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Controlling resource access in Directed Bigraphs

Davide Grohmann1, Marino Miculan2

1 grohmann@dimi.uniud.it, 2 miculan@dimi.uniud.it
Department of Mathematics and Computer Science, University of Udine, Italy

Abstract: We study directed bigraph with negative ports, a bigraphical framework
for representing models for distributed, concurrent and ubiquitous computing. With
respect to previous versions, we add the possibility that components may govern the
access to resources, like (web) servers control requests from clients. This frame-
work encompasses many common computational aspects, such as name or channel
creation, references, client/server connections, localities, etc, still allowing to derive
systematically labelled transition systems whose bisimilarities are congruences.

In order to illustrate the expressivity of this framework, we give the encodings of
client/server communications through firewalls, of (compositional) Petri nets and of
chemical reactions.

Keywords: Bigraphs, reactive systems, Petri nets, graph-based approaches to service-
oriented applications.

1 Introduction

Bigraphical reactive systems (BRSs) are an emerging graphical framework proposed by Milner
and others [Mil01, Mil06] as a unifying theory of process models for distributed, concurrent and
ubiquitous computing. A bigraphical reactive system consists of a category of bigraphs (usually
generated over a given signature of controls) and a set of reaction rules. Bigraphs can be seen
as representations of the possible configurations of the system, and the reaction rules specify
how these configuration can evolve, i.e., the reaction relation between bigraphs. Often, bigraphs
represent terms up-to structural congruence and reaction rules represent term rewrite rules.

Many process calculi have successfully represented as bigraphical reactive systems: λ -calculus
[Mil07], CCS [Mil06], π-calculus [BS06, JM04], Mobile Ambients [Jen08], Homer [BH06], Fu-
sion [GM07c], Petri nets [LM06], and context-aware systems [BDE+06]. The advantage of using
bigraphical reactive systems is that they provide powerful general results for deriving a labelled
transition system automatically from the reaction rules, via the so-called IPO construction. No-
tably, the bisimulation on this transition system is always a congruence; thus, bigraphical reactive
systems provide general tools for compositional reasoning about concurrent, distributed systems.

Bigraphs are the key structures supporting these results. A bigraph is a set of nodes (the
controls), endowed with two independent graph structures, the place graph and the link graph
(Figure 1). The place graph is a tree over the nodes, representing the spatial arrangement (i.e.,
nesting) of the various components of the system. The link graph represents the communication
connections between the components, possibly traversing the place structure. A bigraph may
be “not ground”, in the sense that it may have one or more “holes”, or sites (the gray boxes) to
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Figure 1: Example of pure bigraph (from [Mil06]).

be instantiated; these holes are specific leaves of the place graph, where other bigraphs can be
grafted, respecting the connection links. This operation gives rise to a notion of composition
between bigraphs, and hence to a categorical structure.

In Milner’s “pure bigraphs” [Mil06], connections are represented by hyper-arcs between nodes
(Figure 1). This model has been successfully used to represent many calculi, such as CCS,
and (with a small variant) λ -calculus, π-calculus. Nevertheless, other calculi, such as Fusion
[PV98], seem to escape this framework. Aiming to a more expressive framework, in previous
work [GM07b, GM07c], we have introduced directed bigraphs. Pure and directed bigraphs differ
only on the link structure: in the directed variant, we distinguish “edges” from “connections”.
Intuitively, edges represent (delocalized) resources, or knowledge tokens, which can be accessed
by controls. Arcs are arrows from ports of controls to edges (possibly through names on the
interfaces of bigraphs); moreover, in the version considered in the present paper, we allow arcs
to point to other control’s ports (Figure 2). Outward ports on a control represent the capability of
the control to access to (external) resources; insted, inward ports represent the capability of the
control to “stop” or “govern” other node’s requests. The presence of both kinds of capabilities is
common in distributed scenarios, such as client/server communications, firewalls, web services
etc; for instance a system may ask to access to some data, but this attempt may be blocked,
checked and possibly redirected by a guarding mechanism. Moreover, controls with inward ports
can represent localized resources, that is, resources with a position within the place hierarchy;
this cannot be represented easily by edges, which do not appear in the place graph.

Notably, these extended have RPO and IPO constructions, there is a notion of normal form, and
a sound a complete axiomatization can be given. Therefore, these bigraphs can be conveniently
used for building wide reaction systems from which we can synthesize labelled transition systems
via the IPO construction, and whose bisimilarity is still a congruence.
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Figure 2: An example of directed bigraph, with negative ports.

Due to lack of space, in this paper we can only skim over these theoretical results; we pre-
fer to focus on some important applications of this framework. In Section 2 we give the basic
definitions about directed bigraphs; constructions of RPOs and IPOs are in Appendix A. In Sec-
tions 3 we present the elementary bigraphs, which are enough to generate all possible bigraphs;
a notion of normal form and a complete axiomatization are in Appendix B. Section 4 is devoted
to example applications, highlighting the expressive power of this framework: we show how
distributed services and protocols can be represented, by describing a three-tier architecture with
a firewall; we will present an encoding of Petri nets, and finally we apply this framework to the
representation of chemical reactions. Conclusions and direction for future work are in Section 6.

2 Directed bigraphs over polarized signatures

In this section we introduce directed bigraphs, with inward (“negative”) ports on controls, ex-
tending [GM07b]. Following previous developments about pure and directed bigraphs, we work
in supported monoidal precategories; we refer to [JM04, §3] for an introduction.

A polarized signature is a signature of controls, which may have two kind of ports: nega-
tive and positive. Let K be a polarized signature; we denote with arn,arp : K → N the arity
functions of the negative and positive ports, respectively. Thus, for k ∈K , the arity function is
ar(k) , (arn(k),arp(k)). A control k is positive if it has only positive ports (i.e., arn(k) = 0); it
is negative if it has only negative ports (i.e., arp(k) = 0).

Definition 1 A polarized interface X is a pair of sets of names X = (X−,X+); the two compo-
nents are called downward and upward interfaces, respectively.
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A directed link graph A : X → Y is A = (V,E,ctrl, link) where X ,Y are the inner and outer
interfaces, V is the set of nodes, E is the set of edges, ctrl : V →K is the control map, and
link : Pnt(A)→ Lnk(A) is the link map, where ports, points and links of A are defined as follows:

Prt n(A), ∑
v∈V

arn(ctrl(v)) Prt p(A), ∑
v∈V

arp(ctrl(v)) Prt(A),Prt n(A)∪Prt p(A)

Pnt(A) , X+]Y−]Prt p(A) Lnk(A) , X−]Y +]Prt n(A)]E

The link map cannot connect downward and upward names of the same interface, i.e., the fol-
lowing condition must hold: (link(X+)∩X−)∪ (link(Y−)∩Y +) = /0; moreover the link map
cannot connect positive and negative ports of the same node.

