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Abstract

The assumption of being able to perform infinite precision measurements
does not only lead to undecidability, but it also introduces artifacts in the
mathematical models that do not correspond to observable behaviours of sys-
tems under study. When bounded spatial regions are involved, such issues
can be avoided if arbitrarily small sets of points are not definable in the math-
ematical setting. ε-semantics were introduced in this spirit. In this paper
we investigate the use of ε-semantics deeper, in the context of reachability
analysis of hybrid automata. In particular, we focus on two ε-semantics and
reason about their computability. We then try our approach on biological
model analysis to give evidence about the effectiveness of the methodology.
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1. Introduction

The growing area of Systems Biology requires the development of tech-
niques and formal models suitable for the description of biological systems.
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Often, such class of natural phenomena, can be captured through an ab-
straction process that involves hybrid systems, i.e., systems consisting of
interactions between discrete and continuous components. Hybrid automata
are mathematical models particularly suitable to the description of hybrid
systems. Therefore, the study and the analysis of biological systems can
be reduced to the resolution of reachability problems of hybrid automata.
Unfortunately, due to the undecidability of such problem, there are no algo-
rithms able to compute, in a finite amount of time, the reachability set of
any hybrid automaton [1].

Several techniques tackling the undecidability of the reachability prob-
lem have been proposed in recent years. Many authors working in this field
introduce approximation methodologies for the study of hybrid automata.
Such approximations can be, for instance, performed by using either numeri-
cal calculation [2], symbolic computation [3] or geometrical analysis [4]. The
most important factors to be considered are the quality of the approximation
with respect to the original reachability set and the relationship between the
behaviour of the approximated automaton and that of the modeled system.

ε-Semantics is a class of semantics that can avoid the problem of unde-
cidability of the reachability for hybrid automata with bounded invariants.
They are not meant to be used as approximations of the standard semantics.
On the contrary, they have been introduced to better mimic the behavior
of real systems by adopting some natural-inspired constraints. Due to their
peculiarity, these semantics are able to capture some indeterminacy which is
intrinsic in the real world and, because of that, they appear to be particularly
useful in the study of biological systems [5].

However, to make the ε-semantics framework effective for the analysis of
real systems, deeper investigations in two directions are necessary. On the
one hand, instances of ε-semantics capturing interesting behaviours need to
be defined. On the other hand, computational techniques and tools have to be
introduced on such semantics. This is the main focus of our paper, where we
consider sphere semantics and dilated erosion semantics. Sphere semantics
amplifies the original behaviour of the system (when this is specified without
negations), while dilated erosion removes the behaviour that is not witnessed
by a sufficiently large set. Interestingly, we are able to prove that these
semantics are computable, introducing a formula translation and exploiting
classic decidability results [6]. A natural question at this point would concern
the computational complexity of our algorithms. As a matter of fact, in
the general case our approach has a double exponential complexity due to
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the use of quantifier elimination procedures for semi-algebraic theory. In
order to reduce such complexity we introduced simplifications for the type
of formulæ we obtain in the reachability analysis. Specifically, we identify
some simplification applicable to the translated formulæ to both decrease
the number of the quantifier operators and reduce the complexity of the
ε-semantics evaluations.

These optimizations are exploited in the analysis of two biological case
studies, a neural oscillator system and a glycemic control system, demon-
strating the fact ε-semantics represent a valid tool in the field of the system
biology. Starting from their canonical representations in form of ODE, we
modeled both of them using hybrid automata and we automatically verify
properties, such as the convergence to a stable limit cycle and the robustness
of reachable states, taking into account, with the help of the ε-semantics, the
non-determinsm intrinsically related to the nature of those scenarios.

