs 11.5, IQR: 1-44 vs 2, IQR 0-9; P = .0001, re-
spectively, for Simulated®# e and Simulated IVndolent),

CTCs Classifier and Breast Cancer Subtypes

The classifier’s performance was then tested in the overall
population across different MBC subtypes.

Patients classified as Simulated®#s*e had a significantly
higher CTCs enumeration with respect to Simulated TVindoler
in HR-positive MBC (median CTCs 10, IQR: 1-60.5 and 1,
IQR 0-11; P < .0001, respectively) (Fig. 2A), HER2-positive

A
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MBC (median CTCs 8, IQR: 1-32 and 1, IQR 0 — 6; P =
.0091, respectively) (Fig. 2B) and TNBC (median CTCs 11,
IQR: 2-52 and 2, IQR 0 - 16; P = .0403, respectively) (Fig.
2C). Patients classified as Simulated® ¢ experienced a
significantly worse prognosis (Fig. 2D, E), especially in the
HR-positive subgroup (Fig. 2D).

CTC-Based Risk Stratification Can Be Simulated on
an Independent Real-World Dataset

To test the consistency and applicability of the classifier in
a real-world MBC cohort, a proof-of-concept analysis was
performed on an independent database comprising 446
HR-positive, HER2-negative MBC patients. Patients’ charac-
teristics were previously published. Three patients were ex-
cluded from the analysis due to missing PR status.'!

Log-rank test P < .0001
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Figure 3. CTCs enumeration simulation of on an independent cohort comprising HR-positive, HER2-negative first-line MBC patients. The classifier was

capable to stratify patients both in terms of OS (A) and PFS (B).
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Of the 443 eligible patients, 345 (77.9%) were classi-
fied as Simulated TVl and, among them, 126 (36.5%)
received first-line CT, whereas 219 (63.5%) received ET
without targeted companions (eg, PI3K inhibitors, CDK
4/6 inhibitors (CDK4/6i)). On the other hand, 98 patients
(22.2%) were classified as Simulated®* "¢ and among them
46 (46.9%) received first-line CT, while 48 (53.1%) received
ET. Patients classified as Simulated?s " had a significantly
worse outcome compared with the Simulated TVindolent sub-
group, in terms of OS (HR: 1.82; 95%CI 1.38-2.39; P <
.001; median: 23.74 vs 41.06 months) (Fig. 3A) and a non-
significant numerical difference with respect to PFS (HR:
1.24; 95%CI 0.98-1.59; P = .074, median: 8.91 vs 11.70
months) (Fig. 3B).

The prognostic impact for OS was also investigated
through multivariable analysis to test the independent role of
the classifier on outcome. Simulated®#™ "¢ retained its prog-
nostic significance in terms of OS (HR: 1.58; 95%CI 1.17-
2.15; P =.003; Table 2) and its addition increased the model’s
overall concordance index (Harrell’s C = 0.6381 and 0.6581,
respectively, before and after the addition of the classifier to
the multivariable model).

The model was also able to further stratify clinical sub-
groups usually considered prognostically homogeneous.
Similarly to what was observed with CTCs enumeration in
the pooled population (Fig. 4A), patients with bone only
metastases classified as Simulated V2 had a signifi-
cantly worse prognosis with respect to the Simulated TVindolent

The Oncologist, 2022, Vol. 27, No. 7

counterpart (P <.0001) (Fig. 4C). Consistently, patients with
liver metastases classified as Simulated V" had a signifi-
cantly better prognosis than the Simulated IVeesive counter-
part (P < .0001; Fig. 4D).

CTCs Classifier and Impact of TreatmentType

As a proof of principle, the differential prognostic impact of
first-line ET and CT was explored across the Simulated2ssresive
and Simulated™®» subgroups. Consistently with previously
published results, no significant differences were observed be-
tween ET and CT in the overall population, both in terms
of PFS (HR: 1; 95%CI 0.81-1.23; P = .998) and OS (HR:
HR: 0.92; 95%CI 0.72-1.18; P = .511) (Fig. SA, D). Similar
results were obtained in the Simulated™" subgroup (HR:
1.13; 95%CI 0.89-1.44; P = .301 and HR: 0.95; 95%CI
0.72-1.28; P = .759 respectively for PFS and OS) (Fig. 5B,
E). On the other hand, a statistically significant difference,
favoring CT over ET was observed among Simulated?ssresive
patients (HR: 0.62; 95%CI 0.40 — 0.96; P = .030 and HR:
0.60; 95%CI 0.37 = 0.97; P = .037, respectively, for PFS and
0S; Fig. 5C, F).