Directed link graphs are graphically depicted much like ordinary link graphs, with the differ-
ence that edges are explicit objects, and not hyper-arcs connecting points and names; points and
names are associated to links (that is edges or negative ports) or other names by (simple, non
hyper) directed arcs. An example are given in Figure 2. This notation aims to make explicit the
“resource request flow”: positive ports and names in the interfaces can be associated either to
internal or to external resources. In the first case, positive ports and names are connected to an
edge or a negative port; these names are “inward” because they offer to the context the access
to an internal resource. In the second case, the positive ports and names are connected to an
“outward” name, which is waiting to be plugged by the context into a resource.

In the following, by “signature”, “interface” and “link graphs” we will intend “polarized sig-
nature”, “polarized interface” and “directed link graphs” respectively, unless otherwise noted.

Definition 2 The precategory of directed link graphs has polarized interfaces as objects, and
directed link graphs as morphisms.

Given two directed link graphs Ai = (Vi,Ei,ctrli, linki) : Xi→ Xi+1 (i = 0,1), the composition
A1 ◦A0 : X0→ X2 is defined when the two link graphs have disjoint nodes and edges. In this case,
A1 ◦A0 , (V,E,ctrl, link), where V , V0]V1, ctrl , ctrl0] ctrl1, E , E0]E1 and

link : X+
0 ]X−2 ]Prt p(A0)]Prt p(A1)→ X−0 ]X+

2 ]E ]Prt n(A0)]Prt n(A1)

is defined as follows:

link(p) ,


link0(p) if p ∈ X+

0 ]Prt p(A0) and link0(p) ∈ X−0 ]E0]Prt n(A0)
link1(x) if p ∈ X+

0 ]Prt p(A0) and link0(p) = x ∈ X+
1

link1(p) if p ∈ X−2 ]Prt p(A1) and link1(p) ∈ X+
2 ]E1]Prt n(A1)

link0(x) if p ∈ X−2 ]Prt p(A1) and link1(p) = x ∈ X−1 .

The identity link graph of X is idX , ( /0, /0, /0K , idX− ∪ idX+) : X → X .

It is easy to check that composition is associative, and that given a link graph A : X → Y , the
compositions A◦ idX and idY ◦A are defined and equal to A.

Definition 1 forbids connections between names of the same interface in order to avoid unde-
fined link maps after compositions. Similarly, links between ports on the same node are forbid-
den, because these graphs cannot be obtained by composing an “unlinked” node and a context.
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It is easy to see that the precategory ′DLG is self-dual, that is ′DLG ∼= ′DLGop.
The notions of openness, closeness, leanness, etc. defined in [GM07b] can be easily extended

to the new framework, considering negative ports as a new kind of resources. Moreover, the
definition of tensor product can be derived extending to negative ports the one given in [GM07b],

Finally, we can define the (extended) directed bigraphs as the composition of standard place
graphs (see [JM04, §7] for definitions) and directed link graphs.

Definition 3 A directed bigraph with signature K is G = (V,E,ctrl, prnt, link) : I→ J, where
I = 〈m,X〉 and J = 〈n,Y 〉 are its inner and outer interfaces respectively. An interface is composed
by a width (a finite ordinal) and by a pair of finite sets of names. V and E are the sets of nodes and
edges respectively, and prnt, ctrl and link are the parent, control and link maps, such that GP ,
(V,ctrl, prnt) : m→ n is a place graph and GL , (V,E,ctrl, link) : X→Y is a directed link graph.

We denote G as combination of GP and GL by G = 〈GP,GL〉. In this notation, a place graph
and a (directed) link graph can be put together iff they have the same sets of nodes.

Definition 4 The precategory ′DBIG of directed bigraph with signature K has interfaces I =
〈m,X〉 as objects and directed bigraphs G = 〈GP,GL〉 : I → J as morphisms. If H : J → K is
another directed bigraph with sets of nodes and edges disjoint from the respectively ones of G,
then their composition is defined by composing their components, i.e.:

H ◦G , 〈HP ◦GP,HL ◦GL〉 : I→ K.

The identity directed bigraph of I = 〈m,X〉 is 〈idm, idX〉 : I→ I.

Analogously, the tensor product of two bigraphs can be defined tensoring their components.
It is easy to check that for every signature K , the precategory ′DBIG is wide monoidal; the

origin is ε = 〈0,( /0, /0)〉 and the interface 〈n,X〉 has width n. Hence, ′DBIG can be used for
applying the theory of wide reaction systems and wide transition systems as developed by Jensen
and Milner; [JM04, §4, §5]. To this end, we need to show that ′DBIG has RPOs and IPOs. Since
place graphs are as usual, it suffices to show that directed link graphs have RPOs and IPOs.

Theorem 1 If a pair ~A of link graphs has a bound ~D, there exists an RPO (~B,B) for ~A to ~D.

As a consequence, ′DLG has IPOs too. See Appendix A for the direct constructions for RPOs
and IPOs in directed bigraphs with negative ports, extending the construction given in [GM07b].

Actually, often we do not want to distinguish bigraphs differing only on the identity of nodes
and edges. To this end, we introduce the category DBIG of abstract directed bigraphs, which
is constructed from ′DBIG forgetting the identity of nodes and edges and any idle edge. More
precisely, abstract bigraphs are bigraphs taken up-to an equivalence m (see [JM04] for details).

Definition 5 Two concrete directed bigraphs G and H are lean-support equivalent, written
G m H, if there exists an iso between their nodes and edges sets after removing any idle edges.

The category DBIG of abstract directed bigraphs has the same objects as ′DBIG, and its arrows
are lean-support equivalence classes of directed bigraphs.
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3 Algebra and Axiomatization

As for directed bigraphs, also in the case of polarized signature it is possible to give a sound and
complete axiomatization. In this section, due to lack of space, we describe only the main classes
of bigraphs and the elementary bigraphs which can generate all bigraphs according to a well-
defined normal form. See Appendix B for the definition of normal form and the normalization
theorem. We refer the reader to [GM07a] for an accurate presentation of the notation used here.

First, we introduce two distinct and complementary subclasses of bigraphs: wirings and dis-
crete bigraphs. that are strongly used in defining the normal form and the axiomatization.

Definition 6 A wiring is a bigraph whose interfaces have zero width (and hence has no nodes).
The wirings ω are generated by the composition or tensor product of three elements: substitu-
tions σ : ( /0,X+)→ ( /0,Y +), fusions δ : (Y−, /0)→ (X−, /0), and closures HN

x
y : ( /0,y)→ (x, /0).

Definition 7 An interface is prime if its width is 1. Often we abbreviate a prime interface
〈1,(X−,X+)〉 with 〈(X−,X+)〉, in particular 1 = 〈( /0, /0)〉. A prime bigraph P : 〈m,(Y−,Y +)〉 →
〈(X−,X+)〉 has a prime outer interface and the names in Y +,X− are linked to negative ports of P.

An important prime bigraph is mergem : m→ 1, it has no nodes and maps m sites to one root.

Definition 8 A bigraph is discrete if it has no edges and every open link has exactly one point.

The discreteness is well-behaved, and preserved by composition and tensor. It is easy to see
that discrete bigraphs form a monoidal sub-precategory of ′DBIG.