The paper is organized as follows. Section 2 introduces notation and
defines hybrid automata. In Section 3, we present the notion of ε-semantics
and provide a reachability algorithm for hybrid automata based on it that
extends the applicability of the classical algorithm to a wider class of hybrid
automata. Section 4 describes two examples of ε-semantics, it shows that
these two semantics are definable in the standard theory, and builds the
formulæ that define them. As suggested by Section 5, in some specific, but
frequent, cases, we can decrease the complexity of these formulæ. In Section 6
we study two real biological cases, a neural oscillator and a glycemic control
system, exploiting all the techniques presented in the previous sections and,
finally, Section 7 makes some concluding remarks, comparison with related
literature, and suggests future work.

2. Hybrid Automata

We first need to introduce some basic notions and conventions. Capital
letters X, Xi, Y , Yi, W , and Wi, denote variables ranging over the reals,
while bold letters X, Xi, Y, Yi, W, and Wi, denote tuples of real variables.
We assume that every variable occurs either free, or bound by a quantifier
in a formula, but never both. This enables us to label variables, rather than
occurrences, as free or bound. Sometimes we write ϕ[X1, . . . ,Xm] to stress
the fact that the set of all free variables of ϕ is {X1, . . . ,Xm}. By extension,
ϕ[X1, . . . ,Xn] indicates that the variables of tuples X1, . . . ,Xn are free in ϕ.
We denote the formula obtained from ϕ[X1, . . . ,Xn] by simultaneously re-
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placing all the variables X1, . . . ,Xn by s1, . . . , sn, where si is either a constant
or a variable, by writing ϕJs1, . . . , snK.

The notions of first-order formula, models, and theory are defined in the
standard way (see [7, 8]). A formula without free variables is called a sen-
tence. A theory T is a set of sentences such that if ϕ is a logical consequence
of T , then ϕ ∈ T . A theory T admits the elimination of quantifiers if, for
any formula ϕ, there exists a quantifier free formula % ∈ T such that ϕ is
equivalent to % with respect to T . A theory T is decidable if there exists an
algorithm for deciding whether a sentence ϕ belongs to T or not.

Example 1. Consider the formula ϕ
def
= ∃X (a ∗X2 + b ∗X + c = 0). It is

well known that ϕ is in the theory of reals with +, ∗, and ≥ if and only if the
unquantified formula b2 − 4ac ≥ 0 holds.

An example of a theory for which our results hold is the first-order theory
of ⟨R,+,∗,=,<⟩, also known as Tarski’s theory or the theory of semi-algebraic
sets. Tarski’s theory is decidable and admits quantifier elimination.

Given a language L, a semantics of it is a function [⋅] from the set
of formalæ of L to the power set of R∗ (where R∗ = ⋃n∈NRn) such that
[ϕ[X1, . . . ,Xn]] ⊆ Rn. The formula S[X] represents (also defines) in [⋅] the
set [S[X]]. If there exists a formula S[X] such that [S[X]] = S, then the
set S is said definable in [⋅].

Any theory T over a language L induces a standard semantics defined as

{∣ϕ[X1, . . . ,Xn]∣}
def
= {⟨s1, . . . , sn⟩ ∣ ϕJp1, . . . , pnK ∈ T }. Whenever we do not

explicitly mention any semantics, we are referring to the standard one.
Let ⌊∣⋅∣⌋ and ⌈∣⋅∣⌉ be two semantics for a first-order language L and T be

a theory over L. If ⌊∣ϕ∣⌋ ⊆ {∣ϕ∣} for all ϕ ∈ L, ⌊∣⋅∣⌋ is said to be an under-
approximation semantics. Symmetrically, whenever {∣ϕ∣} ⊆ ⌈∣ϕ∣⌉ for all ϕ ∈ L,
then ⌈∣⋅∣⌉ is dubbed an over-approximation semantics.

