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Abstract 

One of the main opportunities in the use of non-Saccharomyces yeasts is its great 

intraspecific variability in relation to the synthesis of secondary products of 

fermentation. Thus, mixed or sequential fermentation with non-Saccharomyces can 

increase the synthesis of certain metabolites that are important for colour stability, such 

as acetaldehyde and pyruvic acid (vitisin precursors) or vinylphenols (vinylphenolic 

pyranoanthocyanin precursors). Furthermore, the selection and use of non-

Saccharomyces yeast strains with good yields in the production of certain volatile 

compounds (ethyl lactate, 2,3-butanediol, 2-phenylethyl acetate), with limited formation 

of higher alcohols, is a way to improve the aromatic profile of red wine. The main aim 

of this work was to evaluate the influence of sequential and mixed fermentations with 

Schizosaccharomyces pombe and Torulaspora delbrueckii strains on red wine’s sensory 

quality. Anthocyanins and aromatic profiles, as well as glycerol and organic acid 

content, were analysed in the red wines obtained. Results show that, in general, mixed 

fermentations can promote an increment in polyols synthesis, while sequential 

fermentations can enhance the herbaceous aroma. Moreover, the use of Torulaspora 

delbrueckii in mixed fermentations allowed an increase to the fruity character of red 

wine. The use of Schizosaccharomyces pombe in sequential fermentations increased the 

stability of the colouring matter by favouring vitisins and vinylphenolic 

pyranoanthocyanins formation. 

Keywords: Schizosaccharomyces pombe, Torulaspora delbrueckii, mixed/sequential 

fermentations, red wine, sensory quality 
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1. Introduction 

Recently, non-Saccharomyces yeasts have been gaining importance for winemaking due 

to their high intraspecific variability (Romano et al, 1997). This diversity in the yielding 

of secondary products of the fermentation allows the selection of those strains with 

interesting metabolic features in order to improve the sensory quality of the wine.  

Over recent years, the use of non-Saccharomyces yeasts has been studied for multiple 

and interesting oenological applications including reductions to alcohol content 

(Contreras et al, 2014), sur lie aging (Palomero et al, 2009) and improving wine's 

sensory profile by performing mixed and/or sequential fermentations (Gobbi et al, 

2013), among others. 

Mixed or sequential fermentations with non-Saccharomyces yeasts can potentiate the 

synthesis of certain important metabolites for colour stability, such as acetaldehyde and 

pyruvic acid, both involving vitisins synthesis (Clemente-Jiménez et al, 2005; Benito et 

al, 2012; Gobbi et al, 2013). Similarly, the use of non-Saccharomyces yeast with high 

hydroxycinnamate decarboxylase (HCDC) activity may increase the formation of 

vinylphenolic pyranoanthocyanins (Benito et al, 2011). 

With regards to the aromatic profile, mixed and sequential fermentations allow 

increasing concentrations of some interesting compounds in red wine such as ethyl 

lactate, 2,3-butanediol, 2-phenylethanol and 2-phenylethyl acetate (Clemente-Jiménez et 

al, 2005; Viana et al, 2009; Gobbi et al, 2013). Achieving slight reductions to the 

content of higher alcohol is also interesting (Viana et al, 2009), especially the avoidance 

of exceeding 350 mg/l, the level at which the sensory quality of the wine can be 

negatively affected (Rapp & Mandery, 1986). Moreover, in wines with lower levels of 

alcohol content, a fruity character can be more easily appreciated (Viana et al, 2009). 
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The T. delbrueckii species is characterized by its high purity fermentation, and as such it 

has a low production of glycerol, acetaldehyde, acetic acid and ethyl acetate (Renault et 

al, 2009). When used in sequential or mixed fermentations with S. cerevisiae it allows 

for the correcting of certain defects in wines such as volatile acidity (Bely et al, 2008). 

On the other hand, the S. pombe species is highly appreciated in colder regions because 

of its ability to completely transform the malic acid of the must into ethanol, thanks to 

its particular metabolism of maloalcoholic fermentation (Suárez-Lepe et al, 2012). 

Moreover, its great ability to synthesize pyruvic acid (a vitisin A precursor) and 

glycerol was recently reported by Benito et al, 2012 & 2013. Therefore, it is an 

interesting species to consider in order to improve some of the sensory parameters of 

the wine, especially those related to wine colour stability, despite its main drawback, 

which is the medium-high yield of acetic acid (Benito et al, 2012). 