Definition 9 Let K be any non atomic control with arity (k−,k+), let~x−,~x+ be two sequences
of distinct names, and let ~Y +,~Y− be two sequences of (possibly empty) sets of distinct names,
such that: |~x−|+ |~x+|= k+ and |~Y−|= |~Y +|= k−. For a K-node v, we define the discrete ion

K(v, l) : 〈(~x−,~Y +)〉 → 〈(~Y−,~x+)〉

as the bigraph with exactly a node v and l is a pair of maps: an iso map lp :~x−∪~x+→ Prt p(v)
describing the linking among positive ports and names in ~x− or ~x+, and another iso map ln :
~Y−∪~Y +→ Prt n(v) describing the linking among negative ports and sets of upward inner names
(in~Y +) and sets of downward outer names (in~Y−). We omit v when it can be understood.

For a prime discrete bigraph P with outer names in (Z−,Z+), we define a discrete molecule as:

(K(l)⊗ id(Z−\~x−,Z+\~Y +))◦P.

If K is atomic, we define the discrete atom, as an ion without sites:

K(l) : (~x−,~Y +)→ 〈(~Y−,~x+)〉.

An arbitrary (non-discrete) ion, molecule or atom is formed by the composition of ω ⊗ id1
with a discrete one. Often we omit . . .⊗ idI in the compositions, when there is no ambiguity.

Figure 3 shows the algebraic signature, that is a set of elementary bigraphs able to define any
other bigraph using composition and tensor product. In Appendix C we list the definition of the
sharing products that are the intuitive generalization of the ones defined in [GM07a].
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Figure 3: Elementary Bigraphs over polarized signatures.

4 Applications

4.1 Three-tier interaction with access control

As mentioned before, directed bigraphs over polarized signatures allow to represent resource
access control, by means of negative ports. This is particularly useful for representing access
policies between systems, possibly in different locations; the edges can represent access tokens
(or keys), which are global (although known possibly to only some controls). An example and
quite common scenario is a client-server connection, where the access to the server is subject to
authentication; after the request has been accepted, the server can route it to a back-end service
(e.g., a DBMS); see Figure 4. The security policy is implemented by the firewall control, which
allows a query to reach the server only if the client knows the correct key (rule AUTH). The
server routes the query to the correct back-end service using rules like ROUTE; finally the back-
end service provides the data (rule GET). An example computation is shown in Figure 5.

4.2 Compositional Petri Nets

In this section we recall briefly what a Petri net is and we give an encoding of these nets as
directed bigraphs; to this end it is preferable to work with sorted links, as in [LM06]. Notice that
this encoding yields naturally a notion of composition between Petri nets.

Definition 10 A place transition net (P/T net) is a 5-tuple (P,T,F,Mi) (P∩T = /0), where:

• P is the set of places; T is the set of transitions;

• F is the multiset of arcs, linking places to transitions and vice versa: F , 〈(P×T )∪ (T ×
P), f : (P×T )∪(T ×P)→N〉, with the constrain ∀t ∈ T. ∃p,q∈ P. (p, t)∈ F∧(t,q)∈ F ;

• M : P→ N is a marking, giving to each place a number of tokens, a place p is marked by
M if M(p) > 0 and unmarked if M(p) = 0; Mi is the initial marking.
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Figure 4: Signatures and rules for three-tier architecture services through a firewall.

u u u u

Figure 5: An example of client-server interaction through a firewall.

We define •t , {p | (p, t) ∈ F} to be the pre-multiset of the transition t, and t• , {p | (t, p) ∈ F}
the post-multiset of the transition t.

A transition t is enabled by a marking M if M marks every place in •t; a transition fires from a
marking M to a marking M′, written M t→M′, iff for all p ∈ P : M′(p) = M(p)− ](•p)+ ](p•),
where ](•p) and ](p•) are the number of occurrences of p in •t, t•, respectively.

Notice that we allow multiple connections between a place and a transition, that is analogous
to assign a weight to an arc representing the token that have to be consumed to fire the reaction.

Definition 11 Let N = (P,T,F,M) and N′ = (P′,T ′,F ′,M′) be two P/T nets, we say that N and
N′ are isomorphic, if there exist two bijections α : P→ P′ and β : T → T ′, such that:

• (p, t) ∈ F iff (α(p),β (t)) ∈ F ′;

• (t, p) ∈ F iff (β (t),α(p)) ∈ F ′;

• M = M′ ◦α .

We recall, as defined in [LM06], the definition of link sorting.
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Figure 6: Signature for the encoding of compositional Petri nets.

Definition 12 A link sorting is a triple Σ = (Θ,K ,Φ), where Φ is a set of sorts, and K
is a sorted signature (that is, a signature enriched with a sort to ports of each control). Fur-
thermore, each name in the interface (X−,X+) is given a sort, so the interfaces take the form
({x−1 : θ

−
1 , . . . ,x−n : θ−n },{x+

1 : θ
+
1 , . . . ,x+

m : θ+
m }). Finally, Φ is a rule on such enriched bigraphs,

that is preserved by identities, composition and tensor product.
We denote the precategory and category of, respectively, concrete and abstract Σ-sorted di-

rected bigraphs with ′DBIG(Σ) and DBIG(Σ).

Definition 13 A positive-negative sorting Σ = (Θ,K ,Φ) has sorts: Θ = {θ1, . . . ,θn}. The
signature K assigns sorts to ports arbitrarily. The unique Φ rule is: a point and a link (except of
edges) can be connected if they are equally sorted.

In order to define an encoding for compositional Petri nets, we introduce a positive-negative
sorting Σpetri, having sort Θpetri , {i,o} and sorted signature:

Kpetri , {token : (0,0), place : ({1 : i,1 : o},0), trans(h,k) : (0,{h : i,k : o})} where h,k > 0

where the controls token and trans are both atomic, while the control place is passive. Finally, the
Φ rule ensures that the linking is allowed only among ports having the same sort. An example of
use of this sorted signature is shown in Figure 6. The encoding function J·K is defined as follows:

J(P,T,F,M)K= merge(|P|+|T |) ◦
(

id|P|� id(P×{i,o}, /0)�
(
�

t∈T
trans(|•t|, |t•|)(•t×{i}, t•×{o})

))
◦(

∑
p∈P

place(p,i), (p,o)
(p,i), (p,o) ◦ (merge(|M(p)|+1) ◦ (M{(p,i), (p,o)}⊗ (

M(p)

∑
i=0

token)⊗1))

)
.

where, with an abuse of notation, trans(|•t|, |t•|)(•t×{i}, t•×{o}) means that if in the multisets there
are some repetitions of places then the ports of trans are linked to the same downward inner name
(i.e., (p, i) or (p,o)), an alternative definition is to link every port of trans to a different downward
inner name and then (eventually) “equate” these names using fusions.

Proposition 1 Let N,N′ be two P/T nets, N is isomorphic to N′ iff JNK= JN′K up to iso.

We have a different reaction rule for any pair (h,k) associated to the control trans, in Figure 7
we show the reaction rule for the pair (3,2), that is a transition having 3 inputs and 2 outputs.
Moreover, we allow multiple connections between places and transitions, as in Figure 8, and we
can have transitions using some places as inputs and outputs, see Figure 9.
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x:i x:o y:i y:o z:i z:o w:iw:ou:iu:o x:i x:o y:i y:o z:i z:o w:iw:ou:iu:o

Figure 7: Example of reaction rule in the case of 3 input and 2 output places.

x:i x:o y:i y:o z:i z:o x:i x:o y:i y:o z:i z:o

Figure 8: Example of reaction rule in the case of 2 input and 1 output places (with multiple arcs).