Discussion

The present study explored the concept of simulating the
CTC-based prognostication to investigate the impact of dif-
ferent therapeutic approaches in existing databases that are
lacking for this characterization. A KNN supervised machine

Table 2. Main prognostic factors in terms of OS both on uni and multivariable analysis

Variable Univariate Multivariate
HR 95% CI P-value HR 95% CI P-value
BC subtype
Luminal A 1 1
Luminal B 1.57 1.16-2.12 0.003 1.46 1.06-2.00 .020
BMI
<25 1
>25 1.15 0.87-1.53 0.327
CTCs simulation
Simulatedidlent 1 1
Simulated?ssresive 1.82 1.38-2.39 <0.001 1.58 1.17-2.14 .003
Age at treatment start
<70 years 1
>70 years 1.84 1.43-2.36 <0.001 2.08 1.57-2.76 <.001
ET naive
No 1 1
Yes 0.71 0.55-0.90 0.005 0.51 0.29-0.89 .017
CT naive
No 1
Yes 0.81 0.63 -1.02 0.077
Stage IV onset
Relapsed 1 1
De novo 0.73 0.57 - 0.94 0.016 1.03 0.58-1.82 931
ECOG PS
0-1 1 1
22 1.62 1.17-2.25 0.004 1.58 1.11-2.25 .011

220z 1snBny L0 Uo Josn 8zusiog Ip gSID dUIPN 1P 1PNIS 11B9p EysieAun Aq £0.2S59/1.9G9/2/LZ/9101HE/0[00uO/W0d" dNo-olWapeoe//:SAjY WOl PaPEOjUMOQ



The Oncologist, 2022, Vol. 27, No. 7

Log-rank test, P < .0001
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Figure 4. CTCs stratification and simulation among patients with bone-only (BO) disease (A, C) and liver (Liv) involvement (B, D). In the pooled
population, patients with bone only metastases classified as StagelVze9essie had a significantly worse prognosis with respect to StagelVn®e (P < .0001)
(A). Similar results were observed in the Simulated counterpart (P < .0001) (C). Consistently, patients with liver metastases classified as StagelV/nden
had a significantly better prognosis than the StagelVaressve counterpart (P < .0001) (B) Similar results were observed in Simulated™®e™ patients with

liver metastases (P < .0001) (D).

learning model was trained on a pooled dataset of 2436 MBC
patient from EPAC and MDACC with a resulting 57.1% sen-
sitivity (95%CI: 50.8-63.3%), a 61.6% specificity (95%CI:
55.9-67.0%) and a notably comparable risk stratification
with respect to the real CTCs enumeration (StagelVindolen
vs Simulated™t HR 1.18, 95%CI 0.93-1.51 P = .177;
StagelVassresive yg Simulated@ s« HR 0.88, 95%CI 0.70-1.09,
P =.242).

As a proof of concept, the classifier was applied to a real-
world cohort of 446 patients affected by HR-positive HER2-
negative MBC to investigate the differential prognostic
impact of first-line ET and CT across the Simulated?##esve and
the Simulated™!* subgroups in a clinically homogeneous
population. The dataset was previously analyzed through
a propensity score matching approach to explore the prog-
nostic impact of CT vs ET as first-line treatment showing
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Figure 5. Impact of first-line ET and CT in terms of OS and PFS according to the classifier's stratification. No significant impact was observed in the
total population (A, D) nor in the Simulated™®®" subgroup (B, E) in terms of OS and PFS, while a significantly different outcome was observed in the

Simulated?eeressve subgroup (C, F).

no significant differences.!' As expected, Simulatedesresive
patients experienced a worse outcome both in terms of PFS
and OS (Fig. 3), the latter confirmed also in multivariable
analysis. Intriguingly, a differential prognostic impact of ET
and CT was observed within the 2 simulated cohorts. In the
Simulated® subgroup, no difference in outcome was ob-
served when patients were treated with ET or CT. In contrast,
the Simulated®# ¥ subgroup had a significantly better out-
come in patients receiving CT over ET, both in terms of PFS
and OS (Fig. 5).