The main aim of this work was to evaluate the potential influence of S. pombe and T. 

delbrueckii species on the sensory quality of red wine when used in sequential and 

mixed fermentations with S. cerevisiae, paying particular attention to changes in wine 

colour and aroma. 

 

2. Materials and methods 

2.1 Yeast strains and fermentation media  

The Schizosaccharomyces pombe (Sp) and Torulaspora delbrueckii (Td) yeast strains 

assessed were 938, V1, 4.2 (CSIC, Madrid, Spain) and 1880, 7013, 10558 (CECT, 

Valencia, Spain), respectively. The aforementioned non-Saccharomyces strains were 

used in co-inoculated and sequentially inoculated fermentations with Saccharomyces 
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cerevisiae (Sc) 7VA (HCDC+) (EnotechUPM, Madrid, Spain).  S. cerevisiae 7VA 

together with Saccharomyces uvarum (Su) S6U (HCDC-) (Lallemand, Montreal, 

Canada) were also used in controlled fermentations as single inoculants (PF). 

The fermentative assay was performed in triplicate at 23ºC using a fresh free-run juice 

(no skin content) made from Syrah grapes (Vitis vinifera L.) with an initial sugar 

content of 220 g/l (potential alcohol content of 13 % v/v), pH 3.5, and heat treated at 

100 °C for 3 minutes. All inocula were standardised in order to obtain homogenous 

active populations (10
6
 cfu/ml), by adding 100 µl of each strain to 5 ml of YEPD 

medium (Kurtzman & Fell, 1998) and were grown for 24h at 23ºC, twice in succession. 

In sequential fermentations (SF), 70 ml of must in 100 ml flasks were inoculated with 1 

ml of each non-Saccharomyces strain, and after 7 days (when a fermentative power of 

8% v/v ethanol was reached) the second inoculation was performed with 1 ml of strain 

Sc7VA. On the other hand, mixed fermentations (MF) were co-inoculated with 1 ml of 

a non-Saccharomyces strain and 100 µl of strain Sc7VA (non-

Saccharomyces:Saccharomyces ratio 10:1). 

Fermentation kinetics and fermentative power were estimated by the daily weighing of 

the fermentation flasks, thus registering variations that correspond to the loss of CO2 

associated with the fermentative process. All chemical analyses were performed at the 

end of the fermentations. 

2.2 Determination of anthocyanin profile by HPLC-DAD-ESI/MS 

Grape anthocyanins and pyranoanthocyanins were determined by high-performance 

liquid chromatography with diode array and electrospray ionization/mass spectrometry 

detection according to Morata et al (2012). Solvent A (water/formic acid, 95:5, v/v) and 

B (methanol/formic acid, 95:5) gradients were used in an RP C18 column (100 x 4.6 
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mm; 2.6 μm) as follows: minutes 0-27, 20–50% B linear (0.8 ml/min); minutes 27-28, 

50% B; minutes 28-29, 50–20% B linear; minutes 29-30, re-equilibration. Detection 

was performed by scanning within the 500–600 nm range. Quantification was 

performed by comparison against an external standard at 525 nm and expressed as mg/l 

of malvidin-3-O-glucoside (r
2
=0.9999). Anthocyanins were identified by their retention 

times and by comparing their UV–visible and mass spectra with data in the literature. 

Mass spectrometry was performed in positive scanning mode (m/z 100-1000, 

fragmenter voltage 150 V from minute 0 to 23). One hundred microliter samples of 

previously filtered (0.45 μm membrane) wines were injected into the HPLC column. 

The detection limit was 0.1 mg/l. 

2.3 Determination of volatile profiles by LLE-GC-MS 

Aromatic profiles of wine samples were determined by gas chromatography with mass 

spectrometric detection after performing a liquid-liquid extraction. Firstly, 5 ml of the 

wine sample was mixed with 5 ml of a 30% sodium chloride solution and 200 µl of 

ethyl heptanoate as the internal standard (0.42 g/l in ethanol). The mixture was extracted 

with 5 ml of a pentane: dichloromethane (2:1 v/v) solution, vigorously shaking the glass 

tube by hand for 2 min; this extraction procedure was repeated three times. The organic 

phase was collected, dried with anhydrous sodium sulphate, transferred into a smaller 

conical glass tube and stored at -18 ºC until GC injection. The equipment used was a 

Shimadzu GC-17A (Shimadzu, Kyoto, Japan) gas chromatograph coupled with a 

Shimadzu QP-5000 (Shimadzu, Kyoto, Japan) mass spectrometer detector. The 

injection was performed in splitless mode with a 60 sec splitless time. The injection 

volume was 1 µl. Temperatures in the injector and detector were held at 250 ºC and 240 

ºC, respectively. The carrier gas was helium, at a linear flow rate of 35 cm/s. 

