A global bifurcation result
for a second order singular equation

Anna Capietto, Walter Dambrosio
and Duccio Papini

Dedicated, with gratefulness and friendship, to Professor Fabio Zanolin
on the occasion of his 60th birthday

Abstract. We deal with a boundary value problem associated to a
second order singular equation in the open interval $(0, 1)$. We first
study the eigenvalue problem in the linear case and discuss the nodal
properties of the eigenfunctions. We then give a global bifurcation result
for nonlinear problems.

Keywords: self-adjoint singular operator, spectrum, nodal properties, global bifurcation
MS Classification 2010: 34C23, 34B09, 35P05

1. Introduction

We are concerned with a second order ODE of the form

$$-u'' + q(x)u = \lambda u + g(x, u), \quad x \in (0, 1],$$

where $q \in C((0, 1])$ satisfies

$$\lim_{x \to 0^+} \frac{q(x)}{l/x^\alpha} = 1,$$

for some $l > 0$ and $\alpha \in (0, 5/4)$, and $g \in C([0, 1] \times \mathbb{R})$ is such that

$$\lim_{u \to 0^+} g(x, u) = 0, \quad \text{uniformly in } x \in (0, 1].$$

The constant $5/4$ arises in a rather straightforward manner in the study of the
differential operator in the left-hand side of (1) (cf. [17, p. 287-288]); details
are given in Remark 2.3 below.

1Under the auspices of GNAMPA-I.N.d.A.M., Italy. The work has been performed in
the frame of the M.I.U.R. Projects ‘Topological and Variational Methods in the Study of
Nonlinear Phenomena’ and ‘Nonlinear Control: Geometrical Methods and Applications’.
We will look for solutions u of (1) such that $u \in H^2_0(0, 1)$.

When the x-variable belongs to a compact interval, problems of the form (1) have been very widely studied. A more limited number of contributions is available in the literature when the x-variable belongs to a (semi)-open interval, as it is the case in the present paper, or to an unbounded interval [7, 8].

We treat (1) in the framework of bifurcation theory. For this reason, we first discuss in Section 2 the eigenvalue problem

$$-u'' + q(x)u = \lambda u, \quad x \in (0, 1], \quad \lambda \in \mathbb{R}.$$

(4)

For such singular problems, the well-known embedding of (4) (by an elementary application of the integration by parts rule, together with the boundary condition $u(0) = 0 = u(1)$) in the setting of eigenvalue problems for compact self-adjoint operators cannot be performed. Thus, the questions of the existence of eigenvalues and of the nodal properties of the associated eigenfunctions have various delicate features. For a comprehensive account on the spectral properties of the Schrödinger operator we refer to the books [12] and [10]; for more specific results on singular problems in $(0, 1)$ we refer, among many others, to [5, 14].

However, the linear spectral theory for singular problems is well-established and can be found, among others, in the classical book by Coddington and Levinson [4] and in the (relatively) more recent text by Weidmann [17]. The former monograph focuses on a generalization of the so-called “expansion theorem” valid for functions in $L^2([0, 1])$ and, by doing this, a sort of “generalized shooting method” is performed. On the other hand, in [17] the singular problem is tackled from an abstract point of view; more precisely, it is considered the general question of the existence of a self-adjoint realization of the formal differential expression $\tau u = -u'' + q(x)u$ and the important Weyl alternative theorem [17, Theorem 5.6] is used. It is interesting to observe that the approach in [4] (based on more elementary ODE techniques) and the abstract one in [17] lead in different ways to the important concepts of “limit point case” and “limit circle case”. The knowledge of one (or the other) case is ensured by suitable assumptions on q and leads to information on the boundary conditions to be added to (4) in order to have a self-adjoint realization of τ.

In the setting of the present paper, the operator τ is regular at $x = 1$; this implies that it is in the limit circle case. Moreover, under assumption (2), from [17, Theorem 6.4] it follows that τ is in the limit circle case also in $x = 0$. Thus, the differential operator $A : u \mapsto \tau u$ with

$$D(A) = \{ u \in L^2(0, 1) : u, u' \in AC(0, 1), \tau u \in L^2(0, 1), \lim_{x \to 0^+} (xu'(x) - u(x)) = 0 = u(1) \}$$
is a self-adjoint realization of τ ([17, p. 287-288]). We prove in Proposition 2.2 that in fact $D(A) = H^2_0(0,1)$; to do this, we need some knowledge of the behaviour of the solutions of (4) near zero. These estimates are developed in Proposition 2.1 by means of the classical Levinson theorem [6, Theorem 1.8.1].

