
Psychometrika Submission September 25, 2017 2

MULTIPLE EQUATING OF SEPARATE IRT CALIBRATIONS

Abstract

When test forms are calibrated separately, item response theory

parameters are not comparable because they are expressed on different

measurement scales. The equating process includes in the conversion of item

parameter estimates on a common scale and the determination of comparable

test scores. Various statistical methods have been proposed to perform

equating between two test forms. This paper provides a generalization to

multiple test forms of the mean-geometric mean, the mean-mean, the Haebara

and the Stocking-Lord methods. The proposed methods estimate

simultaneously the equating coefficients that permit the scale transformation

of the parameters of all forms to the scale of the base form. Asymptotic

standard errors of the equating coefficients are derived. A simulation study is

presented to illustrate the performance of the methods.

Key words: equating coefficients, Haebara, item response theory, linking,

mean-geometric mean, mean-mean, standard errors, Stocking-Lord.
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1. Introduction

When test forms are calibrated separately, item response theory (IRT) parameters

are not comparable because they are expressed on different measurement scales. The

equating process includes the conversion of item parameter estimates on a common scale

and the determination of comparable test scores (Kolen and Brennan, 2014). Various

statistical methods have been proposed to perform equating between two test forms.

IRT equating methods are generally divided in two classes. The first class of methods,

which are based on moments of item parameters, includes the mean-mean (Loyd and

Hoover, 1980) and the mean-geometric mean (Mislevy and Bock, 1990) methods. The

second class of methods, based on the characteristic curve, includes the Haebara

(Haebara, 1980) and the Stocking-Lord (Stocking and Lord, 1983) methods. However,

many testing programs use several forms of a test and require the comparability of the

scores of every form. To this end, Haberman (2009) developed a regression procedure

that generalizes the mean-geometric mean method to the case of multiple test forms.

Instead, this paper provides the generalization to multiple test forms of the mean-mean,

the Haebara and the Stocking-Lord methods. Furthermore, the asymptotic standard

errors of the equating coefficients will be derived for all the methods, including the

procedure proposed in the Haberman (2009) paper, where standard errors were not

considered. It is worth noting that in this paper standard errors are derived under the

assumption of invariance of item parameters across different administrations. As noted

by Haberman, Lee and Qian (2009) and by Michaelides and Haertel (2014), when IRT

models do not hold perfectly a further source of error is the selection of the set of
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common items. This issue will be further treated in the paper.

A different approach to multiple equating of forms calibrated separately was

proposed in Battauz (2013). In that work, two forms are equated through direct or

chain equating coefficients, depending on the connections that can be established

between two forms on the basis of the common items. In some cases, two forms can be

linked through more than one path, thus yielding a different scale conversion for every

path. These transformations can then be averaged in order to obtain a single scale

conversion. Chain and average equating coefficients are a function of direct equating

coefficients, thus the IRT equating method that is used is chosen only for the

computation of direct equating coefficients.

The approach of this paper is rather different and follows the proposal of

Haberman (2009). In this work, all the equating coefficients that permit the scale

transformation of the IRT parameters of all forms to the scale of the base form are

estimated simultaneously. So, for every form, there is only one pair of equating

coefficients (the intercept and the slope) without distinction between direct, chain or

average equating coefficients.

An alternative to equating forms calibrated separately is given by concurrent

calibration. In this case, item parameters of all forms are estimated simultaneously,

thus yielding item parameters already on a common scale. As noted by Haberman

(2009) and Battauz (2013) this approach is computationally demanding and it could

become challenging with thousands of items. When forms are calibrated separately, the

full data matrix containing the responses given to the items by every person is not
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required in the equating process, that is achieved using only the results of the IRT

model estimation. This makes approaches based on separate calibrations more

manageable. Furthermore, separate calibrations may be preferable because this

approach permits a better control of item parameter drift.

The paper is structured as follows. Section 2 presents the methods, including the

method proposed by Haberman (2009). In this section, the derivation of the standard

errors of the equating coefficients will be given. A procedure to evaluate the variability

of the equating coefficients with respect to the choice of common items is presented in

Subsection 2.5. Subsection 2.6 briefly illustrates the methods proposed in Battauz

(2013), which are used for comparison of the results of the simulation study presented

in Section 3. Finally, Section 4 contains the discussion and some concluding remarks.

2. Multiple IRT Equating Methods

In IRT models the probability of a positive response to item j is a function of the

latent trait under investigation, denoted by θ, and some item parameters that are

related to the characteristics of the items (for a broad review see van der Linden and

Hambleton, 1997). The three-parameter logistic model specifies the probability of a

positive response as

P (θ; aj, bj, cj) = cj + (1− cj)
exp{Daj(θ − bj)}

1 + exp{Daj(θ − bj)}
, (1)

where aj, bj and cj are item parameters called discrimination, difficulty and guessing,

and D is a known constant, typically set to 1.7. The parameters of the model are

estimated using the marginal maximum likelihood method (Bock & Aitkin, 1981).
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Let t be the index of the form, t = 1, . . . , T , while ajt and bjt denote the item

discrimination parameter and the item difficulty parameter of item j in the scale of

form t. The set of all item parameters is denoted by J , while the set of item parameters

administered in form t is denoted by Jt. The number of elements of J is v, and the

number of elements of Jt is vt.

Let a∗j and b∗j , j = 1, . . . , v, be the item discrimination and difficulty parameters

expressed on the scale of the base form. The conversion to the scale of the base form is

obtained by applying the following linear transformations

a∗j =
ajt
At

(2)

and

b∗j = bjtAt +Bt, (3)

where At and Bt are the equating coefficients related to form t. In the following,

without loss of generality, Form 1 will be taken as base form. Thus, A1 = 1 and B1 = 0.

In the next subsection the procedure proposed by Haberman (2009) will be

introduced. This method will be called the multiple mean-geometric mean (MM-GM)

method in this paper, because it is a generalization to several forms of the

mean-geometric mean method (also known as log-mean mean method) for two forms.