We also use several standard notions from topological and metric spaces
(see [9]). Given a set S ⊆ Rn, conv(S) denotes the convex hull of S. With the
symbol δ we refer to any metric definable in T . Example of such a metric is
the standard euclidean metric on Rn definable in Tarski’s theory. With the
notation B(p, ε) we indicate the set of all points at distance smaller than ε
from p, i.e., the open sphere of radius ε centered in p ∈ Rn. By extension,
B(S, ε), where S is a subset of Rn, denotes the Minkowski sum of B(0, ε) and
S.
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2.1. Syntax, Semantics, and Reachability

In this section we give a formal definition of hybrid automata for our
purposes. There are many different definitions of hybrid automata in the
literature. Even if the most common differences between known formalisms
reside in the descriptions of continuous and discrete transitions, the semantics
attributed to the transitions are almost the same. Here we define hybrid
automata through first-order formulæ over the reals.

Definition 1 (Hybrid Automata - Syntax). Let L be a first-order language.
A hybrid automaton H of dimension d(H) ∈ N over L is a tuple H =

⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩ where:

• X = ⟨X1, . . ., Xd(H)⟩ and X′ = ⟨X ′
1, . . ., X

′
d(H)⟩ are two tuples of vari-

ables ranging over the reals R;

• T is a variable ranging over R≥0 denoting time;

• ⟨V, E⟩ is a finite directed graph. Each element of V will be dubbed
location;

• each location v ∈ V is labeled by the two formulæ Dyn(v)[X,X′, T ] and
Inv (v)[X] over L such that if Inv (v)JpK holds then Dyn(v)Jp, q,0K
holds if and only if p = q;

• each edge e ∈ E is labeled by the formulæ Act (e)[X] and Res(e)[X,X′]
over L which are called activation and reset, respectively.

Intuitively, the formula Dyn(v)[X,X′, T ] characterizes the dynamics as-
sociated to the location v, while Inv (v)[X] denotes the set of the values
admitted during the continuous evolution of the automaton inside v. The
formulæ Act (e)[X] and Res(e)[X,X′] identifies the set of continuous values
from which the automaton can jump over the edge e and a map that should
be applied to the continuous values from which the automaton crosses the
edge e. The following section details the formal meaning of these formulæ
and describes the semantics of hybrid automata.

Hybrid automaton dynamics are usually described through differential
equations (see, e.g., [10, 11]). However, in many cases, solutions or approxi-
mated solutions of the differential equations are computed before proceeding
with any reasoning on the automata (see, e.g., [11]). Whenever such solu-
tions can be described by polynomial dynamics, we obtain automata which
fall under our definition.
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Differently from [12], we require that Dyn(v)Jp, q,0K implies p = q. Intu-
itively, this means that if we are in p at time 0, we can reach a point different
from p through a continuous dynamic only if we let the time flow. This
assumption will allow us to both get continuity of the flow at time 0 and
slightly simplify the reachability formulæ with respect to the ones defined in
[12].

Example 2. Figure 1 depicts a graphical representation of the hybrid au-
tomaton Ha = ⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩, where:

• X = ⟨X1,X2⟩

• V = {v1, v2} and E = {e1, e2}, where e1 = ⟨v1, v2⟩ and e2 = ⟨v2, v1⟩

• Dyn(v1)[X,X′, T] def
= X ′

1 =X1+T∧X ′
2 =X2+T 2 and Dyn(v2)[X,X′, T] def

=

X ′
1 =X1 + T ∧X ′

2 =X2 + T

• Inv (v1)[X]
def
= X1 ≤ 10 and Inv (v2)[X]

def
= X1 ≥ 10

• Res(e1)[X,X′] def
= Res(e2)[X,X′] def

= X ′
1 =X1 ∧X ′

2 =X2

• Act (e1)[X]
def
= Act (e2)[X]

def
= X1 = 10

X ′
1 ←X1 + T

X ′
2 ←X2 + T 2

X1 ≤ 10

X ′
1 ←X1 + T

X ′
2 ←X2 + T

X1 ≥ 10

X′ ←X/X1 = 10

X′ ←X/X1 = 10

Figure 1: The hybrid automaton Ha.

