
From LZ77 to the Run-Length Encoded
Burrows-Wheeler Transform, and Back
Alberto Policriti1,2 and Nicola Prezza∗3

1 University of Udine, Department of Informatics, Mathematics, and Physics,
Italy
alberto.policriti@uniud.it

2 Institute of Applied Genomics, Udine, Italy
3 Technical University of Denmark, DTU Compute

npre@dtu.dk

Abstract
The Lempel-Ziv factorization (LZ77) and the Run-Length encoded Burrows-Wheeler Trans-

form (RLBWT) are two important tools in text compression and indexing, being their sizes z and
r closely related to the amount of text self-repetitiveness. In this paper we consider the problem
of converting the two representations into each other within a working space proportional to the
input and the output. Let n be the text length. We show that RLBWT can be converted to
LZ77 in O(n log r) time and O(r) words of working space. Conversely, we provide an algorithm
to convert LZ77 to RLBWT in O

(
n(log r + log z)

)
time and O(r + z) words of working space.

Note that r and z can be constant if the text is highly repetitive, and our algorithms can operate
with (up to) exponentially less space than naive solutions based on full decompression.

1998 ACM Subject Classification E.1 DATA STRUCTURES

Keywords and phrases Lempel-Ziv, Burrows-Wheeler transform, compressed computation, re-
petitive text collections

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.19

1 Introduction

The field of compressed computation—i.e. computation on compressed representations of
the data without first fully decompressing it—is lately receiving much attention due to the
ever-growing rate at which data is accumulating in archives such as the web or genomic
databases. Being able to operate directly on the compressed data can make an enormous
difference, considering that repetitive collections, such as sets of same-species genomes or
software repositories, can be compressed at rates that often exceed 1000x. In such cases, this
set of techniques makes it possible to perform most of the computation directly in primary
memory and enables the possibility of manipulating huge datasets even on resource-limited
machines.

Central in the field of compressed computation are compressed data structures such
as compressed full-text indexes, geometry (e.g. 2D range search), trees, graphs. The
compression of these structures (in particular those designed for unstructured data) is based
on a set of techniques which include entropy compression, Lempel-Ziv parsings [16, 17]
(LZ77/LZ78), grammar compression [6], and the Burrows-Wheeler transform [4] (BWT).

∗ Part of this work was done while the author was a PhD student at the University of Udine, Italy. Work
supported by the Danish Research Council (DFF-4005-00267)

© Alberto Policriti and Nicola Prezza;
licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Editors: Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 19; pp. 19:1–19:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 From LZ77 to the Run-Length BWT, and Back

Grammar compression, Run-Length encoding of the BWT [13,14] (RLBWT), and LZ77 have
been shown superior in the task of compressing highly-repetitive data and, as a consequence,
much research is lately focusing on these three techniques.

In this paper we address a central point in compressed computation: can we convert
between different compressed representations of a text while using an amount of working
space proportional to the input/output (i.e. sizes of the compressed files)? Being able to
perform such task would, for instance, open the possibility of converting between compressed
data structures (e.g. self-indexes) based on different compressors, all within compressed
working space.

It is not the fist time that this problem has been addressed. In [12] the author shows
how to convert the LZ77 encoding of a text into a grammar-based encoding, while in [1, 2]
the opposite direction (though pointing to LZ78 instead of LZ77) is considered. In [15] the
authors consider the conversions between LZ78 and run-length encoding of the text. Note
that LZ77 and run-length encoding of the BWT are much more powerful than LZ78 and
run-length encoding of the text, respectively, so methods addressing conversion between
LZ77 and RLBWT would be of much higher interest. In this work we show how to efficiently
solve this problem in space proportional to the sizes of these two compressed representations.
See Basics section for a formal definition of RLBWT (T) and LZ77(T) as a list of r pairs
and z triples, respectively. Let RLBWT (T)→ LZ77(T) denote the computation of the list
LZ77(T) using as input the list RLBWT (T) (analogously for the opposite direction). The
following results are illustrated below:

(1) We can compute RLBWT (T)→ LZ77(T) in O(n log r) time and O(r) words of working
space

(2) We can compute LZ77(T)→ RLBWT (T) in O
(
n(log r+log z)

)
time and O(r+z) words

of working space

Result (1) is based on our own recent work [10] and requires space proportional to the
input only as output is streamed to disk. Result (2) requires space proportional to the input
plus the output, since data structures based on both compressors are used in main memory.
In order to achieve result (2), we show how we can (locally) decompress LZ77(T) while
incrementally building a run-length BWT data structure of the reversed text. Extracting
text from LZ77 is a computationally expensive task as it requires a time proportional to the
parse height h per extracted character [8] (with h as large as n, in the worst case). The key
ingredient of our solution is to use the run-length BWT data structure itself to efficiently
extract text from LZ77(T).