2.1. Multiple Mean-Geometric Mean

Haberman (2009) proposed to employ Equations (2) and (3) to specify the

regression models

log âjt = log Ât + log â∗j + e1jt (4)
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and

b̂jtÂt = −B̂t + b̂∗j + e2jt, (5)

where e1jt and e2jt are the residuals that should be introduced because Equations (2)

and (3) hold only approximately in samples. In the first stage, the estimates log Ât and

log â∗j are obtained using the least squares method. In the second stage, the estimates

Ât = exp(log Ât) are used to compute the responses b̂jtÂt of the regression model (5)

and the estimates B̂t and b̂∗j are obtained by means of the least square method. The

equating coefficients Â1 and B̂1 are constrained to 1 and 0. As noted by Haberman

(2009), the regression analysis corresponds to an analysis of variance when an

incomplete two-way layout is considered. The author provides also the equations to be

solved for finding in an efficient way the parameter estimates. Here, the regression

models will be expressed in matrix form that will be exploited to obtain the asymptotic

standard errors of the parameter estimates. Let x = (xi)i=1,...,n be a vector with

elements xi with i = 1, . . . , n and let log(x) = (log(xi))i=1,...,n be the vector containing

the logarithm of xi. Model (4) is written as

log â = X1 log β̂1 + e1, (6)

where â = (âjt)j=1,...,vt,t=1 ...,T is a vector of length n =
∑

t vt containing the elements âjt

with j = 1, . . . , vt and t = 1, . . . , T , X1 is a design matrix with dimension n× q,

q = T + v − 1, composed by a set of T − 1 dummy variables that indicate in which form

t was included the item, and a set of v dummy variables that indicate which item j is

considered, β̂1 is a vector of length q containing the regression coefficients and that is
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composed by Â = (Â2, . . . , ÂT )> and â∗ = (â∗1, . . . , â
∗
v)
>, and e1 is a vector of length n

containing the residuals. Let T be a matrix with dimension n× (T − 1), composed by

T − 1 dummy variables that indicate in which form t was administered the item. Let

Ân=TÂ be a vector of length n containing the equating coefficients Â2, . . . , ÂT , each

replicated vt times. Model (5) can then be written as

diag(Ân)b̂ = X2β̂2 + e2, (7)

where diag(·) denotes a diagonal matrix, b̂ = (b̂jt)j=1,...,vt,t=1 ...,T is a vector of length n

containing the elements b̂jt with j = 1, . . . , vt and t = 1, . . . , T , X2 is a design matrix

with dimension n× q, composed by a set of T − 1 dummy variables multiplied by −1

that indicate in which form t was included the item, and a set of v dummy variables

that indicate which item j is considered, β̂2 is a vector of length q containing the

regression coefficients, composed by B̂ = (B̂2, . . . , B̂T )> and b̂∗ = (b̂∗1, . . . , b̂
∗
v)
>, and e2 is

a vector of length n containing the residuals.

Let exp(x) = (exp(xi))i=1,...,n be the vector containing the exponential of xi. The

estimators of the parameters are given by

β̂1 = exp
[
(X>1 X1)

−1X>1 log â
]

(8)

and

β̂2 = (X>2 X2)
−1X>2 diag(Ân)b̂. (9)

Note that this method not only provides estimates of the equating coefficients but

also yields an estimate of the item parameters a∗j and b∗j , j = 1, . . . , v. This estimate

synthesizes the estimates obtained for the same item in different calibrations.
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Since the estimates of the equating coefficients Â and B̂ and the item parameter

estimates â∗ and b̂∗ are a function of the item parameter estimates obtained by separate

calibrations â and b̂, the asymptotic standard errors can be derived using the delta

method. Let β = (β>1 ,β
>
2 )> be the vector containing all the regression coefficients, and

γ̂ = (â>, b̂>)> be the vector containing all the estimates of discrimination and difficulty

parameters. The asymptotic covariance matrix of β̂ is then given by

acov(β̂) =
∂β̂

∂γ̂>
acov(γ̂)

∂β̂>

∂γ̂
. (10)

The derivatives are given in Appendix A.1.

2.2. Multiple Mean-Mean

From equation (2) it follows that

At =
ajt
a∗j
. (11)

If a∗j were known, the mean-mean estimator of the equating coefficient At would be

Ât =

∑
j∈Jt âjt∑
j∈Jt â

∗
j

. (12)

The proposal of this paper is to replace â∗j in (12) with

â∗j =

∑
s∈Uj

âjs∑
s∈Uj

Âs
, (13)

where Uj is the set of forms such that item j is in Jt. Substituting equation (13) in

equation (12) it is possible to obtain

Ât =

∑
j∈Jt âjt∑

j∈Jt

∑
s∈Uj

âjs∑
s∈Uj

Âs

, t = 2, . . . , T. (14)
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This defines a set of T − 1 nonlinear equations, whose root can be found numerically,

after setting

Â1 =

∑
j∈J1 âj1∑
j∈J1 â

∗
j

= 1.

Equations (14) can be solved by the Newton-Raphson method. However, another

algorithm that can be exploited to accomplish this task is the iterative proportional

fitting procedure (Deming and Stephan, 1940). Iterative proportional fitting is generally

used to estimate cell probabilities in a contingency table so that row and column

classifications satisfy the condition of independence

pij = aibj, ∀i, j, (15)

where pij is the proportion of individuals that fall in the ith row and jth column of the

table, while ai and bj are positive constants (see for example Goodman, 1968). Writing

equation (11) as follows

ajt = a∗jAt,

shows the similarity of the case under study with the condition of independence.

However, in the present case, the matrix containing the values âjt has missing entries

because not all items are included in every form. In order to handle the missing entries,

it is necessary to resort to the concept of quasi-independence (see Goodman, 1968 and

the references therein), which requires that relation (15) holds for the non-missing cells.

It follows that ∑
j

pij = ai
∑
j

δijbj,
∑
i

pij = bj
∑
i

δijai, (16)
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where δij = 1 if the entry in the ith row and jth column if not missing. In the present

case, equation (16) implies

∑
s∈Uj

ajs = a∗j
∑
s∈Uj

As,
∑
j∈Jt

ajt = At
∑
j∈Jt

a∗j ,

which leads to the estimators (12) and (13). The algorithm proposed by Goodman

(1968), adapted to the case under investigation, is as follows. The starting points are

given by

â∗
0

j =

∑
s∈Uj

âjs

uj
, for j = 1, . . . , v,

where uj is the number of elements of Uj. For m ≥ 1, compute the following equations

until convergence

Â
(2m−1)

t =

∑
j∈Jt âjt∑

j∈Jt â
∗(2m−2)

j

, for t = 1, . . . , T,

and

â∗
(2m)

j =

∑
s∈Uj

âjs∑
s∈Uj

Â(2m−1)

s

, for j = 1, . . . , v.

Finally, the following step is required to impose Â1 = 1:

Ât =
Â

(2m−1)

t

Â
(2m−1)

1

, â∗j = â∗
(2m)

j Â
(2m−1)

1 .

Once the estimates Â2, . . . , ÂT are obtained, the estimates of the equating

coefficients B2, . . . , BT can be obtained following the procedure of the MM-GM method,

explained in Subsection 2.1.

When T = 2, this method is equivalent to the mean-mean method. For this reason,

this method will be called the multiple mean-mean (MM-M) method in this paper. The

proof is given in Appendix B.
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Also in this case, asymptotic standard errors of both the equating coefficients and

the synthetic item parameters can be obtained using the delta method, as in equation

(10). The derivatives necessary to compute the covariance matrix are given in Appendix

A.2.