Now we can show that the given translation is adequate.

Theorem 2 Let (P,T,F,Mi) be a P/T net, M t→M′ iff J(P,T,F,M)K−→ J(P,T,F,M′)K.

Proof. (⇒) Suppose M t→ M′, so M enable the transition t, then there exists a trans-node in
J(P,T,F,M)K encoding the transition t, and the corresponding place-node of •t contain the nec-
essary tokens to fire the transition (by translation of M), then we can apply the appropriate rule
to perform the reaction reaching the configuration J(P,T,F,M′)K.

(⇐) If J(P,T,F,M)K −→ J(P,T,F,M′)K, there exists a matching of a rule with a sub-bigraph
of J(P,T,F,M)K, in particular the matched nodes have a counter part into the P/T net (P,T,F,M),
so the marking M enables a transition t (corresponding to the trans-node), and then M t→M′.

An interesting future work is to study the bisimulation induced by the IPO LTS over these
compositional Petri nets. We remark however, that this notion of composition is different from
that in Open Petri nets, since in the latter the interfaces express also behavioural properties, while
in the bigraphical encoding the interfaces express resource requests and offerings.

5 Chemical Reactions
A chemical reactions is a process describing the conversions of a chemical compositions. Al-
ways, the chemical changes caused by a reaction involve the motion of electrons in the forming
or breaking of chemical bonds. For example, the octet rule says that atoms tend to gain, lose or
share electrons so as to have eight electrons in their outer electron shell.
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x:i x:o x:i x:o

Figure 9: Example of reaction rule in the case of 1 place used as input and output.
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Figure 10: Example of atom encodings in directed link graphs.

In this section, we give an encoding of atoms into directed link graphs, as shown in Figure 10,
inspired by the well-known Lewis structures. We describe the atoms as nodes, and those nodes
have a number of positive ports equal to the number of valence electrons. Each of these ports
are linked to an electron, represented as a node having a negative port (accepting incoming
connections; for sake of simplicity we identify the node representing the electron with its port,
that is, we do not force all incoming connections to be linked to a precise point of the node).
Moreover, some nodes can have extra ports, that are initially linked to edges, hydrogen and
oxygen can be two examples, the idea is that such a configuration describes the aim of the atom to
“capture” electrons to complete its external shell; e.g. an oxygen atom has two missing electrons,
so it tries to share these two electrons with a pair of hydrogen atoms forming the water molecule.

We apply this model describing the forming and breaking of bonds among atoms, here we deal
with strong bonds, that is covalent and ionic bonds.

Some examples of covalent bonds are shown in Figure 11, the first shows how to hydrogen
atoms can share their electron. The second one is well-know and describes the generation of a
water molecule from two hydrogen atoms and an oxygen one: the oxygen shares two electrons:
one with each hydrogen, in this way it gets the two missing electrons in its external orbit, con-
versely each hydrogen atom completes its orbit sharing an electron with the oxygen. The latter
describes a more complicate situation, where the two carbon atoms (each needing four electron
to complete its orbit) share two electron with the other carbon atom, and the remaining two
missing electrons are provided by a pair of hydrogen.

In Figure 12, we show an example of ionic bond: given an atom of sodium and a chlorine
one, it may happen (by octet rule) that the external electron of sodium is lost by the atom and
“captured” by the chlorine, forming a sodium (positive) ion and a chlorine (negative) ion. These
two ions attract each other by the electrostatic force caused by the electron exchange. Finally the
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Figure 11: Example of covalent bonds among atoms.

ions can be composed to form sodium-chloride molecule, that is the common salt.
An interesting future work concern to represent the weak bonds, i.e. hydrogen bonds and van

der Waals bonds, using the same representation as much as possible.

6 Conclusions

In this paper, we have considered directed bigraphs over polarized signatures, a bigraphical
model for concurrent, distributed system with resources and controls. The main difference with
previous versions of bigraphs is the capability of nodes (i.e., systems) to ask for resource access
(via the “positive ports”) and to control other’s requests, providing access to own resources (via
the negative ports). These bigraphs have RPO and IPO constructions, thus allowing to derive
systematically labelled transition systems from reactive systems, as in [JM03, GM07c]; notably
the bisimilarities induced by these labelled transition systems are always congruences. These
directed bigraphs admit also a notion of normal form, and a complete axiomatization.

We have exhibited the expressive power of this framework, by applying it some interesting
cases: a three-tier interaction between client, server and back-end service through a firewall, the
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Na+Cl→ Na+ +Cl−→ NaCl

Figure 12: Examples of ion bonds among atoms.

Petri nets, and chemical reactions. All these cases are faithfully encoded as directed bigraphs
with polarized signatures (possibly with sorting).

An interesting future work is to develop properly the treatment of web service interactions,
extending the ideas shown in Section 4.1. In particular, we would like to give a bigraphical
semantics of some formal calculus for web services, such as SCC or CC-Pi [BBC+06, BM07].

Another future development is to use this kind of bigraphs as a general framework for systems
biology. Some preliminary experiment about the representation of biochemical reactions, not
shown in this paper due to lack of space, are promising: ions, electrons, chemical links can
be represented as controls and arcs, and the place structure can be fruitfully used to represent
nesting of chemical compounds. It would be interesting to encode in directed bigraphs some
important formalism for systems biology, such as the κ-calculus [DL04]. Along this line, also
the possibility of adding quantitative aspects (i.e., reaction rates) sounds very promising.
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A RPO and IPO constructions

A.1 Construction of relative pushouts and pullbacks

We first give an idea of how the construction works. Suppose D0 : X0 → Z, D1 : X1 → Z is a
bound for a span A0 : W → X0, A1 : W → X1 and we wish to construct the RPO (B0 : X0→ X̂ ,B1 :
X1→ X̂ ,B : X̂ → Z). In the following we will denote a pair (A0,A1) by ~A and the link map of A
simply by A. To form the pair ~B we truncate ~D by removing all the edges, nodes and ports not
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present in ~A. Then in the outer interface of ~B, we create an outer name for each point unlinked
by the truncation: the downward names connected to the same link (name, edge or negative port)
must be “bound together”, i.e. we must consider all the possible ways to associate a downward
name of A0 with one of A1 and vice versa; further we must equate an upward name of A0 with
one of A1 if they are both connected to a point shared between A0 and A1. Formally:

Construction 14 A relative pushout (~B : ~X → X̂ ,B : X̂ → Z), for a pair ~A : W → ~X of link
graphs relative to a bound ~D : ~X → Z, will be built in three stages. Since RPOs are preserved by
isomorphisms, we can assume the components of X0 and X1 disjoint.

nodes and edges If Vi are the nodes of Ai (i = 0,1), then the nodes of Di are VDi = (Vī \Vi)]V2
for some V2. Define the nodes of Bi and B to be VBi , Vī \Vi (i = 0,1) and VB , V2. Edges
Ei and ports Pp

i ,Pn
i of Ai are treated analogously.

interface Construct the shared codomain X̂ = (X̂−, X̂+) of ~B as follows: first we define the
names in each Xi = (X−i ,X+

i ), for i = 0,1, that must be mapped into X̂ = (X̂−, X̂+):

X ′−i , {x ∈ X−i | ∃y ∈ X−ī s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \Eī)] (Pn
i \Pn

ī )}
X ′+i , {x ∈ X+

i | Di(x) ∈ (E2]Pn
2 ]Z+)}.