2 Basics

We assume that our text T is of the form T = T ′# ∈ Σn, with T ′ ∈ (Σ \ {#})n−1. Character
is lexicographically smaller than all elements in Σ and plays the role of both BWT and
LZ77 terminators.

The Burrows-Wheeler Transform [4] BWT (T) is a permutation of T defined as follows.
Sort all cyclic permutations of T in a conceptual matrix M ∈ Σn×n. BWT (T) is the last
column of M . With F and L we will denote the first and last column of M , respectively,
and we will say F-positions and L-positions to refer to positions on these two columns. On
compressible texts, BWT (T) exhibits some remarkable properties that permit to boost
compression. In particular, it can be shown [13] that repetitions in T generate equal-letter

A. Policriti and N. Prezza 19:3

runs in BWT (T). We can efficiently represent this transform as the list of pairs

RLBWT (T) = 〈λi, ci〉i=1,...,rT

where λi > 0 is the length of the maximal i-th ci-run, ci ∈ Σ. Equivalently, RLBWT (T) is
the shortest list of pairs 〈λi, ci〉i=1,...,rT

satisfying BWT (T) = cλ1
1 cλ2

2 . . . c
λrT
rT . Let ←−T be the

reverse of T . To simplify notation we define r = max{rT , r←−T } (in practical cases rT ≈ r←−T
holds [3], and this definition simplifies notation).

I Example 1. Let T = abcabbcaabcabcabbc#. Then, BWT(T) = ccccc#aaabbaaabbbbb
and RLBWT(T) = 〈5,c〉〈1,#〉〈3,a〉〈2,b〉〈3,a〉〈5,b〉. The Burrows-Wheeler transform has
r = 6 equal-letter runs.

With RLBWT+(T) we denote a run-length encoded BWT data structure on the text T ,
taking O(r) words of space and supporting insert, rank, select, and access operation on
the string B = BWT (T). These operations are defined as follows:

insert(c,i), where c ∈ Σ and i < n, turns B into B[0, . . . , i− 1]cB[i, . . . , n− 1]
rank(c,i) returns the number of characters equal to c in B[0, . . . , i− 1]
select(c,i) returns the position j such that B[c] = c and rank(c,j) = i

access(i) returns B[i]

Using these operations, functions RLBWT.LF (i) and RLBWT.LF (j) (mapping L-
positions to F-positions and vice versa) and function extend (turning RLBWT+(T) into
RLBWT+(aT) for some a ∈ Σ) can be supported in O(log r) time. We leave to the next
sections details concerning the particular implementation of this data structure. With
RLBWT.LF k(i) we denote the application of function LF k times starting from L-position
i.

We recall that BWT (←−T) can be built online with an algorithm that reads T -characters
left-to-right and inserts them in a dynamic string data structure [5, 7]. Briefly, letting a ∈ Σ,
the algorithm is based on the idea of backward-searching the extended reversed text←−Ta in the
BWT index for ←−T . This operation leads to the F-position l where ←−Ta should appear among
all sorted ←−T ’s suffixes. At this point, it is sufficient to insert # at position l in BWT (←−T)
and replace the old # with a to obtain BWT (←−Ta).

The LZ77 parsing [16] (or factorization) of a text T is the sequence of phrases (or factors)

LZ77(T) = 〈πi, λi, ci〉i=1,...,z

where πi ∈ {0, . . . , n− 1} ∪ {⊥} and ⊥ stands for “undefined”, λi ∈ {0, . . . , n− 2}, ci ∈ Σ,
and:
1. T = ω1c1 . . . ωzcz, with ωi = ε if λi = 0 and ωi = T [πi, . . . , πi + λi − 1] otherwise.
2. For any i = 1, . . . , z, the string ωi is the longest occurring at least twice in ω1c1 . . . ωi.