Finally, at the end of Section 2 we focus on the nodal properties of a solution to (4); more precisely, in Proposition 2.4 we prove that (4) is non-oscillatory and conclude in Proposition 2.5 that the spectrum of A is purely discrete and that, for every $n \in \mathbb{N}$, the eigenfunction associated to the eigenvalue λ_n has $(n-1)$ simple zeros in $(0,1)$.

Section 3 contains a global bifurcation result (Theorem 3.2) which follows in a rather straightforward manner as an application of the celebrated Rabinowitz theorem in [11].

In order to exclude alternative (2) in Theorem 3.2, we use a technique that we already applied for Hamiltonian systems in $\mathbb{R}^2\mathbb{N}$ in [2] and for planar Dirac-type systems in [3]. More precisely, we introduce a continuous integer-valued functional defined on the set of solutions to (1). Due to the singularity at $x = 0$, some care is necessary in order to prove its continuity; this is the content of Proposition 3.4. We can then state and prove our main result (Theorem 3.5).

In what follows, for a given function p we write $p(x) \sim \frac{m}{x^a}$, $x \to 0^+$, when

$$\lim_{x \to 0^+} \frac{p(x)}{m/x^a} = 1$$

for some $m, a \in \mathbb{R}^+$. Finally, we write

$$H^2_0(0,1) = \{ u \in H^2(0,1) : u(0) = 0 = u(1) \},$$

equipped with the norm defined by

$$||u||^2 = ||u||^2_{L^2(0,1)} + ||u'||^2_{L^2(0,1)}, \quad \forall \ u \in H^2_0(0,1).$$

2. The linear equation

In this section we study a linear second order equation of the form

$$-u'' + q(x)u = \lambda u, \quad x \in (0,1], \ \lambda \in \mathbb{R}.\tag{6}$$

We will assume that $q \in C((0,1])$ and that

$$q(x) \sim \frac{1}{x^a}, \quad x \to 0^+,\tag{7}$$
for some \(l > 0 \) and \(\alpha \in (0, 5/4) \). Without loss of generality we may suppose that
\[
q(x) > 0, \quad \forall x \in (0, 1].
\] (8)

For every \(u : (0, 1] \to \mathbb{R} \) we denote by \(\tau u \) the formal expression
\[
\tau u = -u'' + q(x)u;
\]

First of all, we study the asymptotic behaviour of solutions of (6) when \(x \to 0^+ \); to this aim, let us introduce the change of variables \(t = -\log x \) and let
\[
w(t) = u(e^{-t}), \quad \forall t > 0.
\]
From the relations
\[
w'(t) = -e^{-t}u'(e^{-t})\]
\[
w''(t) = e^{-t}u'(e^{-t}) + e^{-2t}u''(e^{-t}),
\]
we deduce that \(u \) is a solution of (6) on \((0, 1)\) if and only if \(w \) is a solution of
\[
-w'' - w' + e^{-2t}q(e^{-t})w = \lambda e^{-2t}w
\] (10)
on \((0, +\infty)\). Equation (10) can be written in the form
\[
Y' = (C + R(t))Y,
\] (11)
where \(Y = (w, z)^T \) and
\[
C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \quad R(t) = \begin{pmatrix} 0 & 0 \\ e^{-2t}q(e^{-t}) - \lambda e^{-2t} & 0 \end{pmatrix}, \quad \forall t > 0.
\] (12)

Now, let us observe that \(C \) has eigenvalues \(\lambda_1 = 0, \lambda_2 = -1 \) and corresponding eigenvectors \(u_1 = (1, 0), u_2 = (1, -1) \) and that \(R \in L^1(0, +\infty) \); therefore, an application of [6, Theorem 1.8.1] implies that (11) has two linearly independent solutions \(Y_1, Y_2 \) such that
\[
Y_1(t) = u_1 + o(1), \quad t \to +\infty,
\]
\[
Y_2(t) = (u_2 + o(1))e^{-t}, \quad t \to +\infty.
\] (13)

