Proceedings of Pain Science in Motion Colloquium—3rd edition. May 31st—June 2nd, University of Genoa-Campus of Savona, Italy

Giving insight in pain research of tomorrow!

C. Paul van Wilgen, Marco Testa

The research findings and the pain models of tomorrow can be found in the research questions of today. Therefore, 7 years ago, within the Pain in Motion group, the idea was launched to start a podium dedicated to PhD researchers. In contrast to traditional congresses, the idea was to present starting or ongoing research. This resulted in the first Pain Science in Motion Colloquium.

Researchers were invited not to present existing data and finished research, but primarily to present starting research projects with their underlying theories and designs. This gave the chance for young researchers to present on an international stage early in their career, to meet fellow PhD pain researchers and discuss and share their research. Moreover, young researchers have the opportunity to encounter 6 senior researchers that are invited to give a keynote lecture in the Pain Science in Motion Congress, but in particular to discuss with them the “meet the expert” sessions.

After Brussels (2015) and Stockholm (2017), the III edition of the Pain Science in Motion colloquium will be held in 2019 in Savona, Italy, at the Campus of the University of Genova. This year, thanks to a multidisciplinary group of PhD researchers coming from all over the world, the program offers 8 oral sessions with 40 presentations and 10 thematic poster sessions with 50 posters with short interactive presentations.

The keynote experts invited will be Prof. Fabrizio Benedetti (University of Torino, Italy), Prof. Rob Smets (University of Maastricht, Netherlands), Jessica van Oosterwijk (University of Gent/ Antwerpen, Belgium), Prof. Alberto Gallace (University of Milano Biocca, Italy), Prof. Deborah Falla (University of Birmingham, UK).

We hope that the reading of the short abstracts of the selected oral presentations can be inspiring for future young researchers who will increase the quality of the forthcoming editions of the Pain Science in Motion Colloquium.

More information about the present colloquium, the 2019 version and future editions can be found at the congress website: www.PSM2019.org or at the website of Pain in Motion: http://www.paininmotion.be

On behalf of the Scientific Committee
Prof Dr. C. Paul van Wilgen
VU Brussels, Transcare pain (www.transcare.nl) Pain in Motion
Chair of the Scientific Committee
Prof Dr. Marco Testa
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa—Campus of Savona
Chair of the Organizing Committee
Member of the Scientific Committee

offset analgesia in patients with migraine and healthy controls

Tibor Szikszay*a, Wacław Adamczyk*a, Kerstin Lue dtke*b, c
*a Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Luebeck, Germany, bDepartment of Kinesiotherapy and Special Methods in Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland, cThe Jerzy Kukuczka Academy of Physical Education, Katowice, Poland

Migraine is a common and debilitating disease, but the pathophysiology is poorly understood. Dysfunctional endogenous pain modulation is discussed as a contributing factor to the development and/or maintenance of the disease. Offset analgesia (OA) is a frequently used paradigm to identify endogenous pain modulation. The aim of this study is to assess OA in patients with migraine and healthy controls. Twenty-one patients with migraine and 21 healthy age and gender matched healthy controls were recruited. In both groups, selected tests from the quantitative sensory testing protocol were assessed. OA was performed using a three-stimulus technique paradigm on both sides of the forehead and the forearm. An individualized temperature of 50/100 for 5 seconds (T1), + 1°C for 5 seconds (T2), and again the individualized temperature for 20 seconds (T3) were applied. In addition, 3 constant temperature stimuli of T1 were applied for 30 seconds. The constant and offset trials as well as the examined body regions were performed in a randomized order. Results and conclusions: The project is in its final phase. To date, 15 patients with migraines (examined interictally) and 15 healthy controls have been included.
Body perception in fibromyalgic patients: a mixed-method research study

Antonello Vicosoconti*, Deborah Luzzi*, Michela Barisone®, Alvisa Palese*, Marco Testa*
*Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Campus of Savona, Savona, Italy, 1Asi 2 Sistema Sanitario Regionale Liguria, 2Department of Medical and Biological Sciences, University of Udine.