I Example 2. Let T = abcabbcaabcabcabbc#. The LZ77 factorization of the text is
a|b|c|abb|caa|bcabc|abbc#|. This factorization can be compactly represented as the list
of triples LZ77(T) = 〈⊥,0,a〉〈⊥,0,b〉〈⊥,0,c〉〈0,2,b〉〈2,2,a〉〈1,4,c〉〈3,4,#〉. The number
of phrases is z = 7.

3 From RLBWT to LZ77

Our algorithm to compute RLBWT (T)→ LZ77(T) is based on the result [10]: an algorithm
to compute—in O(r) words of working space and O(n log r) time—LZ77(T) using T as input.

CPM 2017

19:4 From LZ77 to the Run-Length BWT, and Back

The data structure at the core of this result is a dynamic run-length compressed string; we
recall the bounds of such structure as we will use it several times in the rest of the paper:

I Theorem 3. [9, 10] Let T ∈ Σn and let r̄ be the number of equal-letter runs in T . There
exists a data structure taking O(r̄) words of space and supporting rank, select, access,
and insert operations on T in O(log r̄) time.

The algorithm described in [10] works in two steps, during the first of which builds
RLBWT+(←−T) by inserting left-to-right T -characters in a dynamic RLBWT represented
with the data structure of Theorem 3—using the BWT construction procedure sketched in
the previous section. In the second step, the procedure scans T once more left-to-right while
searching (reversed) LZ77 phrases in RLBWT+(←−T). At the same time we store, for each
BWT equal-letter run, the two most external (i.e. leftmost and rightmost in the run) text
positions seen up to the current position; the key property proved in [10] is that this sampling
is sufficient to locate LZ77 phrase boundaries and sources. LZ77 phrases are outputted in text
order, therefore they can be directly streamed to output. The total size of the sampling of
text positions never exceeds 2r. From Theorem 3, all operations on RLBWT+(←−T) (insert,
LF-mapping, access) are supported in O(log r) time and the structure takes O(r) words of
space. The claimed space/time bounds of the algorithm easily follow.

Note that, using the algorithm described in [10], we can only perform the conversion
RLBWT+(←−T) → LZ77(T). Our full procedure to achieve conversion RLBWT (T) →
LZ77(T) consists of the following three steps:
1. convert RLBWT (T) to RLBWT+(T), i.e. add support for rank/select/access queries

on RLBWT (T);
2. compute RLBWT+(←−T) using RLBWT+(T);
3. run the algorithm described in [10] and compute LZ77(T) using RLBWT+(←−T).

Let RLBWT (T) = 〈λi, ci〉i=1,...,r (see the previous section). Step 1 can be performed by
just inserting characters cλ1

1 cλ2
2 . . . cλr

r (in this order) in a dynamic run-length encoded string.
Step 2 is performed by extracting characters T [0], T [1], . . . , T [n − 1] from RLBWT+(T)
and inserting them (in this order) in a dynamic RLBWT data structure with the BWT
construction algorithm sketched in the Section (2). Since this algorithm builds the RLBWT

of the reversed text, the final result is RLBWT+(←−T). We can state our first result:

I Theorem 4. Conversion RLBWT (T) → LZ77(T) can be performed in O(n log r) time
and O(r) words of working space.

Proof. We use the dynamic RLBWT structure of Theorem 3 to implement components
RLBWT+(T) and RLBWT+(←−T). Step 1 requires n insert operations in RLBWT+(T),
and terminates therefore in O(n log r) time. Since the string we are building contains rT
runs, this step uses O(r) words of working space. Step 2 calls n extend and FL queries on
dynamic RLBWTs. extend requires a constant number of rank and insert operations [5].
FL function requires just an access and a rank on the F column and a select on the L
column. From Theorem 3, all these operations are supported in O(log r) time, so also step
2 terminates in O(n log r) time. Recall that r is defined to be the maximum between the
number of runs in BWT (T) and BWT (←−T). Since in this step we are building RLBWT+(←−T)
using RLBWT+(T), the overall space is bounded by O(r) words. Finally, step 3 terminates
in O(n log r) time while using O(r) words of space [10]. The claimed bounds for our algorithm
to compute RLBWT (T)→ LZ77(T) follow. J

A. Policriti and N. Prezza 19:5

4 From LZ77 to RLBWT

Our strategy to convert LZ77(T) to RLBWT (T) consists of the following steps:

1. extract T [0], T [1], . . . , T [n−1] from LZ77(T) and add them (one by one) in RLBWT+(←−T)
(note: decompression is local. We discard T [i] after inserting it in RLBWT+(←−T));

2. convert RLBWT+(←−T) to RLBWT+(T);
3. extract equal-letter runs from RLBWT+(T) and stream RLBWT (T) to the output.