As a consequence, we obtain the following result:
Proposition 2.1. For every \(\lambda \in \mathbb{R} \) the equation (6) has two linearly independent solutions \(u_{1, \lambda}, u_{2, \lambda} \) such that

\[
\begin{align*}
 u_{1, \lambda}(x) &= 1 + o(1), \quad u'_{1, \lambda}(x) = o\left(\frac{1}{x}\right), \quad x \to 0^+,
 \\
 u_{2, \lambda}(x) &= x + o(1), \quad u'_{2, \lambda}(x) = 1 + o(1), \quad x \to 0^+,
\end{align*}
\] (14)

and \(u_{2, \lambda} \in H^2(0, 1) \).

For every \(f \in L^2(0, 1) \) the solutions of \(\tau u = f \) are given by

\[
 u(x) = c_1 u_{1,0}(x) + c_2 u_{2,0}(x) + u_f(x), \quad \forall \ x \in (0, 1), \ c_1, c_2 \in \mathbb{R},
\] (15)

where

\[
 u_f(x) = \int_0^x G(x, t)f(t) \, dt, \quad \forall \ x \in (0, 1),
\] (16)

\[
 G(x, t) = u_{1,0}(t)u_{2,0}(x) - u_{2,0}(t)u_{1,0}(x), \quad \forall \ x \in (0, 1), \ t \in (0, 1)
\]

fulfill \(G \in L^\infty((0, 1)^2) \), \(u_f(0) = 0 = u'_f(0) \) and \(u_f \in H^2(0, 1) \).

Proof. The estimates in (14) follow from (9) and (13), while (16) is the usual variation of constants formula. Moreover, from (14) we obtain that \(u_{2, \lambda}, u'_{2, \lambda} \in L^2(0, 1) \). On the other hand we have

\[
 q(x)u_{2, \lambda}(x) \sim x^{1-\alpha}, \quad x \to 0^+,
\] (17)

which implies that \(qu_{2, \lambda} \in L^2(0, 1) \), since \(\alpha < 5/4 \) (cf. Remark 2.3 for comments on this restriction); using the fact that \(\tau u_{2, \lambda} = \lambda u_{2, \lambda} \), we deduce that

\[
 u''_{2, \lambda} = \lambda u_{2, \lambda} - qu_{2, \lambda} \in L^2(0, 1).
\]

From now on, we will indicate \(u_i = u_{i,0}, \ i = 1, 2 \). The fact that the function \(G \) defined in (16) belongs to the space \(L^\infty((0, 1)^2) \) is a consequence of the asymptotic estimates (14). Moreover, from (16) we also deduce that \(u_f(0) = 0 \) and that

\[
 u'_f(x) = \int_0^x (u_1(t)u'_2(x) - u_2(t)u'_1(x))f(t) \, dt, \quad \forall \ x \in (0, 1),
\] (18)

which implies \(u'_f(0) = 0 \).

Finally, the condition \(u_f(0) = 0 = u'_f(0) \) guarantees that \(u_f, u'_f \in L^2(0, 1) \); as far as the second derivative of \(u_f \) is concerned, let us observe that we have

\[
 \tau u_f = f
\]

and so

\[
 u''_f = f - qu_f.
\] (19)

Using the fact that \(u_f(0) = 0 = u'_f(0) \) and (7), it follows that \(qu_f \in L^2(0, 1) \); hence \(u_f \in H^2(0, 1) \). \(\square \)
In what follows, we study the spectral properties of suitable self-adjoint realizations of τ; to this aim, let us first observe that the differential operator τ is regular at $x = 1$. As a consequence, it is in the limit circle case at $x = 1$; moreover, from (7), according to [17, Theorem 6.4], τ is in the limit circle case also in $x = 0$.

The differential operator A defined by

$$D(A) = \{u \in L^2(0,1): u, u' \in AC(0,1), \tau u \in L^2(0,1), \lim_{x \to 0^+} (xu'(x) - u(x)) = 0 = u(1)\}$$

$$Au = \tau u, \quad \forall u \in D(A),$$

is then a self-adjoint realization of τ ([17, p. 287-288]). We can show the validity of the following Proposition:

Proposition 2.2. The relation

$$D(A) = H^2_0(0,1)$$

holds true. Moreover, A has a bounded inverse $A^{-1} : L^2(0,1) \to H^2_0(0,1)$.