Compounds were separated on a DB-Wax capillary column (30 m x 0.25 mm i.d., 0.25 
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µm film thickness), purchased from Alltech (State College, PA, USA). The column 

temperature was programmed as follows: 40ºC for 1 min, followed by a gradual 

increase of temperature at a rate of 4 ºC/min up to 240 ºC, with a final holding time of 

15 mins. The MS detector was programmed in positive scanning mode (35-400 m/z). 

Volatile compounds were identified by comparing their mass spectra and retention 

times with those of standard compounds and/or with data reported in the mass spectrum 

libraries Wiley 6, NIST21 and NIST107. Moreover, linear retention indexes were 

calculated from the retention times of n-alkanes and compared with those available in 

literature. Semi-quantitative data were expressed in equivalents of internal standards, 

considering a concentration of ethyl heptanoate in the sample of 16.9 mg/l and a 

response factor equal to 1.00.  

2.4 Determination of glycerol, organic acids and residual sugar levels by HPLC-

UV/RI 

Glycerol, residual sugars and organic acids such as citric, tartaric, malic, succinic, lactic 

and acetic acids, were measured by liquid chromatography (PerkinElmer model 250) 

coupled with two different detectors: a refractive index detector model RID-10A 

(Shimadzu, Kyoto, Japan) was used for the detection of sugars and glycerol, while a 

UV−vis detector, model 875-UV (Jasco Co. Ltd.), was set at a wavelength of 210 nm 

for the detection of organic acids. H2SO4, 0.025M was used as a working solvent with a 

flow rate of 0.7 ml/min, in isocratic mode. Analytes were separated on an Aminex 

HPX-87H column (30 cm x 7.8 mm i.d.) (Bio-Rad Laboratories Inc., Hercules, CA, 

USA) filled with sulfonated copolymer of styrene and divinylbenzene (9 µm particle 

size) and thermostated at 65°C. The injection volume was 20 µl. Samples were diluted 

with H2SO4 0.025M ten times, then treated with polyvinylpolypyrrolidone (PVPP) (0.15 

g/ml) and finally filtered through 0.45 µm pore sized cellulose acetate cartridges (Albet-
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Hahnemühle, Barcelona, Spain). A quantitative analysis was performed by measuring 

peak areas of each compound and comparing them with the response of pure standard 

compounds: diluted standard solutions were prepared in HPLC mobile phase and 

injected to obtain calibration curves; concentrations were: 10, 20, 50, 100, 150, 200 g/l, 

for glucose and fructose; 0.5, 1.0, 2.5, 5.0, 7.5 and 10.0 g/l for organic acids and 

glycerol. 

2.5 Determination of alcoholic content by HPLC-RI 

Ethanol content was determined using a liquid chromatograph Waters e2695 Alliance 

(Waters, Massachusetts, USA) coupled with a refractive index detector model 2414. 

MilliQ water was used as the working solvent with a flow rate of 0.4 ml/min in isocratic 

mode. Samples were filtered through 0.45 µm pore sized methyl ester cellulose 

cartridges. Separation of analytes was held on a reverse phase column PhenoSphere 

XDB C18 (150 x 4.6 mm, 5 µm particle size) (Phenomenex, California, USA) stabilized 

at 30°C. Quantification was performed using ethanol (99.5 % purity) (Panreac, Spain) 

as an external standard with four levels of calibration: 5, 10, 15 and 20 % v/v 

(r
2
=0.9998). Injection volume was 2 µl. 

2.6 Determination of colour parameters by spectrophotometry 

Colour variables of wines were determined by an absorbance measurement using an 

Agilent 8453 UV-Visible (Santa Clara, USA) spectrophotometer. The chromatic 

characteristics were determined at 420, 520 and 620 nm (colour intensity and tonality), 

using a 1 mm path length quartz cell following the Glories method (Glories, 1984a; 

1984b). 

2.7 Statistical analysis 
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The means and standard deviations were calculated and the ANOVA and least 

significant difference (LSD) tests performed using PC Statgraphics v.5 software 

(Graphics Software Systems, Rockville, MD, USA). Significance was set at P<0.05. 