Step 2 is analogous to step 2 discussed in the previous section. Step 3 requires reading
characters RLBWT+(T)[0], ..., RLBWT+(T)[n−1] (access queries on RLBWT+(T)) and
keeping in memory a character storing last run’s head and a counter keeping track of last
run’s length. Whenever we open a new run, we stream last run’s head and length to the
output.

The problematic step is the first. As mentioned in the introduction, extracting a character
from LZ77(T) requires to follow a chain of character copies. In the worst case, the length h
of this chain—also called the parse height (see [8] for a formal definition)—can be as large
as n (even though in the average case h is small, see [8] for an experimental evaluation).
Our observation is that, since we are building RLBWT+(←−T), we can use this component
to extract text from LZ77(T) without following the chain of LZ77-character copies: while
decoding factor 〈πv, λv, cv〉, we convert text position πv to its corresponding RLBWT position
j = RLBWT.LFπv (0) and extract λv characters by performing λv further LF queries from
position j. Conceptually, this task could be achieved by directly performing πv LF queries
on the RLBWT starting from L-position 0. This is clearly not efficient as it would result in
a quadratic-time strategy. In the next section we show how to compute RLBWT.LFπv (0)
in just O(log z) time.

4.1 Dynamic functions
Considering that RLBWT+(←−T) is built incrementally, we need a data structure to encode a
function Z : {π1, ..., πz} → {0, ..., n− 1} mapping those text positions that are the source of
some LZ77 phrase to their corresponding RLBWT positions. Moreover, the data structure
must be dynamic, that is it must support the following three operations (see below the list
for a description of how these operations will be used):

map: Z(i). Compute the image of i
expand: Z.expand(j). Set Z(i) to Z(i) + 1 for every i such that Z(i) ≥ j
assign: Z(i)← j. Call Z.expand(j) and set Z(i) to j

To keep the notation simple and light, we use the same symbol Z for the function as
well as for the data structure representing it. We say that Z(i) is defined if, for some j, we
executed an assign operation Z(i) ← j at some previous stage of the computation. For
technical reasons that will be clear later, we restrict our attention to the case where we execute
assign operations Z(i)← j for increasing values of i, i.e. if Z(i1)← j1, . . . ,Z(iq)← jq is
the sequence (in temporal order) of the calls to assign on Z, then i1 < · · · < iq. This will
be the case in our algorithm and, in particular, i1, . . . , iq will be the sorted non-null phrases
sources π1, . . . , πz. Finally, we assume that Z(i) is always called when Z(i) has already been
defined—again, this will be the case in our algorithm.

Intuitively, Z.expand(j) will be used when we insert T [i] at position j in the partial
RLBWT+(←−T) and j is not associated with any phrase source (i.e. i 6= πv for all v = 1, . . . , z).

CPM 2017

19:6 From LZ77 to the Run-Length BWT, and Back

When we insert T [i] at position j in the partial RLBWT+(←−T) and i = πv for some
v = 1, . . . , z (possibly more than one), Z(i)← j will be used.

The existence and associated query-costs of the data structure Z are proved in the
following lemma.

I Lemma 5. Letting z be the number of phrases in the LZ77 parsing of T , there exists a data
structure taking O(z) words of space and supporting map, expand, and assign operations on
Z : {π1, ..., πz} → {0, ..., n− 1} in O(log z) time

Proof. First of all notice that, since LZ77(T) is our input, we know beforehand the domain
D = {π | 〈π, λ, c〉 ∈ LZ77(T) ∧π 6= ⊥} of Z. We can therefore map the domain to rank space
and restrict our attention to functions Z ′ : {0, ..., d− 1} → {0, ..., n− 1}, with d = |D| ≤ z.
To compute Z(i) we map text position 0 ≤ i < n to a rank 0 ≤ i′ < d by binary-searching a
precomputed array containing the sorted values of D and return Z ′(i′). Similarly, Z(i)← j

is implemented by executing Z ′(i′)← j (with i′ defined as above), and Z.expand(j) simply
as Z ′.expand(j).