Let Res , W−] (E0∩E1)] (Pn
0 ∩Pn

1 ). We define for each l ∈ Res the set of names in X ′−i
linked to l:

X ′−i (l) , {x ∈ X ′−i | Ai(x) = l} (i = 0,1).

Now we must “bind together” names connected to the same link, so we create all the
possible pairs between a name in X ′−0 and a name in X ′−1 . Further we must add to X̂− all
the names in X ′−i “not associable” to any name of X ′−ī . Then the set of downward names
of ~B is:

X̂− ,
⋃

l∈Res

X ′−0 (l)×X ′−1 (l)∪ ∑
i∈{0,1}

⋃
e∈(Ei\Eī)](Pn

i \Pn
ī )

X ′−i (e).

Next, on the disjoint sum X ′+0 + X ′+1 , define ∼= to be the smallest equivalence for which
(0,x0)∼= (1,x1) iff there exists p ∈W+] (Pp

0 ∩Pp
1 ) such that A0(p) = x0 and A1(p) = x1.

Then define:

X̂+ , (X ′+0 +X ′+1 )/∼=.

For each x ∈ X ′+i we denote the equivalence class of (i,x) by î,x.
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(W−,W+)

(X−0 ,X+
0 ) (X−1 ,X+

1 )(X̂−, X̂+)

(Ŷ−,Ŷ +)

(Z−,Z+)

A0 A1

B0 B1

C0 C1

D0 D1

C
B

Ĉ

Figure 13: Construction of the unique arrow form the RPO to any other candidate.

links Define the link maps of Bi as follows:

for x ∈ X+
i : Bi(x) ,

{
Di(x) if x ∈ (X+

i \X ′+i )
î,x if x ∈ X ′+i ;

for p ∈ Pp
ī \Pp

i : Bi(p) ,

{
Di(p) if Aī(p) /∈ X+

ī̂̄i,x if Aī(p) = x ∈ X+
ī ;

for x̂ ∈ X̂− : Bi(x̂) ,


x if x̂ = (x,y) and i = 0
y if x̂ = (x,y) and i = 1
x̂ if x̂ ∈ (X̂−∩X−i )
Aī(x̂) if x̂ ∈ (X̂−∩X−ī ).

Finally we define the link map of B:

for x̂ ∈ X̂+ : B(x̂) , Di(x) where x̂ = î,x and x ∈ X+
i ;

for p ∈ Pp
2 ]Z− : B(p) ,


Di(p) if Di(p) ∈ (E2]Pn

2 ]Z+)
Dī(p) if Di(p) ∈ (Eī \Ei)] (Pn

ī \Pn
i )

Di(p) if Dī(p) ∈ (Ei \Eī)] (Pn
i \Pn

ī )
(x,y) if D0(p) = x ∈ X−0 and D1(p) = y ∈ X−1 .

Theorem 3 In ′DLG, whenever a pair ~A of link graphs has a bound ~D, there exists an RPO
(~B,B) for ~A to ~D, and Construction 14 yields such an RPO.

Proof. The proof is in two parts. First we have to check that (~B,B) is an RPO candidate; this is
done by long and tedious calculations. Next, for any other candidate (~C,C), we have to construct
the unique arrow Ĉ such that the diagram (in Figure 13) commutes. This link graph Ĉ can be
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constructed as follows: let be VC the nodes of C, for i = 0,1 the set of nodes of Ci is VCi ,
(Vī \Vi)]V3, where V3 is such that V2 = V3 ]VC; edges ECi and ports PCi of Ci are defined
analogously. Then Ĉ has V3, E3 and P3 as sets of nodes, edges and ports respectively. Its link
map is defined as follows:

for ĵ,x ∈ X̂+ : Ĉ( ĵ,x) , C j(x);

for p ∈ Pp
3 ] Ŷ− : Ĉ(p) ,


Ci(p) if Ci(p) ∈ (E3]Pn

3 ] Ŷ +)
C0(p) if C0(p) ∈ (X̂−∩X−0 )
C1(p) if C1(p) ∈ (X̂−∩X−1 )
(x,y) if C0(p) = x ∈ X−0 and C1(p) = x ∈ X−1

As an immediate consequence, we can calculate RPBs as well.

Corollary 1 In ′DLG, whenever a pair ~D : ~X →W of link graphs has a co-bound ~A : Z→ ~X,
there exists an RPB (~B : X̂ → ~X ,B : Z → X̂) for ~A to ~D, and Construction 14 can be used for
calculating such an RPB.

Proof. Consider the pair ~D : W → ~X , which is in ′DLG since ′DLG is self-dual; this pair has
the bound ~A : ~X → Z, and hence, for Theorem 3, Construction 14 yields an RPO (~C : ~X → X̂ ,C :
X̂ → Z). Then, take ~B , ~C and B , C.

A.2 Construction of idem-relative pushouts

We now proceed to characterise all the IPOs for a given pair ~A : W → ~X of link graphs. The first
step is to establish consistency conditions.

Definition 15 We define four consistency conditions on a pair ~A : W → ~X of link graphs.

CDL0 ctrl0(v) = ctrl1(v) if v ∈V0∩V1;

CDL1 if p ∈ Pp
0 ∩Pp

1 and Ai(p) ∈W−] (E0∩E1)] (Pn
0 ∩Pn

1 ), then Aī(p) = Ai(p);

CDL2 if p2 ∈ Pp
0 ∩Pp

1 and Ai(p2) ∈ (Ei \Eī)] (Pn
i \Pn

ī ), then Aī(p2) = xī for some xī ∈ X+
ī , and

further if Aī(p) = Aī(p2) then p ∈W+ ] (Pp
0 ∩Pp

1 ) and Ai(p) = Ai(p2), or p ∈ (Pp
ī \Pp

i )
and exists xi ∈ X−i such that Ai(xi) = Ai(p2);

CDL3 for each p ∈ Pp
i \Pp

ī such that Ai(p) ∈W− ] (E0 ∩E1)] (Pn
0 ∩Pn

1 ), then exists xī ∈ X−ī
such that Aī(xī) = Ai(p).

Informally, CDL1 says that if a shared point p in Ai is linked to a shared link l, then in Aī the
shared point p must be linked to the same l. CDL2 says that if the link of a shared point p2 in Ai

is closed and unshared, then its link in Aī must be an outer upward name, further any peer p of p2
in Aī must also be its peer in Ai, or if p is not shared, then in Ai there exists an outer downward
name linked to the unshared edge of p2. Finally, CDL3 says that if an unshared point in Ai is
linked to a shared link, then in Aī there is an outer downward name linked to the shared link.
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Proposition 2 If a pair of link graphs ~A has a bound, then the consistency conditions hold.