2.3. Multiple Item Response Function

The multiple item response function (MIRF) method is a generalization of the

Haebara method to the case of multiple forms. The proposal of this paper is to find the

equating coefficients by minimizing the following function

f ∗IR =
T∑
t=1

∫ ∞
−∞

∑
j∈Jt

(
Pjt − P ∗jt

)2
h(θ)dθ, (17)

where h(·) is the density of a standard normal distribution and

Pjt = P (θ; âjt, b̂jt, ĉjt) (18)

is the probability of a positive response to item j using the item parameters estimated

for administration t, while

P ∗jt = P (θ; â∗jt, b̂
∗
jt, ĉjt), (19)

is the probability of a positive response to item j using the synthetic discrimination and

difficulty parameters. These parameters are converted on the scale of Form t using the

following equations

â∗jt = â∗jÂt and b̂∗jt =
b̂∗j − B̂t

Ât
, (20)

where

â∗j =
1

uj

∑
s∈Uj

âjs

Âs
and b̂∗j =

1

uj

∑
s∈Uj

(b̂jsÂs + B̂s), (21)
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thus yielding

â∗jt =
1

uj

∑
s∈Uj

âjs

Âs
Ât and b̂∗jt =

1
uj

∑
s∈Uj

(b̂jsÂs + B̂s)− B̂t

Ât
. (22)

In order to obtain the conversion to the scale of Form 1, the constraints A1 = 1 and

B1 = 0 are imposed. The MIRF method here proposed, satisfies the symmetry property

(Kolen and Brennan, 2014, p. 9). The proof is given in Appendix C.

Since the integrals in Equation (17) do not have a closed-form solution, function

f ∗IR is approximated using Gaussian quadrature

fIR =
T∑
t=1

r∑
m=1

∑
j∈Jt

(
Pmjt − P ∗mjt

)2
H(ym), (23)

where

Pmjt = P (ym; âjt, b̂jt, ĉjt), P ∗mjt = P (ym; â∗jt, b̂
∗
jt, ĉjt), (24)

ym, m = 1, . . . , r, are quadrature points and H(ym) are appropriate weights. The

minimization is performed using numerical methods (see for example Kim and Kolen,

2007, for the case T = 2). Once the equating coefficients are obtained, the synthetic

item parameters can be computed using equations (21).

The covariance matrix of the equating coefficients and the synthetic item

parameters are again obtained using the delta method. The partial derivatives of the

equating coefficients with respect to the estimated item parameters, required to apply

the delta method, are obtained using implicit differentiation as in Ogasawara (2001b)

∂(Â>, B̂>)>

∂γ̂>
= −

[
∂SIR

∂(Â>, B̂>)

]−1
∂SIR
∂γ̂>

, (25)

where SIR is the vector containing the partial derivatives of fIR with respect to the

vectors of equating coefficients A and B. The partial derivative with respect to the
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equating coefficients Âk, k = 1, . . . , T , is given by

∂fIR

∂Âk
= −

T∑
t=1

r∑
m=1

∑
j∈Jt

(
Pmjt − P ∗mjt

) ∂P ∗mjt
∂Âk

H(ym), (26)

and the partial derivatives with respect to the equating coefficients B̂k, k = 1, . . . , T ,

are obtained by substituting Âk with B̂k in equation (26).

The components of ∂SIR

∂(Â>,B̂>)>
are the second derivatives of fIR with respect to

couples of equating coefficients. For the equating coefficients Âk and B̂h they are given

by

∂2fIR

∂Âk∂B̂h

=
T∑
t=1

r∑
m=1

∑
j∈Jt

[
∂P ∗mjt

∂Âk

∂P ∗mjt

∂B̂h

−
(
Pmjt − P ∗mjt

) ∂2P ∗mjt

∂Âk∂B̂h

]
H(ym). (27)

The derivatives with respect to other couples of equating coefficients are obtained by

substituting Âk and B̂k with other equating coefficients in equation (27).

The components of ∂SIR

∂γ̂>
are the second derivatives of fIR with respect to the

equating coefficients and the item parameters. For the equating coefficient Âk and the

difficulty parameter b̂ih they are

∂2fIR

∂Âk∂b̂ih
= −

T∑
t=1

r∑
m=1

∑
j∈Jt

[(
∂Pmjt

∂b̂ih
−
∂P ∗mjt

∂b̂ih

)
∂P ∗mjt

∂Âk
+
(
Pmjt − P ∗mjt

) ∂2P ∗mjt

∂Âk∂b̂ih

]
H(ym).

(28)

Note that
∂Pmjt

∂b̂ih
,
∂P ∗mjt

∂b̂ih
and

∂2P ∗mjt

∂Âk∂b̂ih
are 0 when i 6= j. The other derivatives are obtained

by substituting Âk with other equating coefficients and b̂ih with other item parameters

in equation (28). All the derivatives entering in equations (26), (27) and (28) are given

in Appendix A.3 (see Equations from (A9) to (A54)).

In order to obtain the asymptotic standard errors of the synthetic item parameters,

the derivatives of the synthetic item parameters with respect to the estimates of the
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item parameters obtained from separate calibrations are necessary. These derivatives

are given in Appendix A.3 (see Equations from (A55) to (A60)).

2.4. Multiple Test Response Function

The multiple test response function (MTRF) method proposed here is a

generalization of the Stocking-Lord method to the case of multiple forms, and requires

the minimization of the following objective function

f ∗TR =
T∑
t=1

∫ (∑
j∈Jt

Pjt − P ∗jt

)2

h(θ)dθ. (29)

The response functions Pjt and P ∗jt are defined in Equations from (18) to (22). The

symmetry property is satisfied also by the MTRF method, as proven in Appendix C.

Also in this case, the integrals in equation (29) do not have a closed-form solution

and they are approximated using Gaussian quadrature with r points

fTR =
T∑
t=1

r∑
m=1

(∑
j∈Jt

Pmjt − P ∗mjt

)2

H(ym), (30)

where Pmjt and P ∗mjt are defined in Equation (24). After the estimation of the equating

coefficients by means of numerical methods, synthetic item parameters can be computed

using Equations (21).

Similarly to the MIRF method, the partial derivatives for obtaining the asymptotic

covariance matrix with the delta method are computed as follows

∂(Â>, B̂>)>

∂γ̂>
= −

[
∂STR

∂(Â>, B̂>)

]−1
∂STR
∂γ̂>

, (31)

where the elements of STR are

∂fTR

∂Âk
= −

T∑
t=1

r∑
m=1

∑
j∈Jt

(
Pmjt − P ∗mjt

)∑
j∈Jt

∂P ∗mjt

∂Âk
H(ym) (32)
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for k = 1, . . . , T , and ∂fTR/∂B̂k for k = 1, . . . , T , which are obtained analogously.

The components of ∂STR

∂(Â>,B̂>)>
for the equating coefficients Âk and B̂h are

∂2fTR

∂Âk∂B̂h

=
T∑
t=1

r∑
m=1

[∑
j∈Jt

∂P ∗mjt

∂Âk

∑
j∈Jt

∂P ∗mjt

∂B̂h

−
∑
j∈Jt

(
Pmjt − P ∗mjt

)∑
j∈Jt

∂2P ∗mjt

∂Âk∂B̂h

]
H(ym),

(33)

while the derivatives with respect to other couples of equating coefficients are obtained

analogously.