We use a dynamic gap-encoded bitvector C marking (by setting a bit) those positions
j such that j = Z(i) for some i. A dynamic gap-encoded bitvector with b bits set can
easily be implemented using a red-black tree such that it takes O(b) words of space and
supports insert, rank, select, and access operations in O(log b) time; see [10] for such
a reduction. Upon initialization of Z, C is empty. Let k be the number of bits set in C

at some step of the computation. We can furthermore restrict our attention to surjective
functions Z ′′ : {0, ..., d−1} → {0, ..., k−1} as follows. Z ′(i′) (map) returns C.select1(Z ′′(i′)).
The assign operation Z ′(i′) ← j requires the insert operation C.insert(1, j) followed
by the execution of Z ′′(i′) ← C.rank1(j). Operation Z ′.expand(j) is implemented with
C.insert(0, j).

To conclude, since we restrict our attention to the case where—when calling Z(i)← j—
argument i is greater than all i′ such that Z(i′) is defined, we will execute assign operations
Z ′′(i′)← j′′ for increasing values of i′ = 0, 1, . . . , d−1. In particular, at each assign Z ′′(i′)←
j′′, i′ = k will be the current domain size. We therefore focus on a new operation, append,
denoted as Z ′′.append(j′′) and whose effect is Z ′′(k)← j′′. We are left with the problem of
finding a data structure for a dynamic permutation Z ′′ : {0, ..., k − 1} → {0, ..., k − 1} with
support for map and append operations. Note that both domain and codomain size (k) are
incremented by one after every append operation.

I Example 6. Let k = 5 and Z ′′ be the permutation 〈3, 1, 0, 4, 2〉. After Z ′′.append(2), k
increases to 6 and Z ′′ turns into the permutation 〈4, 1, 0, 5, 3, 2〉. Note that Z ′′.append(j′′)
has the following effect on the permutation: all numbers larger than or equal to j′′ are
incremented by one, and j′′ is appended at the end of the permutation.

To implement the dynamic permutation Z ′′, we use a red-black tree T . We associate to
each internal tree node x a counter storing the number of leaves contained in the subtree
rooted in x. Let m be the size of the tree. The tree supports two operations:

T .insert(j). Insert a new leaf at position j, i.e. the new leaf will be the j-th leaf to be
visited in the in-order traversal of the tree. This operation can be implemented using
subtree-size counters to guide the insertion. After the leaf has been inserted, we need
to re-balance the tree (if necessary) and update at most O(logm) subtree-size counters.
The procedure returns (a pointer to) the tree leaf x just inserted. Overall, T .insert(j)
takes O(logm) time

A. Policriti and N. Prezza 19:7

T .locate(x). Take as input a leaf in the red-black tree and return the (0-based) rank
of the leaf among all leaves in the in-order traversal of the tree. T .locate(x) requires
climbing the tree from x to the root and use subtree-size counters to retrieve the desired
value, and therefore runs in O(logm) time.

At this point, the dynamic permutation Z ′′ is implemented using the tree described above
and a vector N of red-black tree leaves supporting append operations (i.e. insert at the end
of the vector). N can be implemented with a simple vector of words with initial capacity 1.
Every time we need to add an element beyond the capacity of N , we re-allocate 2|N | words
for the array. N supports therefore constant-time access and amortized constant-time append
operations. Starting with empty T and N , we implement operations on Z ′′ as follows:

Z ′′.map(i) returns T .locate(N [i])
Z ′′.append(j) is implemented by calling N.append(T .insert(j))

Taking into account all components used to implement our original dynamic function Z,
we get the bounds of our lemma. J

4.2 The algorithm
The steps of our algorithm to compute RLBWT+(←−T) from LZ77(T) are the following:

1. sort D = {π | 〈π, λ, c〉 ∈ LZ77(T) ∧ π 6= ⊥};
2. process 〈πv, λv, cv〉v=1,...,z from the first to last triple as follows. When processing
〈πv, λv, cv〉:
a. use our dynamic function Z to convert text position πv to RLBWT position j′ = Z(πv)
b. extract λv characters from RLBWT starting from position j′ by using the LF function;

at the same time, extend RLBWT with the extracted characters.
c. when inserting a character at position j of the RLBWT, if j corresponds to some text

position i ∈ D, then update Z accordingly by setting Z(i)← j. If, instead, j does not
correspond to any text position in D, execute Z.expand(j).