Now, assuming the consistency conditions of Definition 15, we shall construct a non-empty
family of IPOs for ~A denoted by IPO(~A).

Construction 16 Assume the consistency conditions for the pair ~A : W → ~X of link graphs. We
define ~C : ~X → Y an IPO for ~A as follows:

nodes and edges Define the nodes of Ci to be VCi , Vī \Vi. Edges and ports of Ci are defined
analogously.

interface For i = 0,1 choose any subset L+
i of idle names in X+

i . Define

P̃p
i , {p ∈ Pp

i \Pp
ī | Ai(p) ∈ X+

i and @p′ ∈W+] (Pp
i ∩Pp

ī ) s.t. Ai(p) = Ai(p′)}

and choose Q+
i ⊆ Ai(P̃

p
i ). Let be K+

i = X+
i \ (L

+
i ∪Q+

i ), define K′+i ⊆ K+
i , the names to

be mapped to the codomain Y +. Then we define (for i = 0,1):

X ′−i , {x ∈ X−i | ∃y ∈ X−ī s.t. Ai(x) = Aī(y) or Ai(x) ∈ (Ei \Eī)] (Pn
i \Pn

ī )}
K′+i , {x ∈ K+

i | ∀p ∈W+] (Pp
0 ∩Pp

1 ).Ai(p) = x ∈ X+
i ⇒ Aī(p) ∈ X+

ī }.

As in Construction 14, let Res , W− ] (E0 ∩E1)] (Pn
0 ∩Pn

1 ) we define for each l ∈ Res
the set X ′−i (l) of names linked to l, and define:

Y− ,
⋃

l∈Res

X ′−0 (l)×X ′−1 (l)∪ ∑
i∈{0,1}

⋃
e∈(Ei\Eī)](Pn

i \Pn
ī )

X ′−i (e).

Next, on the disjoint sum K′+0 + K′+1 , define ' to be the smallest equivalence for which
(0,x0)' (1,x1) iff there exists p ∈W+] (Pp

0 ∩Pp
1 ) such that A0(p) = x0 and A1(p) = x1.

Then define:

Y + , (K′+0 +K′+1 )/'.

For each x ∈ K′+i we denote the equivalence class of (i,x) by î,x.

links For i = 0,1, choose two arbitrary functions:

ηi : L+
i → (Eī \Ei)] (Pn

ī \Pn
i );

ξi : Q+
i →{l ∈ (Eī \Ei)] (Pn

ī \Pn
i ) | ∃x ∈ X−ī s.t. Aī(x) = l};

and for each l ∈ Res for which there exists xi ∈ X−i and p ∈ Pp
ī \Pp

i such that Ai(xi) = l
and Aī(p) = l, choose an arbitrary function:

θ
l
i : {p ∈ Pp

ī \Pp
i | Aī(p) = l}→ X ′−i (l).
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Then define the link maps Ci : Xi→ Y as follows:

for x ∈ X+
i : Ci(x) ,



Aī(p) if x ∈ K+
i \K′+i , then

∃p ∈W+](Pp
0 ∩Pp

1 ) s.t. Ai(p) = x
î,x if x ∈ K′+i
ηi(x) if x ∈ L+

i

ξi(x) if x ∈ Q+
i ;

for p ∈ Pp
ī \Pp

i : Ci(p) ,


Aī(p) if Aī(p) ∈ (Eī \Ei)] (Pn

ī \Pn
i )̂̄i,x if Aī(p) = x ∈ X+

ī \Q+
ī

θ l
i (p) if Aī(p) = l ∈ Res

θ e
i (p) if p ∈ P̃p

ī and e = ξī(Aī(p));

for y ∈ Y− : Ci(y) ,


x if x̂ = (x,y) and i = 0
y if x̂ = (x,y) and i = 1
y if y ∈ Y−∩X−i
Aī(y) if y ∈ Y−∩X−ī .

The maps ηi are called elision; because the idle names L+
i in Ai are not exported in the IPO

interface Y , but instead mapped into Ci.
The maps ξi are called inversion; this refers to the fact that in the bound Cī of Aī we can invert

the direction of some link from upward to downward. In this way we can connect a port p of
Pi \Pī to an edge e in Eī \Ei also when there is no shared port, connected to the same name of p,
which is linked to e in Aī.

The maps θ l
i are called random link; this refers to the fact that if a link has more then one

name linked to it, then in the bound it is indifferent to which name a point is linked to, because
the effect of composition is the same.

There is a distinct IPO for each choice of L+
i , Q+

i , ηi, ξi and θ l
i .

Theorem 4 A pair ~C : ~X → Y is an IPO for ~A : W → ~X iff it is generated (up to isomorphism)
by Construction 16.

Proof. (⇒) ~B is an IPO for ~A iff it is the legs of an RPO w.r.t. some bound ~D. So we can
assume w.l.o.g. that ~B is generated by Construction 14. Now apply Construction 16 to create ~C
by choosing~L+, ~Q+, ~η , ~ξ and ~θ l as in ~D. Then ~C coincides with ~B.

(⇐) Consider any ~C generated by Construction 16. Now apply the Construction 14 to yield
an RPO (~B,B) for ~A to ~C. Then ~B coincides with ~C.

B Algebra

Here, we show how derive all bigraphs from the elementary ones by composition and tensor
product. Before giving a formal result, we provide an intuitive explanation of the meaning of
these elementary bigraphs.
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• The first three bigraphs build up all wirings, i.e. all link graphs having no nodes. All sub-
stitutions (fusions, resp.) can be obtained tensoring elementary substitutions My

X (fusions OY
x ,

resp.); the tensor products of singleton substitutions My
x or singleton fusions Ox

y give all renam-
ings. Composition and tensor product of substitutions, fusions and closures give all wirings.

• The next three bigraphs define all placings, i.e. all place graphs having no nodes; for example
mergem : m→ 1, merging m sites in a unique root, are defined as:

merge0 , 1 mergem+1 , merge◦ (id1⊗mergem).

Notice that merge1 = id and merge2 = merge, and that all permutations π are constructed by
composition and tensor product from the place symmetry γ1,1.

• Finally, for expressing any direct bigraph we need to introduce only the discrete ions K(l) :
〈(~x−,~Y +)〉 → 〈(~Y−,~x+)〉. In particular, we can express any discrete atoms as K(l)◦1.

The following proposition shows that every bigraph can be expressed in a normal form, called
discrete diagonal normal form (DDNF). We will use D, Q and N to denote discrete, prime and
discrete bigraphs, and discrete molecules respectively.

Theorem 5 1. A bigraph G on signature K can be expressed uniquely (up to iso) as:

G = (ω⊗ idn)◦D◦ (ω ′⊗ idm) (1)

where D is a discrete bigraph and ω , ω ′ are two wirings satisfying the following conditions:

i. in ω , if two outer downward names are peer, then their target is an edge;

ii. in ω ′ there are no edges, and no two inner upward names are peer.