The components of ∂STR

∂γ̂>
for the equating coefficient Âk and the difficulty

parameter b̂ih are

∂2fTR

∂Âk∂b̂ih
= −

T∑
t=1

r∑
m=1

[∑
j∈Jt

(
∂Pmjt

∂b̂ih
−
∂P ∗mjt

∂b̂ih

)∑
j∈Jt

∂P ∗mjt

∂Âk
+
∑
j∈Jt

(
Pmjt − P ∗mjt

)∑
j∈Jt

∂2P ∗mjt

∂Âk∂b̂ih

]
H(ym).

(34)

The derivatives for the other equating coefficients and the other item parameters are

obtained analogously. All the derivatives entering in equations (32), (33) and (34) are

the same given for the MIRF method, and they are given in Appendix A.3 (see

Equations from (A9) to (A54)). The derivatives of the synthetic item parameters with

respect to the item parameters separately calibrated are the same provided for the

MIRF method and they are given in Appendix A.3 (see Equations from (A55) to (A60)).

Appendix D provides the formulas for the computation of the reliability index and

the standard error of estimated abilities after the scale transformation with all the

multiple equating methods proposed in this paper.
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2.5. Stability of Equating with Respect to the Choice of Common Items

The asymptotic covariance matrices of the equating coefficients derived in this

paper are obtained under the assumption of invariance of item parameters across

different administrations. However, Haberman et al. (2009) and Michaelides and

Haertel (2014) noted that when Equations (2) and (3) do not hold perfectly, the set of

common items selected constitutes a further source of error in the equating process. In

order to examine the stability of the equating process with respect to the choice of

common items, a procedure for the case of multiple test forms based on the proposal of

Haberman et al. (2009) and Michaelides and Haertel (2014) will be presented here.

Both these works consider two test forms and make use of resampling techniques to

evaluate the variability of an equating result, which can be an equating coefficient or an

equated score. While the proposal of Haberman et al. (2009) is based on the jackknife

method, Michaelides and Haertel (2014) proposed to use the bootstrap method. Both

these articles apply resampling techniques to examinees to estimate the sample

variability. Furthermore, resampling techniques are also applied to common items in

order to quantify the variability of an equating result with respect to the choice of the

set of common items. It is worth remarking that, when IRT model assumptions hold

perfectly, the choice of the common items would not add variance to the equating

transformation (Michaelides and Haertel, 2014). Suppose instead that invariance of

item parameters does not hold. So, true equating coefficients depend on the set of

common items selected. Let Am be the true A equating coefficient for the set of

common items m. Similarly to Haberman et al. (2009), the variability of Am can be
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measured using the sample variance

σ2
A =

1

M − 1

M∑
m=1

(Am − A.)2,

where A. = M−1∑M
m=1Am. An estimate of σ2

A is

σ̂2
A =

1

M − 1

M∑
m=1

(Âm − Â.)2,

where Â. = M−1∑M
m=1 Âm. As noted by Haberman et al. (2009, Equation (18)) this

estimate is biased. In fact

E(σ̂2
A) = σ2

A + ∆A,

where

∆A =
1

M − 1

M∑
m=1

var(Âm − Â.).

While Haberman et al. (2009) estimate these quantities by means of the jackknife

method, the bootstrap method is employed in this paper. Differently from Haberman et

al. (2009) and Michaelides and Haertel (2014), here multiple forms should be

considered. So, bootstrap samples of examinees are obtained by randomly sampling

with replacement from each population of examinees, while bootstrap samples of

common items are obtained by randomly sampling with replacement from each set of

common items between different forms.

For each t, t = 1, . . . , T , let Ât(m) be an estimate of At using the bootstrap sample

of common items m, m = 1, . . . ,M , and Ât(m,b) be an estimate of At using the bootstrap

sample of common items m and the bootstrap sample of examinees b, b = 1, . . . , B. In

order to speed up the computational time, in this paper item parameters are estimated
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only after resampling of examinees. Resampling of common items is carried out by

resampling of estimated item parameters, which are kept constant for each b.

The bootstrap estimate of σ2
At

is then

σ̂2
boot(At) =

1

M − 1

M∑
m=1

(Ât(m) − Ât(.))2 − ∆̂boot(At),

where

∆̂boot(At) =
1

M − 1

1

B − 1

M∑
m=1

B∑
b=1

(Ât(m,b) − Ât(·,b) − Ât(m,·) + Ât(·,·))
2,

and Ât(·) = M−1∑M
m=1 Ât(m), Ât(·,b) = M−1∑M

m=1 Ât(m,b), Ât(m,·) = B−1
∑B

b=1 Ât(m,b)

Ât(·,·) = M−1B−1
∑M

m=1

∑B
b=1 Ât(m,b).

The difference here with respect to the work of Michaelides and Haertel (2014) is

that in their paper there is not the correction ∆̂boot(At), so the estimated variability is

positive even if the IRT model assumptions hold perfectly, due to the sample variability

of Ât(m).

The bootstrap estimate of σ2
Bt

can be obtained analogously.

2.6. Chain and Bisector Equating Coefficients

A different approach to equate multiple forms is given in Battauz (2013). Since the

methods proposed in this paper will be compared by means of simulations to the

bisector and the weighted bisector methods proposed in Battauz (2013), here these

methods will be briefly described.

Suppose that two forms are linked through a chain of forms that presents common

items in pairs. Define the path from Form 0 to Form l as p = {0, 1, . . . , l}. Chain
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equating coefficients transforming the scale of Form 0 to that of Form l can be obtained

as a function of the direct equating coefficients

Ap = A0,1,...,l =
l∏

g=1

Ag−1, g

and

Bp = B0,1,...,l =
l∑

g=1

Bg−1, g Ag,...,l ,

where Ag,...,l =
∏l

h=g+1Ah−1, h is the coefficient that links Form g to Form l, while

Ag−1, g and Bg−1, g are direct equating coefficients between Forms g − 1 and g. When

two forms can be linked through different paths, the transformations provided by each

path can be averaged. Define the set of paths that link Forms 0 and l as P0l and the

linking coefficients related to path p as Ap and Bp, p ∈ P0l. In order to average the

transformations provided by each path, the bisector method proposed by Battauz

(2013) yields the equating coefficients

A∗0l =
∑
p∈P0l

Apwp and B∗0l =
∑
p∈P0l

Bpwp,

where

wp =
np(1 + A2

p)
−1/2∑

b∈P0l
nb(1 + A2

b)
−1/2 ,

and np are optional weights. The weighted bisector method is obtained when the

weights np are determined by minimizing the average variance of θ∗l , namely

Eθ0

[
var(Â∗0l θ0 + B̂∗0l

∣∣θ0)] = var(Â∗0l) + var(B̂∗0l), (35)

assuming that θ0 has zero mean and variance equal to one.
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3. A Simulation Study

The performance of the methods proposed was assessed by means of a simulation

study. Six administrations per year for nine years are considered, resulting in a total of

54 administrations. In order to simulate seasonality and a slight trend in mean ability

levels, the mean ability is determined by the following equation

0.05 cos(2π y)− 0.2 sin(2π y) + 0.002 y, (36)

where y denotes the year. The function used to simulate seasonality was proposed in

Lee and Haberman (2013) for modeling mean scores. Figure 1 represents mean ability

levels over time. The points represent the test forms, which are administered in months

3, 5, 6, 10, 11 and 12 of each year. Dotted lines represent the links between forms that

share common items. Each form is linked to two old forms, one administered one year

prior in the same month of the year, and the other administered two years prior in a

different month of the year.