Since the automaton Ha is piecewise defined, we may also represent it as in
Figure 2.
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2.2. Hybrid Automaton Semantics

Intuitively, the formula Dyn(v)[X,X′, T ] holds if there exists a contin-
uous flow going from X to X′ in time T . Our semantics admits an infinite
number of continuous flows which can also be self-intersecting.

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair ⟨v, r⟩,
where v ∈ V is a location and s = ⟨s1, . . . , sd(H)⟩ ∈ Rd(H) is an assignment of
values for the variables of X. A state ⟨v, s⟩ is admissible if Inv (v)JsK is true.
We have two kind of transitions:

• the continuous transition relation
t
Ð→C:

⟨v, s⟩
t
Ð→C ⟨v, r⟩ ⇐⇒ there exists f ∶ R≥0 → Rd(H) continuous function

such that s = f(0), there exists t ≥ 0 such that r = f(t), and for each
t′ ∈ [0, t], both Inv (v)Jf(t′)K and Dyn(v)Js, f(t′), t′K hold;

• the discrete transition relation
(v,u)
ÐÐ→D:

⟨v, s⟩
(v,u)
ÐÐ→D ⟨u, r⟩ ⇐⇒ (v, u) ∈ E and both the formulæ Act ((v, u))JsK

and Res((v, u))Js, rK holds.

A trace is a sequence of continuous and discrete transitions. A point r
is reachable from a point s if there is a trace starting from s and ending in
r. We write ` →C `′ and ` →D `′ to mean that there exists a t ∈ R≥0 such

that `
t
Ð→C `′ and that there exists an e ∈ E such that `

e
Ð→D `′, respectively.

Moreover, we write `→ `′ to denote either `→C `′ or `→D `′.

Definition 3 (Hybrid Automata - Trace). A trace of length n of H is a
sequence of admissible states `0, `1, . . . , `n, with n ∈ N>0, such that:

• for each j ∈ [1, n] it holds `j−1 → `j;

• for each j ∈ [1, n − 1] if `j−1 /→D `j, then `j →D `j+1.

In H, s ∈ Rd(H) reaches r ∈ Rd(H) if there exists a trace `0, . . . , `n of H
such that `0 = ⟨v, s⟩ and `n = ⟨u, r⟩, for some v, u ∈ V.

Given a set of starting points I we are interested in problem of finding all
the ending points of traces that begin in I, i.e., the set of points reachable
from I.
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Definition 4 (Hybrid Automata - Reachability). A set I ⊆ Rd(H) reaches
F ⊆ Rd(H) if there exists s ∈ I which reaches r ∈ F.

Let RSet iH(I) ⊆ Rd(H) denote the set of continuous values reachable by H
from a set of initial values I ⊆ Rd(H) via traces with exactly i discrete jumps.

Further let RSetH(I) def= ⋃i∈N RSet iH(I).

Notice that we impose that two continuous transitions do not occur con-
secutively in a trace. In all those hybrid automata whose flows are solutions
of autonomous differential equations, the continuous transition relation is
transitive, which means that different consecutive continuous transitions can
be reduced to a single continuous one. Definition 1 allows also automata
whose continuous transition relation is not transitive.

For instance, let us consider the ODE ⟨Ẋ1, Ẋ2⟩ = ⟨1,2 ∗ T ⟩. It corresponds
to the formula-based dynamics X ′

1 = X1 + T ∧X ′
2 = X2 + T 2 and the set of

points reachable from ⟨0,0⟩ according to it should be R = {⟨t, t2⟩∣t ∈ R≥0}
(see Figure 2). However, if we allow more than one consecutive continuous
transitions, the point ⟨2,1⟩, which is not meant to in R by the ODE, will
be reachable from ⟨0,0⟩ for example via four continuous evolutions for four
time intervals of length 0.5 from ⟨0,0⟩ to ⟨0.5,0.25⟩, ⟨1,0.5⟩, ⟨1.5,0.75⟩, and
finally to ⟨2,1⟩. In fact, every point from positive quadrant that is under
the parabola R and above the X1 axis is reachable by a finite number of
subsequent continuous transitions, which is not the expected behaviour of
the ODE system.