2. Every discrete bigraph D : 〈n,Z〉→ 〈m,W 〉, may be factored uniquely (up to iso) on the width
m in the following form:

D = α⊗





(Q0 ⊗χout
1,0⊗χout

2,0 ⊗. . . )◦
(χ in

0,1⊗ Q1 ⊗χout
2,1 ⊗. . . )◦

(χ in
0,2⊗χ in

1,2⊗ Q2 ⊗. . . )◦
. . .

( . . .⊗ Qm−3 ⊗χout
m−2,m−3⊗χout

m−1,m−3)◦
( . . .⊗χ in

m−3,m−2⊗ Qm−2 ⊗χout
m−1,m−2)◦

( . . .⊗χ in
m−3,m−1⊗χ in

m−2,m−1⊗ Qm−1)


◦ (π⊗ iddom(~Q))


shortly:

D = α⊗ (χ(Q0, . . . ,Qm−1)◦ (π⊗ iddom(~Q))) (2)

• where α is a renaming;

• π is a permutation;
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• each Qi : 〈hi,(X−i ,X+
i )〉 → 〈(Y−i ,Y +

i )〉 (for i ∈ {0, . . . ,m−1}) is prime and discrete;
• χout

i,l (χ in
i,l resp.) are the identities on the outer (inner resp.) names of Qi at level l ∈

{0, . . . ,m−1}, which are not used by Ql, . . . ,Qi−1 (Qi+1, . . . ,Ql resp.). Formally:

χ
out
i,l , id〈(Y−i \(

⊎i−1
j=l X−j ),Y +

i \(
⊎i−1

j=l X+
j ))〉 for i > l

χ
in
i,l , id〈hi,(X−i \(

⊎l
j=i+1 Y−j ),X+

i \(
⊎l

j=i+1 Y +
j ))〉 for i < l.

3. Every prime and discrete Q, may be factored uniquely (up to iso) in the following form:

Q = (mergen+p⊗ idcodom(~N))◦ (idn⊗χ(N0, . . . ,Np−1))◦ (π⊗ iddom(~N)) (3)

where χ is defined as in 2.

4. Every discrete molecule N, may be factored uniquely (up to iso) in the following form:

N = (K(l)⊗ id(codom(Q)\(~x−,~Y +)))◦Q. (4)

Furthermore, the expression is unique up to iso on the parts and reordering of Ns in Q.

These equations can be used for normalizing any bigraph G as follows; first, we apply equa-
tions (1), (2) to G once, obtaining an expression containing prime discrete bigraphs Q0, . . . ,Qm−1.
These are decomposed further using equations (3), (4) repeatedly: each Qi is decomposed into
an expression containing molecules Ni,0, . . . ,Ni,pi−1, each of which is decomposed in turn into an
ion containing another prime discrete Q′i, j. The last two steps are repeated recursively until the
ions are atoms or have only holes as children. Note that 1 is a special case of Q when n = p = 0.

Notice that if the signature has only positive controls, then all the “Qi layers” can be collapsed
in a unique one, obtaining a normal form that is very similar to the Milner’s DNF (see [Mil06]).

Furthermore, a renaming is discrete but not prime (since it has zero width); this is why the
factorization has such a factor. The uniqueness of that factorization depends on the fact that
prime bigraphs have upward inner names and downward outer names linked to negative ports.

In Table 1 we give a set of axioms which we prove to be sound and complete.
Each of these equations holds only when both sides are defined; in particular, recall that the

tensor product of two bigraphs is defined only if the name sets are disjoint. It is important to
notice that for ions only the renaming axiom is needed (because names are treated positionally).

Theorem 6 Let E0,E1 be two expressions constructed from the elementary bigraphs by com-
position and tensor product. Then, E0 and E1 denote the same bigraph in DBIG if and only if
the equation E0 = E1 can be proved by the axioms in Table 1.

Proof. The proof is similar to that of [JM04, Theorem 10.2]. The “if” direction is simple to
prove, since it requires to check that each axiom is valid. The “only if” direction is in two
steps. First, we prove by induction on the structure of expressions, that the equality between
an expression and its DDNF is derivable from the axioms. Next, since DDNFs are taken up to
iso, we prove that the equality between isomorphic DDNFs is provable from the axioms. This is
proved by showing that the axioms can prove the isomorphisms of the components of a DDNF,
which are ions, prime and discrete bigraphs, and discrete bigraphs.
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Categorical Axioms

A◦ id = A = id ◦A A◦ (B◦C) = (A◦B)◦C

A⊗ idε = A = idε ⊗A A⊗ (B⊗C) = (A⊗B)⊗C

γI,ε = idI γJ,I ◦ γI,J = idI⊗J γI⊗J,K = (γI,K⊗ idJ)◦ (idI⊗ γJ,K)
(A1⊗B1)◦ (A0⊗B0) = (A1 ◦A0)⊗ (B1 ◦B0)
γI,K ◦ (A⊗B) = (B⊗A)◦ γH,J (where A : H→ I,B : J→ K)

Link Axioms

Mx
x = id( /0,x) Ox

x = id(x, /0) HN
x
y ◦My

z = HN
x
z Oz

x ◦HN
x
y = HN

z
y Ox ◦HN

x
y ◦My = idε

Mz
(Y]y) ◦ (id( /0,Y )⊗My

X) = Mz
(Y]X) (id(Y, /0)⊗OX

y )◦O(Y]y)
z = O(X]Y )

z

Place Axioms

merge◦ (1⊗ id1) = id1 merge◦ γ1,1 = merge

merge◦ (merge⊗ id1) = merge◦ (id1⊗merge)

Node Axioms

Let K(l) : 〈(~x−,~Y +)〉 → 〈(~Y−,~x+)〉
(id1⊗α

+⊗ζ
−)◦K(l) = K(l′) with l′ = ((id~x− ∪α

+)◦ lp,((ζ−)op∪ id~Y +)◦ ln)
K(l)◦ (id1⊗α

−⊗ζ
+) = K(l′′) with l′′ = ((α−∪ id~x+)◦ lp,(id~Y− ∪ (ζ +)op)◦ ln)

where α
+ :~x+→~z+,α− :~x−→~z− are renamings and

ζ
− : ~Z−→~Y−,ζ + : ~Z+→~Y + are surjective fusions.

Table 1: Axiomatization for the abstract directed bigraphs.

C Sharing products

Here we remark some variants of the tensor product (presented in [GM07a]), whose allow the
sharing of names. Process calculi often have a parallel product P | Q, that allows the processes
P and Q to share names. In directed bigraphs, this sharing can involve inner downward names
and/or outer upward names, as described by the following definitions.