[Figure 1 about here.]

Each form is composed of 40 items and the number of common items between two

forms is 5. For every form, 2000 abilities have been generated independently from a

normal distribution. The mean of the distribution is given by Equation (36), while the

standard deviation was generated from a uniform distribution with range [0.9, 1.2]. Item

responses were simulated using the two-parameter logistic model. Item difficulties are

generated from a standard normal distribution, while discrimination parameters were
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generated from a normal distribution with mean 0.9 and standard deviation 0.3,

truncated at 0.3 and 1.8. Results are based on 500 simulated data sets. All

computations were performed using the R statistical software (R Development Core

Team, 2015). Item parameters were estimated using the ltm function of the ltm

package (Rizopoulos, 2006) with 41 quadrature points. The ltm package estimates item

parameters by means of the marginal maximum likelihood method, hence assuming a

standard normal distribution for the abilities. The code developed to implement the

methods proposed in this paper was partly written in C language to speed up

computational time. The minimization of equations (23) and (30) was performed using

the R function nlminb. All forms were equated to Form 1 using all methods presented

in this paper. On a PC with Intel Core i5-3210M at 2.50 GHz the MM-GM and the

M-MM methods take just a few seconds to compute the equating coefficients for one

data set. Instead, the MIRF and the MTRF take about 2 minutes for the computation

of the equating coefficients. The computation of standard errors requires a bit more

time. Approximatively, it takes 2 minutes for the MM-GM method, 9 minutes for the

M-MM method and 2 minutes for the MIRF and the MTRF methods. These times can

be reduced by improving the efficiency of the code and making use of parallel

computation. Bisector and weighted bisector equating coefficients (Battauz, 2013) were

also calculated using the equateIRT package (Battauz, 2015). Chain equating

coefficients, which are used in the computation of bisector equating coefficients, were

calculated for all possible chains with length from 3 to 9. In order to limit the number

of chains constructed, only links from newer forms to older forms were used in the



Psychometrika Submission September 25, 2017 23

computation of chain equating coefficients. For each group of chain equating coefficients

linking the same couple of forms, bisector equating coefficients were calculated using the

mean-mean, mean-geometric mean, Haebara and Stocking-Lord methods for direct

equating coefficients.

In order to evaluate the properties of the methods proposed, the mean and the

standard deviation of the estimates of the equating coefficients were calculated for each

form. Table 1 reports the absolute value of the difference between the mean estimates

and the true values of the equating coefficients. Since there is a value for each of the 54

forms, in the table only the mean and the maximum values are reported. The table

shows that the differences are very small for all the multiple equating methods, thus

indicating that these methods are nearly unbiased.

[Table 1 about here.]

Table 2 reports mean and maximum values (across different forms) of the absolute

value of the difference between mean standard errors and standard deviations of the

equating coefficients. The small values shown in the table indicate that the calculated

standard errors are nearly unbiased. The standard deviations of the standard errors

calculated for each simulated dataset are instead summarized in Table 3. The table

reports for each method minimum, mean and maximum values of the standard

deviations of the standard errors across different forms and shows that the standard

errors exhibit little variability.

[Table 2 about here.]
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[Table 3 about here.]

The multiple equating methods yield similar equating coefficients (see Figure 2). In

particular, the MM-GM and the MM-M methods have the smallest differences,

especially for the B equating coefficients. Also the MIRF and the MTRF methods tend

to produce very similar results for the B equating coefficient.

[Figure 2 about here.]

A comparison of the standard deviations of the estimated equating coefficients

obtained with the various methods is given in Figure 3. The figure shows that the

standard deviations of the A equating coefficient are similar between the various

methods, although the MM/M method presents slightly smaller values than the other

methods, while the TRF method produces standard deviations slightly higher than the

other methods. Instead, the MIRF and the MTRF methods produce lower standard

deviations for the B equating coefficient, compared to the MM-GM and the MM-M

methods. In particular, the MIRF method yields standard deviation slightly smaller

that the MTRF method.

[Figure 3 about here.]

The performance of the multiple equating methods proposed in this paper was then

compared with the bisector and the weighted bisector methods. The results obtained

with the bisector and the weighted bisector methods are rather similar, so only the

weighted bisector method in shown in figures. Figure 4 compares the estimates of the A
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equating coefficient obtained with the various multiple equating methods with the

estimates obtained with the weighted bisector method and shows an high similarity

between the two methods. Results for the B equating coefficient are very similar and

they are not shown.

[Figure 4 about here.]

A comparison of the standard deviations of the estimates of the A equating

coefficient obtained with the methods presented in this paper with the weighted bisector

method is given in Figure 5. The standard deviations of the weighted bisector method

are equal or slightly greater than the multiple equating methods. The difference can be

due to the fact that in the computation of the bisector equating coefficients only links

from newer forms to older forms have been considered, thus not exploiting all the links

present in the network of forms. As expected, the standard deviations of the bisector

method (not shown here) are slightly larger than the weighted bisector method. The B

equating coefficient presents very similar results.

[Figure 5 about here.]

In order to explore the effect of violations of the assumption of invariance of item

parameters across different administrations, a data set with perturbed item parameters

was also generated. Only the item parameters of Form 54, the last one, were perturbed.

Form 54 shares same items with Forms 37 and 48. The difficulty item parameters in

common with these forms were modified by adding values generated from a normal

distribution with zero mean and standard deviation equal to 0.3. Instead, the
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discrimination item parameters were modified by adding values generated from a

normal distribution with zero mean and standard deviation equal to 0.2. The values

thus obtained were then truncated at 0.3 and 1.8. Only the MM-M method was used to

estimate the equating coefficients and the quantities σ̂2
boot(At) and σ̂2

boot(Bt) as explained

in Subsection 2.5 have then been calculated with M = 300 and B = 300. Despite in real

applications disturbances are likely to involve numerous items, here only the items of

one form were perturbed in order to observe the behavior of σ̂2
boot(At) and σ̂2

boot(Bt) for

forms with non-perturbed item parameters. Similarly to Michaelides and Haertel

(2014), item parameters were estimated after resampling of examinees, while resampling

of common items did not required the estimation the IRT model. Figure 6 represents

the estimated variability of the equating coefficients and shows that σ̂2
boot(At) and

σ̂2
boot(Bt) are all near zero excepted Form 54. For this form, σ̂2

boot(At) = 0.010 and

σ̂2
boot(Bt) = 0.014. Since the squared standard errors of the equating coefficients were

0.006 for the A equating coefficient and 0.011 for the B equating coefficient, the

variability of the equating coefficients due to the choice of common items is not

negligible for this form.