Our algorithm is outlined below as Algorithm 1. Note that the pseudocode describes all 3
steps reported at the beginning of Section 4 (steps 2 and 3 are implicit in Line 26). Follows
a detailed description of the pseudocode and a result stating its complexity.

In Lines 1-5 we initialize all structures and variables. In order: we compute and sort set
D of phrase sources, we initialize current text position i (i is the position of the character
to be read), we initialize an empty RLBWT data structure (we will build RLBWT+(←−T)
online), and we create an empty dynamic function data structure Z. In Line 6 we enter the
main loop iterating over LZ77 factors. If the current phrase’s source is not empty (i.e. if
the phrase copies a previous portion of the text), we need to extract λv characters from the
RLBWT. First, in Line 8 we retrieve the RLBWT position j′ corresponding to text position
πv with a map query on Z. Note that, if πv 6= ⊥, then i > πv and therefore Z(πv) is defined
(see next). We are ready to extract characters from RLBWT. For λv times, we repeat the
following procedure (Lines 10-19). We read the l-th character from the source of the v-th
phrase (Line 10) and insert it in the RLBWT (Line 11). Importantly, the extend operation
at Line 11 returns the RLBWT position j at which the new character is inserted; RLBWT
position j correspond to text position i. We now have to check if i is the source of some
LZ77 phrase. If this is the case (Line 12), then we link text position i to RLBWT position
j by calling a assign query on Z (Line 13). If, on the other hand, i is not the source of

CPM 2017

19:8 From LZ77 to the Run-Length BWT, and Back

any phrase, then we call a expand query on Z on the codomain element j. Note that, after
the extend query at Line 11, RLBWT positions after the j-th are shifted by one. If j′ is
one of such positions, then we increment it (Line 17). Finally, we increment text position i
(Line 19). At this point, we finished copying characters from the v-th phrase’s source (or
we did not do anything if the v-th phrase consists of only one character). We therefore
extend the RLBWT with the v-th trailing character (Line 20), and (as done before) associate
text position i to RLBWT position j if i is the source of some phrase (Lines 21-24). We
conclude the main loop by incrementing the current position i on the text (Line 25). Once
all characters have been extracted from LZ77, RLBWT is a run-length BWT structure on←−
T . At Line 26 we convert it to RLBWT+(T) (see previous section) and return it as a series
of pairs 〈λv, cv〉v=1,...,r.

Algorithm 1: lz77_to_rlbwt(〈πv, λv, cv〉v=1,...,z)
input :LZ77 factorization LZ77(T) = 〈πv, λv, cv〉v=1,...,z of a text T
output :RLBWT representation 〈λv, cv〉v=1,...,r of T

1 D ← {π | 〈π, λ, c〉 ∈ LZ77(T) ∧ π 6= ⊥}; /* Phrase sources */
2 sort(D); /* Sort phrase sources */
3 i← 0; /* Current position on T */
4 RLBWT ← ε; /* Init empty RLBWT of reversed text */
5 Z ← ∅; /* Init empty dynamic function structure */

6 for v = 1, . . . , z do
7 if πv 6= ⊥ then
8 j′ ← Z(πv); /* Map text position to RLBWT position */

9 for l = 1, . . . , λv do
10 c← RLBWT [j′]; /* read char from source */
11 j ← RLBWT.extend(c); /* left-extend reverse text’s RLBWT */

12 if i ∈ D then
13 Z(i)← j; /* j is the image of i */
14 else
15 Z.expand(j); /* j does not have counter-image */

16 if j ≤ j′ then
17 j′ ← j′ + 1; /* new char falls before j′ */

18 j′ ← RLBWT.LF (j′);
19 i← i+ 1; /* Advance text position */

20 j ← RLBWT.extend(cv); /* Extend with trailing character */

21 if i ∈ D then
22 Z(i)← j;
23 else
24 Z.expand(j);

25 i← i+ 1; /* Advance text position */

26 return reverse(RLBWT); /* Build and return RLBWT (T) */

A. Policriti and N. Prezza 19:9

I Theorem 7. Algorithm 1 converts LZ77(T)→ RLBWT (T) in O(n(log r + log z)) time
and O(r + z) words of working space