Moreover, a Principal Component Analysis (PCA) was carried out on the 

concentrations measured for the volatile compounds detected. 

 

3. Results and discussion 

Sequential fermentations took twice as long (22 days) to complete the fermentation 

process (Figure 1). This longer duration for the fermentative process allows better 

preservation of aromas due to milder temperature conditions as a result of a less intense 

fermentation process. Fermentation kinetics were correct in both cases, starting and 

ending smoothly. Also, fermentations with the controls and with the mixed cultures 

were more vigorous in the early stages than those with the sequential cultures. All 

fermentations ended with an alcoholic content that ranged from 13-13.4 % v/v with no 

significant differences between the types of fermentation (Table 1). 

In general, the higher glycerol contents were produced in MF, except for strain Sp938, 

with which the maximum concentration of glycerol (7.9 ± 0.5 g/l) was obtained in SF 

(Table 1). Glycerol is an interesting metabolite for wines because of its positive 

contribution to the mouthfeel sensations such as sweetness, softness, silkiness and body 

(Moreno-Arribas & Polo, 2009). Its average concentration in wine is around 6-10 g/l 

and its taste perception threshold is set at 5.2 g/l (Nieuwoudt et al, 2002).  

The analysis of organic acids and sugar content in wine is of great importance, because 

both the type and the quantity can affect chemical and sensory characteristics such as 

pH, total and volatile acidity, microbiological stability, and flavour. Both acidity and pH 
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are two key aspects of the sensory quality of wine, significantly influencing the 

perception of its structure and balance. Furthermore, acidity brings freshness to wine, 

decreases the perception of sweetness and, together with ethanol, limits the 

development of spoilage microorganisms (Jackson, 2008). All fermentations finished 

with sugar concentrations of less than 6 g/l and pH between 3.5-3.7 (Table 1). During 

wine fermentation and aging, acids are involved in the formation of esters responsible 

for the fruity character. With regards to organic acids, SF kept more tartaric acid in free 

form than MF, with values of up to 3.4 g/l (Table 1). As expected, the malic acid 

concentration was lower in fermentations with S. pombe strains, especially noticeable in 

SF (Table 1). Once again, strain Sp938 showed its ability to completely degrade the 

malic acid present in the must (Benito et al, 2012). Moreover, strains Sp938 in MF and 

Td1880 in SF produced the highest concentrations of lactic acid during fermentation 

(~0.25 g/l) (Table 1). High concentrations of this acid are good for the quality of the 

wine, since it contributes to the softness in the mouth and is a precursor of ethyl lactate. 

One of the major disadvantages of the use of the S. pombe species is a consequence of 

its greater acetic acid synthesis (0.5-0.7 g/l) (Table 1), however, when used in 

sequential or mixed fermentations, this value generally does not exceed the threshold of 

perception (0.4-1.1 g/l) and, therefore, does not cause sensory defects. Above 0.8 g/l, 

acetic acid is considered a demeaning factor to wine quality providing a bitter taste and 

a smell likened to vinegar (Maicas et al, 1999; Moreno-Arribas & Polo, 2009). Only the 

strain Td10558 was noted for its higher acetic acid production when used in SF (1.0 ± 

0.1 g/l). As for the content of citric and succinic acids, no significant differences 

between the species or types of fermentation were observed (data not shown). 

MF had higher values of monomeric, acetylated and coumarylated anthocyanins than 

SF, especially with T. delbrueckii strains, which is reflected in the higher total 
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anthocyanins content (Figure 2). This difference in the anthocyanins content may be 

explained by the longer duration of the sequential fermentations (22 days vs. 11 days), 

so that the anthocyanins were being combined for longer or their precipitation was 

favoured due to the decrease in solubility along with the change of polarity in the 

medium as a consequence of ethanol synthesis (Benito et al, 2011). Regarding the 

contribution to the stability of the colouring matter, S. pombe in SF showed greater 

vitisins synthesis (Figure 3A), specially type A, whose precursor is pyruvic acid. These 

S. pombe strains were previously described as good producers of pyruvic acid (Benito et 

al, 2012). In the case of Schizosaccharomyces strains, the highest concentrations of 

vitisins were achieved in sequential fermentations (range 9.2-11.6 mg/l), while the 

opposite occurred with Torulaspora strains, where the maximum concentrations were 

obtained in mixed fermentations (range 6.4-7.6 mg/l). As for vinylphenolic 

pyranoanthocyanins, its synthesis was higher in MF (Figure 3B). The S6U strain acts as 

a negative control to the formation of these compounds, since its HCDC activity is 

negligible. Maximum concentration was reached with strain Td1880 (1.6 ± 0.2 mg/l), 

despite not being significantly different to the others. This same Torulaspora strain was 

also the one that led to the highest concentration in the SF, indicating its potential use in 

a combination with strain Sc7VA to improve wine colour stability. However, no 

significant increase was observed with respect to Sc7VA positive control strain, thus 

indicating that most vinylphenolic pyranoanthocyanins synthesis in mixed 

fermentations was probably due to the Saccharomyces cerevisiae strain activity. 