[Figure 6 about here.]

4. Discussion and Conclusions

This paper proposes a generalization to the case of a network of forms of the

methods proposed in the literature to equate two test forms. Specifically, the methods

considered are the mean-geometric mean, the mean-mean, the Haebara and the
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Stocking-Lord methods. The mean-sigma method (Marco, 1977) was instead not

considered in this paper because this method produces biased estimators of the

equating coefficients (Baldwin, 2013) and simulation studies not presented here showed

that a generalization of the method to multiple forms leads to non negligible bias.

This work was inspired by the illuminating paper of Haberman (2009), who

proposed a generalization of the mean-geometric mean method to a large number of test

forms by formalizing the problem as a regression model. A contribution of the present

paper is the derivation of the asymptotic standard errors of the equating coefficients

obtained with the procedure described by Haberman (2009), along with the standard

errors of the equating coefficients obtained with the other methods presented in this

paper. Standard errors of the equating coefficients are an important tool for the

assessment of the accuracy of the equating process. The derivation of analytic standard

errors of the equating coefficients has received attention in the literature (see Ogasawara

2000, 2001b, for direct equating coefficients and Battauz, 2013, for chain and average

equating coefficients). Determining the asymptotic covariance matrix of the equating

coefficients is also important because this matrix is necessary to obtain the standard

errors of the equated scores as in Ogasawara (2001a, 2003). These standard errors are

obtained under the assumption of invariance of item parameters. As remarked in the

paper, when this assumption is not satisfied, the selection of the set of common items

constitutes a further source of variability of the equating coefficients. This paper

provides also an adaptation to the case of multiple forms of the procedures described in

Haberman et al. (2009) and Michaelides and Haertel (2014) to estimate this variability.
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The impact of sample error of the equating coefficients can be evaluated by

considering the change in the reliability index of the estimated abilities after the scale

transformation (as explained in Appendix D). The values relative to Form 3 of one of

the simulated data sets have been taken as an example. Suppose that the estimated

standard error of θ̂3 for one person is 0.33 (which is the median of the estimated

standard errors of Form 3). So, the reliability of θ̂3 is equal to 1/(1 + 0.332) = 0.9. Since

Â3 = 1.11, ŝe(Â3) = 0.078 and ŝe(B̂3) = 0.097, the reliability of θ̂∗ is

1.112/(0.0782 + 0.0972 + (1 + 0.332)1.112) = 0.89. The estimated standard error of θ̂∗ is

(0.0782 + 0.0972 + 0.3321.112)1/2 = 0.39. So, the reliability of the measure of ability of

this person is just slightly reduced after the conversion to the base scale, indicating that

the equating process is rather accurate.

The MIRF and MTRF methods are based on the minimization of a loss function

given in Equations (17) and (29) that depends on the difference between the response

function evaluated using the item parameters estimated separately for each form and

the synthetic item parameters converted on the scale of that form. Alternatively, a

possible choice would have been to convert all item parameters to the scale of the base

form and leave unchanged the synthetic item parameters. However, this approach gives

different results than the one adopted in this paper. In particular, the approach chosen

in this paper assures the symmetry property, which implies that the results are

independent of the choice of the base form. So, the equating coefficients for a different

base form can be derived just by applying a linear transformation to those obtained

with the MIRF or the MTRF methods. Instead, following the alternative approach, this
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property is not satisfied.

While the MM-GM and the MM-M methods with two forms produce the same

results as the classical mean-geometric mean and mean-mean methods, the MIRF and

MTRF methods with two forms do not correspond to the Haebara and Stocking-Lord

methods. However, a simulation study, not reported here, showed that the estimates of

the equating coefficients obtained with the MIRF and MTRF methods are extremely

similar to those obtained with the Haebara and Stocking-Lord methods. The mean and

the standard deviation of the equating coefficients were also very close. Then, the

characteristic curve methods proposed here to equate multiple test forms constitute a

new method to equate two test forms, which also returns the synthetic item parameters

as a byproduct.

Potentially, the methods proposed in this paper do not have limits on the number

of forms equated. A restriction is given by the amount of memory available on the

computer, but the code implementation has an important role in this respect. The time

required for the computation of the equating coefficients and the standard errors is

expected to increase when the total number of common items between all the forms

becomes larger. Instead, the number of examinees has an effect only on the estimation

of the IRT model and it is not relevant to the time required for the estimation of the

equating coefficients.

Though it should be remarked that simulated data are not real data and that

simulation studies have limits in terms of generalizability, the simulation study

conducted here showed the good performance of all the methods proposed to equate
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simultaneously multiple test forms and showed also that the methods give similar

results. The simulation study provided also a comparison with the bisector method

(Battauz, 2013), which was also developed to address equating of multiple test forms.

This study revealed that the methods presented here give similar results to the bisector

and weighted bisector methods, both considering the estimated values and the standard

deviations of the equating coefficients. The standard deviations were slightly higher for

the weighted bisector method under the settings chosen here. However, this result can

change when the dimension of the groups of examinees varies across different

administrations, since the multiple equating methods proposed in this paper do not

account for the dimension of the samples or the standard error of the item parameter

estimates. Instead, the weighted bisector method is constructed in order to attain an

efficient estimator. The two approaches present both advantages and drawbacks.

Linking simultaneously all the forms is certainly more straightforward and seems

preferable when the network of connections between forms is very intricate. On the

other hand, the bisector method can deal more easily with the case of a new form that

needs to be added to a network of forms previously equated. In fact, with the bisector

method it is not necessary to compute again all the equating coefficients, but only those

involved by this new form. Furthermore, the bisector method performs well also using

the mean-sigma method. Large differences in the equating coefficients obtained with the

two approaches can reveal problems with the equating process. So, computing the

equating coefficients with both the approaches and comparing the results could be a

convenient strategy.
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Appendix A. Partial Derivatives necessary to obtain the asymptotic

standard errors

A.1. MM-GM Method

The derivatives in equation (10), necessary to compute the covariance matrix of the

equating coefficients and the synthetic item parameters with the MM-GM method, are

given by

∂β̂1

∂â>
= diag(β̂1)(X

>
1 X1)

−1X>1 (diag(â))−1 , (A1)

∂β̂1

∂b̂>
= 0, (A2)

∂β̂2

∂â>
=

∂β̂2

∂Â>
∂Â

∂â>
= (X>2 X2)

−1X>2 diag(b̂)T>
∂Â

∂â>
, (A3)

∂β̂2

∂b̂>
= (X>2 X2)

−1X>2 diag(Ân), (A4)

where ∂Â
∂â>

is given in the first T − 1 rows of ∂β̂1

∂â>
.