Proof. Sorting setD takesO(z log z) ⊆ O(n log z) time. Overall, we performO(z) map/assign
and n expand queries on Z. All these operations take globally O(n log z) time. We use
the structure of Theorem 3 to implement RLBWT+(T) and RLBWT+(←−T). We perform
n access, extend, and LF queries on RLBWT+(←−T). This takes overall O(n log r) time.
Finally, inverting RLBWT+(←−T) at Line 26 takes O(n log r) time and O(r) words of space
(see previous section). We keep in memory the following structures: D, Z, RLBWT+(←−T),
and RLBWT+(T). The bounds of our theorem easily follow. J

5 Conclusions

In this paper we presented space-efficient algorithms converting between two compressed file
representations—the run-length Burrows-Wheeler transform (RLBWT) and the Lempel-Ziv
77 parsing (LZ77)—using a working space proportional to the input and the output. Both
representations can be significantly (up to exponentially) smaller than the text; our solutions
are therefore particularly useful in those cases in which the text does not fit in main memory
but its compressed representation does. Another application of the results discussed in this
paper is the optimal-space construction of compressed self-indexes based on these compression
techniques (e.g. [3]) taking as input the RLBWT/LZ77 compressed file.

We point out two possible developments of our ideas. First of all, our algorithms rely
heavily on dynamic data structures. On the experimental side, it has been shown (see,
e.g., [11]) that algorithms based on compressed dynamic strings can be hundreds of times
slower than others not making use of dynamism (despite offering very similar theoretical
guarantees). This is due to factors ranging from cache misses to memory fragmentation;
dynamic structures inherently incur into these problems as they need to perform a large
number of memory allocations and de-allocations. A possible strategy for overcoming these
difficulties could be to build the RLBWT by merging two static RLBWTs while using a
working space proportional to the output size. A second improvement over our results
concerns theoretical running times. We note that our algorithms perform a number of
steps proportional to the size n of the text. Considering that the compressed file could be
exponentially smaller than the text, it is natural to ask whether it is possible to perform the
same tasks in a time proportional to r + z. This seems to be a much more difficult goal due
to the intrinsic differences among the two compressors—one is based on suffix sorting, while
the other on replacement of repetitions with pointers.

References
1 Hideo Bannai, Paweł Gawrychowski, Shunsuke Inenaga, and Masayuki Takeda. Converting

SLP to LZ78 in almost Linear Time. In Combinatorial Pattern Matching, pages 38–49.
Springer, 2013.

2 Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Efficient LZ78 factorization of
grammar compressed text. In String Processing and Information Retrieval, pages 86–98.
Springer, 2012.

3 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot.
Composite repetition-aware data structures. In Proc. CPM, pages 26–39, 2015.

4 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
1994.

CPM 2017

19:10 From LZ77 to the Run-Length BWT, and Back

5 Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko Sadakane. Compressed
indexes for dynamic text collections. ACM Transactions on Algorithms (TALG), 3(2):21,
2007.

6 Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai,
and Abhi Shelat. The smallest grammar problem. Information Theory, IEEE Transactions
on, 51(7):2554–2576, 2005.

7 Wing-Kai Hon, Tak-Wah Lam, Kunihiko Sadakane, Wing-Kin Sung, and Siu-Ming Yiu. A
space and time efficient algorithm for constructing compressed suffix arrays. Algorithmica,
48(1):23–36, 2007.

8 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theoretical Computer Science, 483:115–133, 2013.

9 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17(3):281–308,
2010.

10 Alberto Policriti and Nicola Prezza. Computing LZ77 in Run-Compressed Space. In Data
Compression Conference (DCC), 2016. IEEE, 2016.

11 Nicola Prezza. A Framework of Dynamic Data Structures for String Processing. arXiv
preprint arXiv:1701.07238, 2017.

12 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-
based compression. Theoretical Computer Science, 302(1):211–222, 2003.

13 Jouni Sirén et al. Compressed full-text indexes for highly repetitive collections. PhD thesis,
Helsingin yliopisto, 2012.

14 Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In String Processing and
Information Retrieval, pages 164–175. Springer, 2009.

15 Yuya Tamakoshi, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and Masanori Takeda.
From run length encoding to LZ78 and back again. In Data Compression Conference
(DCC), 2013, pages 143–152. IEEE, 2013.

16 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on information theory, 23(3):337–343, 1977.

17 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. Information Theory, IEEE Transactions on, 24(5):530–536, 1978.

	Introduction
	Basics
	From RLBWT to LZ77
	From LZ77 to RLBWT
	Dynamic functions
	The algorithm

	Conclusions