The use of ET-based treatments with respect to CT, is sup-
ported by a therapeutic benefit burdened by lower toxicities
and better quality of life. Moreover, novel combinations of
ET plus targeted treatments, including CDK4/6i, have shown
remarkable efficacy in patients with HR-positive HER2-
negative MBC.'>!3 Therefore, current guidelines recommend
ET-based treatments with CDK4/6i as first-line therapy for
HR-positive HER2-negative MBC, whereas CT should be
considered as the preferred treatment strategy in patients with
visceral disease that acutely threaten organ function.!

Bone-only disease is often regarded as a distinct clinical sub-
group characterized by a favorable prognosis and a prolonged
OS, and therefore these patients are potentially eligible to re-
ceive a lower-intensity treatment and disease monitoring.'*
However, we observed a subset of patients with CTC-defined
bone-only disease that experienced a significantly worse prog-
nosis (Fig. 4) which accounted for 49.6% of patients with
bone-only disease in the pooled cohort (198 out of the total
399). The present study, therefore, suggests that additional

biomarkers, such as CTCs enumeration, could be useful to
further stratify this subpopulation and identify patients that
may benefit from a different therapeutic approach. Many
studies have been conducted so far to evaluate clinical features
such as disease-free interval, number, and type of metastatic
sites as clinical markers potentially useful to guide treatment
decision. However, none of these have been shown to be a
useful predictive marker." In this scenario, CTCs enumeration
could provide a potentially useful tool.

A similar concept was explored by the phase III STIC CTCs
trial.® The study randomized 761 MBC patients between a
clinically-driven choice or a CTC-driven choice defined on the
established >5 CTC/7.5ml cutoff.* Patients classified as “high
risk” based on the assigned approach received CT, while those
classified as “low-risk” received ET. PFS was showed to be
not inferior in the CTC-driven with respect to the clinically-
driven one (HR 0.98, 90%CI 0.84-1.13).% Intriguingly,
StagelVassesive patients that were clinically defined as “low-
risk” had a significantly longer PFS when treated with CT (in
the CTCs arm) with respect to those treated with ET (in the
clinically driven arm), highlighting the impact of treatment
type on patient outcome (PFS HR 0.67, 95%CI 0.49-0.92
P = .01). Importantly, these results are consistent with those
generated by the classifier in our study, further supporting its
reliability and potential utility.

One limitation of this study is the lack of inclusion of pa-
tients treated with CDK4/6i. On the other hand, this is the
first proposed “in silico” approach capable to stratify patients
according to the simulation of CTCs-based staging.
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Of note, since the classifier was trained using the widely es-
tablished 25 CTC/7.5 ml cutoff and a large un-selected MBC
cohort, it offers a generalizable platform for hypothesis gener-
ation that can be transferred to a broad variety of real-world
or clinical trial databases.’¢%?

Previous attempts have been made to explore new sub-
groups with differential treatment benefits through machine
learning algorithms. Patient-level data from 4580 breast
cancer patients enrolled in 8 randomized clinical trials treated
with CDK4/6i were analyzed through random survival forest
models based on clinical baseline characteristics with a re-
sulting 69.2% accuracy.'®

The present study designed a classifier with a 65.1% accuracy
based on a strong, setting-independent biological biomarker,
enabling its application on a broader set of clinical questions.

Although the present study provided evidence of an in silico
simulation of the CTC-based stratification, its main objective
was not to replace the real CTCs enumeration, which has
specific biological implications and is certainly more solid in
PFS and OS prognostication. It rather identifies patients with
comparable prognostic characteristics for hypothesis gener-
ation and the subsequent design of prospective, biomarker-
driven, clinical trials with the ultimate goal of catalyzing
sample size optimization and clinical trials optimization by
exploring different levels of treatment intensity and the im-
pact of methodological aspects in subpopulations with dif-
ferent risk profiles.!

Conclusion

The present study showed the feasibility of a KNN machine
learning classifier to simulate a baseline CTCs-based staging.
This model could be used for hypothesis generation in specific
case scenarios of interest to identify subpopulations which
may benefit from higher intensity treatments due to a more
aggressive outcome, representing a valuable tool for future
clinical trials design and prospective, biomarker-driven, val-
idation studies.
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