A.2. MM-M Method

The derivatives of the equating coefficients At, t = 2, . . . , T , with respect to the

estimated item discrimination parameters âjs, j = 1, . . . , v, s = 1, . . . , T , namely ∂Ât

∂âjs
,

can not be found in closed form, but can instead be determined numerically. These

derivatives compose the matrix ∂Â
∂â>

, that corresponds to the first T − 1 rows of ∂β̂1

∂â>
.

The derivatives of the synthetic discrimination parameters â∗j with respect to the

discrimination parameter estimates obtained from each calibration can be then found as
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follows:

∂â∗j
∂âjt

=
1∑

s∈Uj
Âs
−

∑
s∈Uj

âjs(∑
s∈Uj

Âs

)2 ∑
s∈Uj

∂Âs
∂âjt

, (A5)

∂â∗j
∂âit

= −
∑

s∈Uj
âjs(∑

s∈Uj
Âs

)2 ∑
s∈Uj

∂Âs
∂âit

, ∀i 6= j. (A6)

These derivatives form the matrix ∂â∗

∂â>
, that corresponds to the last v rows of ∂β̂1

∂â>
. The

derivatives ∂β̂1

∂b̂>
, ∂β̂2

∂â>
and ∂β̂2

∂b̂>
can then be determined as explained in Appendix A.1 for

the MM-GM method, using the appropriate matrices ∂Â
∂â>

and Ân.

A.3. MIRF and MTRF Methods

In order to obtain the partial derivatives necessary to compute the asymptotic

standard errors of the equating coefficients, P ∗mjt will be written as follows:

P ∗mjt = ĉjt + (1− ĉjt)
exp(LPmjt)

1 + exp(LPmjt)
, (A7)

where

LPmjt = D
1

uj

∑
s∈Uj

s 6=t

âjs

Âs
Ât + âjt

 ym−D
1

uj

∑
s∈Uj

âjs

Âs

 1

uj

∑
s∈Uj

(b̂jsÂs + B̂s)− B̂t

 . (A8)

In the following, all the derivatives entering in Equations (26), (27) (28), (32), (33)

and (34) will be given.

∂P ∗mjt

∂Ât
=

∂P ∗mjt
∂LPmjt

· ∂LPmjt
∂Ât

, (A9)

where

∂P ∗mjt
∂LPmjt

= (P ∗mjt − ĉjt)
(

1−
P ∗mjt − ĉjt

1− ĉjt

)
, (A10)
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∂LPmjt

∂Ât
=
D

uj

∑
s∈Uj

s 6=t

âjs

Âs
ym +

âjt

Â2
t

(b̂∗j − B̂t)IUj
(t)− â∗j b̂jtIUj

(t)

 , (A11)

and IUj
(t) is an indicator function, which is 1 if t ∈ Uj.

∂P ∗mjt

∂Âk
=

∂P ∗mjt
∂LPmjt

· ∂LPmjt
∂Âk

, ∀k 6= t, (A12)

where

∂LPmjt

∂Âk
=
D

uj

[
− âjk
Â2
k

Âtym +
âjk

Â2
k

(b̂∗j − B̂t)− â∗j b̂jk

]
IUj

(k); (A13)

∂P ∗mjt

∂B̂t

=
∂P ∗mjt
∂LPmjt

· ∂LPmjt
∂B̂t

, (A14)

where

∂LPmjt

∂B̂t

= Dâ∗j

(
1− 1

uj
IUj

(t)

)
; (A15)

∂P ∗mjt

∂B̂k

=
∂P ∗mjt
∂LPmjt

· ∂LPmjt
∂B̂k

, ∀k 6= t, (A16)

where

∂LPmjt

∂B̂k

= −Dâ∗j
1

uj
IUj

(k); (A17)

∂2P ∗mjt

∂B̂t∂B̂k

=
∂2P ∗mjt

∂LPmjt∂B̂k

∂LPmjt

∂B̂t

, ∀k, (A18)

where

∂2P ∗mjt

∂LPmjt∂B̂k

=
∂P ∗mjt

∂B̂k

− 2
P ∗mjt − ĉjt

1− ĉjt
∂P ∗mjt

∂B̂k

. (A19)

All other second derivatives of P ∗mjt with respect to LPmjt and one of these variables

B̂h, B̂t, Âk, Âh, Ât, âjk, âjh, âjt, b̂jk, b̂jh, b̂jt are analogous, and can be obtained by

substituting B̂k with the appropriate variable in (A19). The other derivatives entering

in Equations (27), (28), (33) and (34) are

∂2P ∗mjt

∂B̂t∂Âk
=

∂2P ∗mjt

∂LPmjt∂Âk

∂LPmjt

∂B̂t

−
∂P ∗mjt
∂LPmjt

D

uj

âjk

Â2
k

(
1− 1

uj
IUj

(t)

)
IUj

(k), ∀k, (A20)
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∂2P ∗mjt

∂B̂k∂B̂h

=
∂2P ∗mjt

∂LPmjt∂B̂h

∂LPmjt

∂B̂k

, ∀k 6= t, ∀h, (A21)

∂2P ∗mjt

∂B̂k∂Âh
=

∂2P ∗mjt

∂LPmjt∂Âh

∂LPmjt

∂B̂k

+
∂P ∗mjt
∂LPmjt

D

u2j

âjh

Â2
h

IUj
(k)IUj

(h), ∀k 6= t, ∀h, (A22)

∂2P ∗mjt

∂Â2
t

=
∂2P ∗mjt

∂LPmjt∂Ât

∂LPmjt

∂Ât
+

∂P ∗mjt
∂LPmjt

D

uj

[
−2

âjt

Â3
t

(b̂∗j − B̂t) + 2
âjtb̂jt

ujÂ2
t

]
IUj

(t), (A23)

∂2P ∗mjt

∂Ât∂Âk
=

∂2P ∗mjt

∂LPmjt∂Âk

∂LPmjt

∂Ât
+

∂P ∗mjt
∂LPmjt

D

uj[
− âjk
Â2
k

ym +
âjtb̂jk

ujÂ2
t

IUj
(t) +

âjkb̂jt

ujÂ2
k

IUj
(t)

]
IUj

(k), ∀k 6= t, (A24)

∂2P ∗mjt

∂Ât∂B̂t

=
∂2P ∗mjt

∂LPmjt∂B̂t

∂LPmjt

∂Ât
+

∂P ∗mjt
∂LPmjt

D

uj

âjt

Â2
t

(
1

uj
− 1

)
IUj

(t), (A25)

∂2P ∗mjt

∂Ât∂B̂k

=
∂2P ∗mjt

∂LPmjt∂B̂k

∂LPmjt

∂Ât
+

∂P ∗mjt
∂LPmjt

D

u2j

âjt

Â2
t

IUj
(t)IUj

(k), ∀k 6= t, (A26)

∂2P ∗mjt

∂Â2
k

=
∂2P ∗mjt

∂LPmjt∂Âk

∂LPmjt

∂Âk
+

∂P ∗mjt
∂LPmjt

D
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Â3
k

(b̂∗j − B̂t) + 2
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Â2
k

ym +
âjkb̂jt

ujÂ2
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∂Âk∂B̂t

=
∂2P ∗mjt

∂LPmjt∂B̂t

∂LPmjt

∂Âk
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∂Pmjt
∂ĉjt

= 1− Pmjt − ĉjt
1− ĉjt

, (A32)