Moreover, strain SpV1 proved not to be suitable for the formation of these stable 

compounds, not even in mixed culture, achieving, as sequential fermentations, mean 

values lower than 1 mg/l. 
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Concerning colour intensity, no significant differences between the two types of 

fermentation were observed (range 0.5-0.6 AU), although wines obtained by SF showed 

slightly higher values of tonality (data not shown), thus indicating the further evolution 

of these wines towards red-orange colours. 

The main purpose of the volatile compounds analysis was to assess the contribution of 

each strain, and the influence of each type of fermentation, on the aromatic quality of 

the wine. It was possible to identify a total of 77 different compounds in the wine 

samples, although palmitic and stearic acids cannot be completely considered as 

volatiles under our analysis conditions, due to its high boiling point (> 350 ºC). In 

Table 2 we only show the identification data of the compounds that were found to be 

interesting to our study. MF with Torulaspora delbrueckii strains allowed a potential 

increase of fruity aromas in the wine by synthesizing larger amounts of esters (isoamyl 

acetate, hexyl acetate, ethyl hexanoate and ethyl octanoate) (Table 3). Such compounds 

are interesting because of their fresh and fruity aroma. In turn, MF in general, produced 

significantly higher concentrations of polyols (2,3-butanediol and 1,2-propanediol). 

According to Liu (2002), polyols contribute to wine mouthfeel and body by increasing 

the viscosity. Notwithstanding, even being normally present at concentrations well 

above their threshold of perception, they have little effect on wine aroma. On the other 

hand, SF enhances herbaceous aromas (1-hexanol; threshold perception, 8 mg/l (Culleré 

et al, 2004)), but decreases the presence of total higher alcohols, especially with S. 

pombe strains. Certain higher alcohols such as 1-butanol, isobutanol, 1-hexanol, benzyl 

alcohol and 2-phenylethanol possess particular aromas that help improve the aromatic 

profile of the wine (Gil et al, 2006; Vilanova & Martinez, 2007). However, 

quantitatively, main higher alcohols in wine are 2 and 3-methyl-1-butanol, both 

characterized by a strong alcohol aroma (Sánchez-Palomo et al, 2012). T. delbrueckii 
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strains in SF, especially strain Td1880, can produce significant amounts of 3-ethoxy-1-

propanol and 2-phenylethanol. Thus, 3-ethoxy-1-propanol seems to be a compound 

linked to T. delbrueckii’s metabolism, as previously reported by Herraiz et al (1990). Its 

interest lies in its low perception threshold, 0.1 mg/l, (Peinado et al, 2004b) and in its 

blackcurrant aroma descriptor (Tao & Zhang, 2010). As mentioned above, 2-

phenylethanol is an interesting compound for red wine because of its contribution of a 

floral aroma (rose petals) at the same time adding a touch of honey (Mendes, Gonçalves 

& Camara, 2012). In general, except for strain SpV1, SF produced more furaneol (> 

0.15 mg/l) than MF (<0.08 mg/l), where the strain Td1880 stands out for its high 

concentration of furaneol (0.29 ± 0.14 mg/l). In addition to providing an aroma of 

caramelized sugar, furaneol, along with methional and sotolon, contributes notes of 

chocolate in red wines (Ferreira, 2007). This compound is particularly interesting due to 

its low perception threshold: 5-37 µg/l (Culleré et al, 2004; Selli et al, 2004). Regarding 

the contribution of each yeast assessed, strain Td7013 was characterized by a higher 

synthesis of 1-butanol, ethyl 4-hydroxybutanoate and γ-butyrolactone, strain Sp938 by 

its greater production of acetoin, ethyl lactate and benzaldehyde, strain Td1880 by high 

concentrations of 3-ethoxy-1-propanol and furaneol, and finally, strain Sp4.2 by higher 