Proof. 1. Let us start proving that $H^2_0(0,1) \subset D(A)$. It is well known that $H^2_0(0,1) \subset C^1(0,1)$; hence, for every $u \in H^2_0(0,1)$ we have $u, u' \in AC(0,1)$. Moreover, using the fact that $u(0) = 0$ we deduce that

$$u(x) = u'(0)x + o(x), \quad x \to 0^+$$

and

$$q(x)u(x) = u'(0)x^{1-\alpha} + o(x^{1-\alpha}), \quad x \to 0^+;$$

the condition $\alpha < 5/4$ guarantees again that $qu \in L^2(0,1)$ and therefore $\tau u = -u'' + qu \in L^2(0,1)$. Finally, the regularity of u and u' imply that

$$\lim_{x \to 0^+} (xu'(x) - u(x)) = 0$$

and so also the boundary condition in the definition of $D(A)$ is satisfied.

Now, let us prove that $D(A) \subset H^2_0(0,1)$; for every $u \in D(A)$ let $f = \tau u \in L^2(0,1)$. From (15) we deduce that u can be written as

$$u = c_1 u_1 + c_2 u_2 + u_f,$$

for some $c_1, c_2 \in \mathbb{R}$; it is easy to see that the function u_1 does not satisfy the boundary condition given in $x = 0$ in the definition of $D(A)$, while u_2 and u_f do. Hence $u \in D(A)$ if and only if $c_1 = 0$; the last statement of Proposition 2.1 implies then that $u \in H^2(0,1)$. As in the first part of the proof, the regularity
of u allows to conclude that the boundary condition in $x = 0$ given in $D(A)$ reduces to $u(0) = 0$.

2. Let us study the invertibility of A; the existence of a bounded inverse of A is equivalent to the fact that $0 \in \rho_A$, being ρ_A the resolvent of A. Since A is self-adjoint on $H^2_0(0,1)$, this follows from the surjectivity of A (cf. [16, Theorem 5.24]); hence, it is sufficient to prove that A is surjective.

To this aim, let us first observe that condition (8) guarantees that 0 cannot be an eigenvalue of A. Now, let us fix $f \in L^2(0,1)$ and let us prove that there exists $u \in H^2_0(0,1)$ such that $A u = f$, i.e. $\tau u = f$; by applying Proposition 2.1 we deduce again that (20) holds true and the same argument of the first part of the proof implies that $c_1 = 0$.

Hence we obtain $u = c_2 u_2 + u_f$; from Proposition 2.1 we deduce that this function belongs to $H^2(0,1)$ and satisfies the boundary condition $u(0) = 0$. In order to prove that the missing condition $u(1) = 0$ is fulfilled for every $f \in L^2(0,1)$, let us observe that $u_2(1) \neq 0$, otherwise u_2 would be an eigenfunction of A associated to the zero eigenvalue. Therefore, $u(1) = 0$ is satisfied if

$$c_2 = -\frac{u_f(1)}{u_2(1)},$$

for every $f \in L^2(0,1)$.

\[\square\]

Remark 2.3. As for the restriction $\alpha < 5/4$, we observe that for the proofs of Proposition 2.1 and Proposition 2.2 it is sufficient to require the milder condition $\alpha < 3/2$. The fact that $\alpha < 5/4$ is used (cf. [17, p. 287-288]) in order to obtain that $D(A)$ is the one described above. Finally, we observe that in the particular case when $\alpha < 1$ the problem is regular (cf., among others, [9]).

The spectral properties of A are related to the oscillatory behaviour of solutions of (6). We first recall the following definition:

Definition 2.4. The differential equation (6) is oscillatory if every solution u has infinitely many zeros in $(0,1)$. It is non-oscillatory when it is not oscillatory.

We observe that the regularity assumptions on q imply that solutions of (6) have a finite number of zeros in any interval of the form $[a, 1)$, for every $0 < a < 1$. Moreover, from (7) we infer that for every $\lambda \in \mathbb{R}$ there exists $c(\lambda) \in (0,1]$ such that

$$\lambda - q(x) < 0, \quad \forall x \in (0, c(\lambda)).$$

An application of the Sturm comparison theorem proves that every solution of (6) has at most one zero in $(0, c(\lambda))$; as a consequence, we obtain the following result:
Proposition 2.5. For every $\lambda \in \mathbb{R}$ the differential equation (6) is non-oscillatory.