∂Pmjt
∂âjt

= (Pmjt − ĉjt)
(

1− Pmjt − ĉjt
1− ĉjt

)
D(ym − b̂jt), (A33)
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)
Dâjt, (A34)
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1− ĉjt
∂P ∗mjt

∂B̂k

, (A42)

∂2P ∗mjt

∂B̂k∂âjh
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Âh
IUj

(k)IUj
(h), ∀k 6= t, ∀h 6= k, (A52)

∂2P ∗mjt
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∂Âk
+

∂P ∗mjt
∂LPmjt

D

uj

(
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The derivatives of the synthetic discrimination parameters with respect to the item

parameter obtained from separate calibration can be found as follows:

∂â∗j
∂âjt

=
1

uj

 1

Ât
IUj
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∑
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Â2
s
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Appendix B. Proof of the Correspondence Between the MM-M Method for

Two Forms and the Mean-Mean Method.

When T = 2 the estimator of the equating coefficient A2 with the MM-M method

is given by

Â2 =

∑
j∈J2 âj2∑
j∈J2 â

∗
j

=

∑
j∈J2 âj2∑

j∈J1∩J2
âj1+âj2

1+Â2
+
∑

j∈J2\J1
âj2

Â2

, (A61)

from which we obtain

Â2

∑
j∈J1∩J2

âj1 + âj2

1 + Â2

+ Â2

∑
j∈J2\J1

âj2

Â2

=
∑

j∈J1∩J2

âj2 +
∑

j∈J2\J1

âj2, (A62)

and

Â2

1 + Â2

∑
j∈J1∩J2

âj1 + âj2 =
∑

j∈J1∩J2

âj2. (A63)

We then obtain

Â2

∑
j∈J1∩J2

âj1 =
∑

j∈J1∩J2

âj2. (A64)

The estimator of the equating coefficient A2 is then equal to

Â2 =

∑
j∈J1∩J2 âj2∑
j∈J1∩J2 âj1

, (A65)

that corresponds to the mean-mean estimator of the equating coefficient A for two

forms.
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Appendix C. Proof of the Symmetry Property of MIRF and MTRF

methods.

In order to convert item parameters on the scale of Form r, the equating

coefficients are transformed as follows:

Â′t =
Ât

Âr
and B̂′t =

B̂t − B̂r

Âr
, for t = 1, . . . , T,

so that Â′r = 1 and B̂′r = 0. If Ât is replaced with Â′t and B̂t is replaced with B̂′t in

Equation (22), it is simple to verify that â∗jt and b̂∗jt do not vary after this substitution.

Consequently, Equations (17) and (29) are invariant with respect to changes of the base

form, thus proving the symmetry property.

Appendix D. Variability of Estimated Abilities.

The following equation gives the conversion of estimated abilities from the scale of

Form t to the scale of the base form

θ∗ = θtAt +Bt.

The estimated ability θ̂t can be transformed using the estimated equating coefficients

θ̂∗ = θ̂tÂt + B̂t.

The variance of θ̂∗ given θ̂t is

var(θ̂∗|θ̂t) = θ̂2t var(Ât) + var(B̂t) + 2θ̂tcov(Ât, B̂t),

while the conditional expected value is

E(θ̂∗|θ̂t) = θ̂tE(Ât) + E(B̂t) = θ̂t(At + o(1)) +Bt + o(1),
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provided that the estimators Ât and B̂t are consistent. So, the variance of θ̂∗ is

var(θ̂∗) = E{var(θ̂∗|θ̂t)}+ var{E(θ̂∗|θ̂t)}

= var(Ât) + var(B̂t) + var(θ̂t)A
2
t + o(1),

where E(θt) and var(θt) are assumed to be 0 and 1 respectively, as usual with the

marginal maximum likelihood estimation method. Hence, if the reliability of θ̂t is

ρ(θ̂t) =
var(θt)

var(θ̂t)
=

1

var(θ̂t)
, (A66)

the reliability of θ̂∗ is

ρ(θ̂∗) =
var(θ∗)

var(θ̂∗)
' var(θt)A

2
t

var(Ât) + var(B̂t) + var(θ̂t)A2
t

=
A2
t

var(Ât) + var(B̂t) + var(θ̂t)A2
t

.

(A67)

The reliability of θ̂∗ is then always greater than the reliability of θ̂t, due to variability of

the estimated equating coefficients. These reliabilities can be estimated by substituting

the true values with their estimates in (A66) and (A67). An estimate of var(θ̂t) is

1 + ŝe2(θ̂t), where ŝe(θ̂t) is the estimated standard error of θ̂t.

Another quantity of interest is the standard error of θ̂∗, which can be obtained as

follows:

se(θ̂∗) = {var(θ̂∗)− var(θ∗)}1/2 ' {var(Ât) + var(B̂t) + se2(θ̂t)A
2
t}1/2.
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FIGURES 44

Figure 1.
Ability levels and linkage plan for the simulation study.

0 20 40 60 80 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

months

θ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●



FIGURES 45

Figure 2.
Comparison of the estimates of the equating coefficients obtained with the various methods.
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Figure 3.
Comparison of the standard deviations of the equating coefficients obtained with the various methods.
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Figure 4.
Comparison of estimates of the equating coefficient A with the weighted bisector method.
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Figure 5.
Comparison of standard deviations of the equating coefficient A with the weighted bisector method.
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Figure 6.
Variability of equating coefficients due to the selection of common items.
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TABLES 51

Table 1.
Absolute difference between mean estimates and true values of the equating coefficients for the multiple
equating methods.

coefficient value MM-GM MM-M MIRF MTRF

A
mean 0.0045 0.0030 0.0018 0.0020
max 0.0094 0.0068 0.0055 0.0072

B
mean 0.0026 0.0029 0.0016 0.0085
max 0.0088 0.0095 0.0044 0.0196



TABLES 52

Table 2.
Absolute difference between mean standard errors and standard deviations of the equating coefficients
for the multiple equating methods.

coefficient value MM-GM MM-M MIRF MTRF

A
mean 0.0024 0.0023 0.0014 0.0016
max 0.0068 0.0056 0.0039 0.0043

B
mean 0.0020 0.0023 0.0013 0.0029
max 0.0063 0.0070 0.0054 0.0089



TABLES 53

Table 3.
Standard deviations of standard errors for the multiple equating methods.

coefficient value MM-GM MM-M MIRF MTRF

A
min 0.0023 0.0021 0.0023 0.0022
mean 0.0053 0.0045 0.0048 0.0060
max 0.0080 0.0064 0.0067 0.0094

B
min 0.0022 0.0023 0.0012 0.0012
mean 0.0046 0.0045 0.0026 0.0032
max 0.0122 0.0151 0.0037 0.0059