Definition 17 The outer sharing product (	), inner sharing product (�) and sharing prod-
uct (‖) of two objects X = (X−,X+),Y = (Y−,Y +) and of two link graphs Ai : Xi→ Yi (i = 0,1)
are defined as follows:

(X−,X+)	 (Y−,Y +) , (X−]Y−,X+∪Y +)

(X−,X+)� (Y−,Y +) , (X−∪Y−,X+]Y +)
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A0	A1 , (V0]V1,E0]E1,ctrl0] ctrl1, link0] link1) : X0⊗X1→ Y0	Y1

A0�A1 , (V0]V1,E0]E1,ctrl0] ctrl1, link0] link1) : X0�X1→ Y0⊗Y1

A0 ‖ A1 , (V0]V1,E0]E1,ctrl0] ctrl1, link0] link1) : X0�X1→ Y0	Y1

defined when interfaces are defined and Ai have disjoint node and edge sets.
The outer sharing product, inner sharing product and sharing product of two objects I =

〈m,X〉,J = 〈n,Y 〉 and of two bigraphs Gi : Ii→ Ji (i = 0,1) are defined by extending the corre-
sponding products on their link graphs with the tensor product on widths and place graphs:

〈m,X〉	 〈n,Y 〉, 〈n+m,X 	Y 〉 〈m,X〉� 〈n,Y 〉, 〈n+m,X �Y 〉
G0	G1 , 〈GP

0 ⊗GP
1 ,GL

0 	GL
1〉 : I0⊗ I1→ J0	 J1

G0�G1 , 〈GP
0 ⊗GP

1 ,GL
0 �GL

1〉 : I0� I1→ J0⊗ J1

G0 ‖ G1 , 〈GP
0 ⊗GP

1 ,GL
0 ‖ GL

1〉 : I0� I1→ J0	 J1.

defined when interfaces are defined and Gi have disjoint node and edge sets.

It is simple to verify that 	, � and ‖ are associative, with unit ε .
Another way of constructing a sharing product of two bigraphs G0,G1 is to disjoin the names

of G0 and G1, then take the tensor product of the two bigraphs and finally merge the name again:

Proposition 3 Let G0,G1 be bigraphs with disjoint node and edge sets. Then

G0	G1 = σ(G0⊗ τG1ζ ) G0�G1 = (G0⊗ τG1ζ )δ G0 ‖ G1 = σ(G0⊗ τG1ζ )δ

where the substitution σ and τ are defined in the following way: if zi (i∈ n) are the upward outer
names shared by G0 and G1, and wi are fresh names in bijection with the zi, then τ(zi) = wi and
σ(wi) = σ(zi) = zi (i ∈ n). The substitution δ and ζ are defined in a very similar way, but acting
on the downward inner names.

Definition 18 The prime outer sharing product and prime sharing product of two objects I =
〈m,X〉,J = 〈n,Y 〉 and of two bigraphs Gi : Ii→ Ji (i = 0,1) are defined as follows:

〈m,X〉 & 〈n,Y 〉, 〈1,X 	Y 〉
G0 & G1 , merge(width(J0)+width(J1)) ◦ (G0	G1) : I0⊗ I1→ J0 & J1

G0 | G1 , merge(width(J0)+width(J1)) ◦ (G0 ‖ G1) : I0� I1→ J0 & J1.

defined when interfaces are defined and Gi have disjoint node and edge sets.

It is easy to show that & and | are associative, with unit 1 when applied to prime bigraphs.
Note that for a wiring ω and a prime bigraph P, we have ω & P = ω 	P and ω | P = ω ‖ P,
because in this case these products have the same meaning.

D Directed Bigraphical Reactive and Transition Systems

In order to define reactive systems over directed bigraphs, we need to define how a parametric
rule, a “redex-reactum” pair of bigraphs, can be instantiated. Essentially, in the application of a
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rule, the “holes” in the reactum must be filled with the parameters appearing in the redex. This
relation can be expressed by a function mapping each site of the reactum to a site of the redex.

Definition 19 An instantiation ρ from (width) m to (width) n, written ρ :: m→ n, is determined
by a function ρ̄ : n→ m. For any pair X , this function defines the map ρ : Gr〈m,X〉 → Gr〈n,X〉
as follows. Decompose g : 〈m,X〉 (using the DDNF) into

g = ω ◦χ(Q0, . . . ,Qm−2,qm−1)

where χ is defined as in Theorem 5, and with ω : Y → X , each Qi (i ∈m−1) prime discrete, and
qm−1 ground prime discrete. Then define:

ρ(g) , ω ◦ (χ
‖(S0, . . . ,Sn−2,sn−1)	 id( /0,Y +))

where χ‖ is defined like χ , but it uses ‖ operator instead of ⊗, and |S j| l |Qρ̄( j)| for j ∈ n,
changing the interfaces of Ss accordingly to the order of the composition.

If ρ̄ is injective, surjective or bijective then ρ is said to be affine, total or linear respectively.

Suppose ρ is not linear, the reactum is not defined if the removed or duplicated parts of the
parameter have connections between nodes in two different locations (i.e., connections between
a positive port and a negative one) or have outer accessible local resources (i.e. negative ports).
In fact, the resources cannot be anymore accessible, because the parts containing them are re-
moved; or it is unclear which resources of the copies still remain accessible. So, to use not linear
ρ , a sufficient (but not necessary) condition is that parameters have no connections crossing
boundaries of different locations and have no outer accessible local resources.

If ρ is not affine then it replicates at least one of the factor di. Outer sharing product is used
because copies will share names. Moreover, the outer upward names of S0 . . .Sn−2,sn−1 may
be fewer than Y +, because ρ may be not total, so we add id( /0,Y +) to ρ(g) to ensure that the
composition with ω is defined (here idle names can be generated).

Definition 20 A ground reaction rule is a pair (r,r′), where r and r′ are ground with the same
outer interface. Given a set of ground rules, the reaction relation −→ over agents is the least,
such that Dr −→ Dr′ for each active context D and each ground rule (r,r′).

A parametric reaction rule has a redex R and reactum R′, and takes the form:

(R : I→ J,R′ : I′→ J,ρ)

where I and I′ have widths m and m′ respectively. The third component ρ :: m → m′ is an
instantiation. For any X and discrete d : I⊗X , the parametric rule generates the ground rule:

((R⊗ idX)◦d,(R′⊗ idX)◦ρ(d)).

Definition 21 A directed bigraphical reactive system (DBRS) over the polarized signature K ,
denoted by D(K ,R) is the precategory ′DBIG(K ) equipped with a set R of reaction rules.

Now we can prove the following important result:

Proposition 4 DBRSs are wide reactive systems over a wide monoidal precategory
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This result ensures that DBRSs inherit from the theory of WRSs the definition of transition
system based on IPOs [Mil06].

Definition 22 A transition for a DBRS D(K ,R) is a quadruple (a,L,λ ,a′), written as a L−→λ

a′, where a and a′ are ground bigraphs and there exist a ground reaction rule (r,r′) ∈R and an
active context D such that La = Dr, and λ = width(D)(width(cod(r))) and a′ l Dr′.

A transition is IPO if the (L,D) is an IPO for (a,r).

Definition 23 A directed bigraphical transition system (DBTS) L for D is a pair (I ,T ):

• I is a set of interfaces; the agents of L are the ground bigraphs with outer interfaces in I ;

• T is a set of transitions whose sources and targets are agents of L .

The full (IPO, resp.) transition system consists of all interfaces, with all (IPO, resp.) transitions.

From [Mil06, Theorem 4.6] we have that in any DBRS with the IPO transition system, wide
bisimilarity is a congruence.
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