Once Proposition 2.5 is obtained, we can provide in a straightforward way some useful information on the spectral properties of A; more precisely, denoting by σ_{ess} the essential spectrum of a given operator, we have:

Proposition 2.6. ([17, Theorem 14.3, Theorem 14.6 and Theorem 14.9], [12, Theorem XIII.1]) The differential operator A is bounded-below and satisfies

$$\sigma_{\text{ess}}(A) = \emptyset.$$

Moreover, there exists a sequence $\{\lambda_n\}_{n \in \mathbb{N}}$ of simple eigenvalues of A such that

$$\lim_{n \to +\infty} \lambda_n = +\infty$$

and for every $n \in \mathbb{N}$ the eigenfunction u_n of A associated to the eigenvalue λ_n has $(n - 1)$ simple zeros in $(0, 1)$.

Remark 2.7. According to [17], operators of the form τ (defined on functions whose domain is $(0, +\infty)$) arise when the time independent Schrödinger equation with spherically symmetric potential

$$-\Delta u(x) + V(|x|)u(x) = \lambda u(x), \quad u \in L^2(\mathbb{R}^m)$$

is reduced to an infinite system of eigenvalue problems associated to the ordinary differential operators in $L^2(0, +\infty)$

$$\tau_i = -\frac{d^2}{dr^2} + \frac{1}{r^2} \left[i(i + m - 2) + \frac{1}{4}(m - 1)(m - 3) \right] + V(r)$$

($i \in \mathbb{N}$). In Appendix 17.F of [17] it is treated the case of a potential V satisfying assumptions (which enable to consider Coulomb potentials) that lead to (7). More precisely, it is shown that for $m = 3, i = 0$ the operator is in the limit circle case at zero and self-adjoint extensions of τ_0 are described.

3. The main result

In this section we are interested in proving a global bifurcation result for a nonlinear eigenvalue problem of the form

$$-u'' + q(x)u = \lambda u + g(x, u)u, \quad \lambda \in \mathbb{R}, \quad x \in (0, 1],$$

(22)

where $q \in C((0, 1])$ satisfies (7) and $g \in C([0, 1] \times \mathbb{R})$ is such that

$$\lim_{u \to 0} g(x, u) = 0, \quad \text{uniformly in } x \in [0, 1].$$

(23)
We will look for solutions u of (22) such that $u \in H^2_0(0,1)$. To this aim, let Σ denote the set of nontrivial solutions of (22) in $H^2_0(0,1) \times \mathbb{R}$ and let $\Sigma' = \Sigma \cup \{(0, \lambda) \in H^2_0(0,1) \times \mathbb{R} : \lambda$ is an eigenvalue of $A\}$, where A is as in Section 2.

Let M denote the Nemitskii operator associated to g, given by
\[M(u)(x) = g(x, u(x))u(x), \quad \forall \ x \in [0,1], \]
for every $u \in H^2_0(0,1)$. We can show the validity of the following:

Proposition 3.1. Assume $g \in C([0,1] \times \mathbb{R})$ and (23). Then $M : H^2_0(0,1) \rightarrow L^2(0,1)$ is a continuous map and satisfies
\[M(u) = o(||u||), \quad u \rightarrow 0. \] (24)

Proof. 1. We first show that $Mu \in L^2(0,1)$ when $u \in H^2_0(0,1)$. When this condition holds, $u \in L^\infty(0,1)$ and the continuity of g implies that there exists $C_u > 0$ such that
\[|g(x, u(x))u(x)| \leq C_u, \quad \forall \ x \in [0,1]. \]
As a consequence we obtain $Mu \in L^\infty(0,1) \subset L^2(0,1)$.

2. Let us prove that M is continuous. Let us fix $u_0 \in X$ and let $u_n \in X$ such that $u_n \rightarrow u_0$ when $n \rightarrow +\infty$; the continuous embedding
\[H^2_0(0,1) \subset L^\infty(0,1) \]
and the uniform continuity of g on compact subsets of $[0,1] \times \mathbb{R}$ ensure that
\[g(x, u_n(x)) \rightarrow g(x, u_0(x)) \quad \text{in} \quad L^\infty(0,1). \] (25)
This is sufficient to conclude that $Mu_n \rightarrow Mu_0$ in $L^\infty(0,1)$ and hence $Mu_n \rightarrow M u_0$ in $L^2(0,1)$.