Preliminary observations report “phantom sensations” of swelling hands and feet in fibromyalgic patients [1], similar to those described in neuropathic conditions. Patients may not refer this kind of “bizarre” perceptual disturbances, if not directly questioned, for fear of being considered mentally disturbed. Moreover, a specific test or validated questionnaires are not available thus, the only way to explore this phenomenon remain the patient’s history itself.

Methods: A mixed-method study will be conducted on a convenience sample of 100 adult patients. A series of questionnaires will be administered to describe the clinical features of the sample. Patients reporting at least 2 affirmative answers on customized survey investigating body perception disturbances will be considered eligible for qualitative inquiry. Subjective experience of own’s body perception will be explored through semi-structured interviews: answers will be audio-recorded and transcribed verbatim to perform the descriptive phenomenological analysis.

Results: In mixed-method research design quantitative and qualitative data collection are sequential: findings emerging will represent the integration of both datasets. A better knowledge about body perception may be a starting point to obtain prevalence data on perceptual dysfunctions in fibromyalgic patients, and to study a possible correlation between these phenomena and clinical or demographic features.

Using a humanoid robot to distract children with cancer undergoing painful procedures: a pilot randomized controlled trial

Emma Rhel†a,b, Kelly Ickmans*a,b,c,d, Tine Vervoort*, Anneleen Matthijs*a,b,c,d, Roseline Paua,b
†Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Belgium. 2Pain in Motion international research group, www.paininmotion.be, 3Department of Physical Medicine and Physiotherapy, Universitair Ziekenhuis Brussel, Belgium, 4Research Foundation—Flanders (FWO), Brussels, Belgium, 5Department of Experimental-Clinical and Health Psychology, Ghent University, Belgium.

Cancer survivors are more likely to develop chronic pain (1), which may not only arise from treatments but also from children’s pain memory (2). Humanoid robot distraction has proven to be effective in reducing healthy children’s pain and distress during vaccinations (3). Whether these benefits generalize to children with cancer and pain memories, needs to be examined. Children (8–12 years) with a portal catheter and their parents will be recruited. Baseline assessments include child’s anticipated pain and fear, self-efficacy, attention control, attention bias, energy-balanced behavior, pressure hyperalgesia, child’s and parent’s catastrophizing, parental emotional and behavioral responses. After randomization to control group (usual care) or intervention group (robot distraction), child’s experienced self-reported pain and fear and parent’s pain catastrophizing and emotional

The role of pain cognitions in healthcare utilization in patients undergoing surgery for lumbar radiculopathy: a randomized controlled trial

Eva Huysmans*, Koen Putman*, Lisa Goudman*, Iris Coppetters*, Kelly Ickmans*, Ronald Buyf*
*Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy (KIMA), Vrije Universiteit Brussel, Brussels, Belgium, 1Department of Public Health (GEWE), Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium, 2Department of Biostatistics and Medical Informatics, Vrije Universiteit Brussel, Brussels, Belgium

First, to explore the relationship between pain cognitions and healthcare use (HCU) of patients scheduled for lumbar radiculopathy surgery, second, to investigate the mediating role of pain cognitions in the mechanism behind HCU post-surgery.

Methods: Eligible patients (n = 120) are randomized to a perioperative pain neuroscience education targeting pain cognitions) group or control group, HCU, Tampa Scale for Kinesiophobia (TSK), Pain Catastrophizing Scale (PCS) and Pain Vigilance and Awareness Questionnaire (PVAQ) are assessed at baseline and until 2 years post-surgery. Baseline associations are investigated univariately. Therapy effects and causal interactions are investigated multivariately. Preliminary baseline findings (n = 100) show that, patients scoring above the PCS cut-off use more types of analgesics (P = 0.017). High numbers of neurosurgeon visits are associated with worse catastrophizing (P = 0.069) and especially rumination (P = 0.025). Strong opioid use is also related to higher PCS rumination scores (P = 0.076). Using analgesics in general is related to higher PVAQ attention to pain subscale scores (P = 0.094).

Conclusions: Preliminary baseline findings underscore the possible association between pain cognitions and HCU. However, based on these explorative analyses no strong conclusions can be made. Further analyses will provide insight in the clinical relevance of these relationships and possible causal interactions between pain cognitions and HCU.