amounts of octanoic and decanoic acid. Some of these particular compounds may be 

negative to the quality of red wine when found over certain concentrations, as is the 

case with γ-butyrolactone and acetoin. However, when in low concentrations, they may 

prove interesting, as they may help to enhance the wine’s aromatic complexity. For 

instance, benzaldehyde is characterized by its bitter almond aroma and has a perception 

threshold of 2-3 mg/l (Delfini et al, 1991). Similarly, acetoin contributes to wine aroma by 

providing notes of dairy such as butter or cream, so it is undesirable in high concentrations. Its 

perception threshold is quite high (150 mg/l) compared to the mean values in which it is found 

in red wines (0.6-253 mg/l) (Bartowsky & Pretorius, 2009). 
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As a general rule, for all of the analysis performed, the biggest differences between 

yeast strains were found in sequential fermentations. This proves that this type of 

fermentation is suitable for enhancing the expression of the non-Saccharomyces yeasts' 

metabolic particularities, whereas with mixed fermentations greater uniformity is 

achieved in the results.  

After performing PCA analysis on the volatile compound data, three main groups could 

be clearly differentiated (Figure 4). One of the groups is located on the positive part of 

the component 2 axis, and represents those wines obtained from SF with T. delbrueckii 

yeast strains. The other two groups are located on the negative part of the axis. One of 

them represents those wines obtained from SF with S. pombe yeast strains (positive side 

of component 1), and the other includes all the wines in MF and PF (negative side of 

component 1). Wines from T. delbrueckii SF were characterized by 1-butanol, 3-ethoxy-

1-propanol and furaneol, while wines from S. pombe SF were correlated with 1-hexanol, 

benzaldehyde and acetoin. The last group proves that the wines from MF were highly 

influenced by the coexistence of the fermentation with the control yeast Sc7VA from 

the beginning, so the aroma was less influenced by the different yeast strains. These 

wines were mainly associated with polyols and saturated fatty acid ethyl esters. 

 

4. Conclusions 

The use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in 

sequential and mixed fermentations with Saccharomyces cerevisiae may potentially 

improve the sensory profile of red wine by enhancing the aromatic complexity and 

increasing colour stability. As for the impact of each type of inoculation, mixed 

fermentations performed better with regards to the aroma and the structure of the wine 
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by increasing its fruity character and polyols content, while by carrying out sequential 

fermentations with S. pombe, better results were obtained in the formation of stable 

pigments. 
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Figure 3.  
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Figure 4.  
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Figure 1. Fermentation kinetics of the mixed and sequential fermentations with S. 

pombe and T. delbrueckii strains (measured by the daily loss of CO2). 

Figure 2. Total anthocyanins content (mg/l) in mixed and sequential fermentations with 

S. pombe and T. delbrueckii strains. Mean ± SD (n=3). Bars with the same letter are not 

significantly different (p<0.05). 

Figure 3. Vitisins (A) and vinylphenolic pyranoanthocyanins (B) content (mg/l) in 

mixed and sequential fermentations with S. pombe and T. delbrueckii strains. Mean ± 

SD (n=3). Bars with the same letter are not significantly different (p<0.05). 

Figure 4. Principal component analysis (PCA) of volatile compounds in wines by 

GC/MS. Abbreviations: Ethyl 4-HB: Ethyl 4-hydroxybutanoate; 2-PhE: 2-

phenylethanol; HAs: Higher alcohols; IA: Isoamyl acetate; HA: Hexyl acetate; 1,2-P: 

1,2-Propanediol; 2,3-B: 2,3-Butanediol; EH: Ethyl hexanoate; EO: Ethyl octanoate; 3-

E-1-P: 3-ethoxy-1-propanol; 1-B: 1-butanol; γ-B: γ-butyrolactone; F: furaneol; 1-H: 1-

hexanol; B: Benzaldehyde; A: Acetoin; DA: Decanoic acid; OA: Octanoic acid; EL: 

Ethyl lactate. 
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Highlights 

 Use of Schizosaccharomyces pombe in sequential fermentation allows 

increasing the contents of vitisins, specially A type. 

 Use of Torulaspora delbrueckii in mixed fermentation allows a potential 

increase of fruity aromas in the wine. 

 Mixed fermentations with non-Saccharomyces yeasts may increase polyols 

content. 

 3-ethoxy-1-propanol was found as a compound linked to T. delbrueckii’s 

metabolism. 

 Use of S. pombe in mixed or sequential fermentations allows tempering of its 

characteristic high acetic acid synthesis. 