3. Finally, let us prove (24): using again the fact that $H^2_0(0,1) \subset L^\infty(0,1)$, we have
\[||Mu||_{L^2(0,1)} \leq ||g(x, u(x))||_{L^\infty(0,1)}||u||_{L^2(0,1)} \leq ||g(x, u(x))||_{L^\infty(0,1)}||u||, \]
for all $u \in H^2_0(0,1)$; hence, we deduce that
\[\frac{||Mu||_{L^2(0,1)}}{||u||} \leq ||g(x, u(x))||_{L^\infty(0,1)}, \quad \forall \ u \in H^2_0(0,1), \ u \neq 0. \]
Therefore the result follows from (23) and (25).
Now, let us observe that the search of solutions \(u \in H^2_0(0,1) \) of (22) is equivalent to the search of solutions of the abstract equation

\[
Au = \lambda u + M(u), \quad (u, \lambda) \in H^2_0(0,1) \times \mathbb{R};
\]

(26)
on the other hand, (26) can be written in the form

\[
w = \lambda Rw + M(Rw), \quad (w, \lambda) \in L^2(0,1) \times \mathbb{R},
\]

(27)
where \(R : L^2(0,1) \to H^2_0(0,1) \) is the inverse of \(A \) (cf. Proposition 2.2).

Now, from [17, Theorem 7.10] we deduce that \(R \) is compact; this fact and the continuity of \(M \) guarantee that the operator \(MR : L^2(0,1) \to H^2_0(0,1) \) is compact. Moreover, the condition

\[
M(Rw) = o(||w||_{L^2(0,1)}), \quad w \to 0,
\]

(28)
is a consequence of (24). From an application of the global bifurcation result of Rabinowitz (cfr. [11]) to (27) we then obtain the following result:

Theorem 3.2. Assume (7) and (23). Then, for every eigenvalue \(\lambda_n \) of \(A \) there exists a continuum \(C_n \) of nontrivial solutions of (22) in \(H^2_0(0,1) \times \mathbb{R} \) bifurcating from \((0, \lambda_n)\) and such that one of the following conditions holds true:

1. \(C_n \) is unbounded in \(H^2_0(0,1) \times \mathbb{R} \);
2. \(C_n \) contains \((0, \lambda_n') \in \Sigma' \), with \(n' \neq n \).

Now, let us observe that a more precise description of the bifurcating branch, eventually leading to exclude condition (2), can be obtained when there exists a continuous functional \(j : \Sigma' \to \mathbb{N} \) (cfr. [2, Pr. 2.1]). In order to define such a functional, we will use the fact that nontrivial solutions of (22) have a finite number of zeros in \((0,1)\); this will be a consequence of our next result.

For every \(\lambda \in \mathbb{R} \) and for every nontrivial solution \(u \in H^2_0(0,1) \) of (22) let us define \(q_{u,\lambda} : (0,1] \to \mathbb{R} \) by \(q_{u,\lambda}(x) = q(x) - \lambda - g(x, u(x)) \), for every \(x \in (0,1] \). The following Lemma holds true:

Lemma 3.3. For every \(\lambda \in \mathbb{R} \) and for every nontrivial solution \(u \in H^2_0(0,1) \) of (22) there exists a neighborhood \(U \subset H^2_0(0,1) \times \mathbb{R} \) of \((u, \lambda)\) and \(x_{u,\lambda} \in (0,1) \) such that

\[
q_{u,\lambda}(x) > 0, \quad \forall (v, \mu) \in U, \ x \in (0, x_{u,\lambda}].
\]

(29)

Proof. Let \((u, \lambda) \in H^2_0(0,1) \times \mathbb{R}, u \neq 0, \) be fixed and let \(U \) be the neighborhood of radius 1 of \((u, \lambda)\) in \(H^2_0(0,1) \times \mathbb{R} \); from the continuous embedding \(L^\infty(0,1) \subset H^2_0(0,1) \) we deduce that if \((w, \mu) \in \Sigma \cap U_1 \) then

\[
||w||_{L^\infty(0,1)} \leq 1 + ||u||_{L^\infty(0,1)}, \quad |\mu| \leq 1 + |\lambda|
\]
and

\[q(x) - \mu - g(x, w(x)) \geq q(x) - |\lambda| - 1 - \max_{x \in [0,1], |s| \leq 1 + ||u||_{L^\infty}} |g(x, s)|, \quad \forall x \in (0, 1). \]

From (7) we then deduce that there exists \(x_{(u, \lambda)} \in (0, 1) \), depending only on \((u, \lambda)\), such that

\[q(x) - \mu - g(x, w(x)) > 0, \quad \forall x \in (0, x_{(u, \lambda)}]. \]

Now, let us observe that for every \(\lambda \in \mathbb{R} \) and for every nontrivial solution \(u \in H^2_0(0, 1) \) of (22) the function \(u \) is a nontrivial solution of the linear equation

\[-w'' + (q(x) - g(x, u(x)) - \lambda)w = 0. \]

From Lemma 3.3, with an argument similar to the one which led to Proposition 2.5, we deduce that all the nontrivial solutions of (30) (in particular \(u \)) have a finite number of zeros in \((0, 1)\). We denote by \(n(u) \) this number.

We are then allowed to define the functional \(j \) by setting

\[j(u, \lambda) = \begin{cases} n(u) & \text{if } u \neq 0 \\ n - 1 & \text{if } u \equiv 0 \text{ and } \lambda = \lambda_n, \end{cases} \]

for every \((u, \lambda) \in \Sigma'\). Let us observe that the definition \(j(0, \lambda_n) = n - 1 \) is suggested by Proposition 2.6.

Proposition 3.4. The function \(j : \Sigma' \to \mathbb{N} \) is continuous.

Proof. 1. As for the continuity of \(j \) in every point of the form \((0, \lambda_n), n \in \mathbb{N}\), we refer to [15, Lemma 2.5].

2. Let us now fix \((u_0, \lambda_0) \in \Sigma\) and let \((u, \lambda) \in U\), with \(U \) as in Lemma 3.3; this Lemma guarantees that both \(u \) and \(u_0 \) have no zeros in \((0, x_{u_0, \lambda_0})\).

On the other hand, in the interval \([x_{u_0, \lambda_0}, 1]\) a standard continuous dependence argument (cf. also [11]) ensures that \(u \) and \(u_0 \) have the same numbers of zeros if \((u, \lambda)\) is in a sufficiently small neighborhood of \((u_0, \lambda_0)\). As a consequence, we obtain that there exists a neighborhood \(U_0 \) of \((u_0, \lambda_0)\) such that

\[j(u, \lambda) = j(u_0, \lambda_0), \quad \forall (u, \lambda) \in U_0. \]

As a consequence, from Theorem 3.2 and Proposition 3.4 we deduce the final result:
Theorem 3.5. Assume (7) and (23). Then, for every eigenvalue λ_n of A there exists a continuum C_n of nontrivial solutions of (22) in $H^2_0(0,1) \times \mathbb{R}$ bifurcating from $(0, \lambda_n)$ and such that condition (1) of Theorem 3.2 holds true and

$$j(u, \lambda) = n - 1, \quad \forall (u, \lambda) \in C_n.$$ \hspace{1cm} (32)

Remark 3.6. Theorem 3.2 can be proved as an application of Stuart’s result \cite[Theorem 1.2]{15} as well. However, since in the situation considered in this paper the singularity at zero does not affect the compactness of the operator R defined after (27), we chose to apply Rabinowitz theorem \cite{11}. We finally mention the interesting paper \cite{1}, where global branches of solutions, with prescribed nodal properties, are obtained for a second order degenerate problem in $(0,1)$.

References

GLOBAL BIFURCATION FOR A SINGULAR EQUATION

Authors’ addresses:

Anna Capietto
Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10, 10123 Torino, Italy
E-mail: anna.capietto@unito.it

Walter Dambrosio
Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10, 10123 Torino, Italy
E-mail: walter.dambrosio@unito.it

Duccio Papini
Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Università di Siena
Via Roma 56, 53100 Siena, Italy
E-mail: papini@di.unisi.it

Received May 28, 2012
Revised September 3, 2012