In general, the reachability problem of hybrid automata is undecidable [1].
Intuitively, even if one is able to compute a single transion step, he still has
to find a way to perform an unbounded number of subsequent steps.

X1

X2

X1 = 10

X ′
1 =X1 + T

X ′
2 =X2 + T 2

X ′
1 =X1 + T

X ′
2 =X2 + T

Figure 2: Another graphical representation of the hybrid automaton Ha.
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As for the computation of a single transition, the definition of →C re-
quires the existence of a continuous function f which satisfies both formuæ
Inv and Dyn. If we consider only functional automata, i.e., automata whose

dynamics have the form Dyn(v)[X,X′, T ]
def
= X′ = fv(X, T ), such existence

can be expressed by any suitable first-order language in which fv is express-
ible. However, there exist non functional automata for which this is not the
case. Hybrid automata in Michael’s form [12] generalize functional automata
still admitting a reduction of the continuous reachability problem over them
to a satisfiability problem. On the one hand, they allow to express dynamics
involving unknown parameters, which may be useful in many practical ap-
plications (e.g., systems biology). On the other hand, they enable us to both
over-approximate and under-approximate the reachable set by exploiting the
techniques presented in [13] and [5]. For this class of hybrid automata, the
set RSet iH(I) is definable with a first-order formula. Still, this does not imply
the decidability of reachability, since we would have to check the satisfiability
of an infinite set of first-order formulæ.

3. ε-Semantics

The ability of characterizing dense regions of arbitrarily small size, is the
main cause of the undecidability of the reachability problem for hybrid au-
tomata. As noticed in [5], such ability may be misleading in some cases. The
continuous quantities used in hybrid automata are very often abstractions of
large, but discrete, quantities. For instance, in the study of biological sys-
tems, the ability of handling values with infinite precision is a model artifact
rather than a real property of the original system.

Theorem 1 ([5]). Let T be a decidable first-order theory over reals and H be
a T -hybrid automaton with bounded invariants. If there exists ε ∈ R>0 such
that, for each I ⊆ Rd(H) and for each i ∈ N, the fact RSet i+1H (I) ≠ RSet iH(I)
implies there exists ai ∈ Rd(H) such that B (ai, ε) ⊆ RSet i+1H (I) ∖ RSet iH(I),
then there exists j ∈ N such that RSetH(I) = RSet jH(I) and the reachability
problem over H is decidable.

Since our hybrid automata characterization is based on first-order for-
mulæ, it is reasonable to reinterpret the semantics of our automata by giving
each formula a “dimension of at least ε”; ε-semantics is a class of semantics
which guarantee the decidability of reachability for hybrid automata with
bounded invariants when the underline theory T is decidable [5].
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Definition 5. Let L be a first-order language, T a theory over it, and ε ∈ R>0.
For each ψ ∈ L with d free variables, let {∣ψ∣}ε be a subset of Rd such that:

(ε)either {∣ψ∣}ε = ∅ or there exists p ∈ Rd such that B (p, ε) ⊆ {∣ψ∣}ε

(∩){∣φ ∧ ϕ∣}ε ⊆ {∣φ∣}ε ∩ {∣ϕ∣}ε (∪){∣φ ∨ ϕ∣}ε = {∣φ∣}ε ∪ {∣ϕ∣}ε

(∀){∣∀Xψ[X,X]∣}ε = {∣⋀r∈RψJr,XK∣}ε (∃){∣∃Xψ[X,X]∣}ε = {∣⋁r∈RψJr,XK∣}ε
(¬){∣ψ∣}ε ∩ {∣¬ψ∣}ε = ∅

A semantics satisfying the above conditions is called an ε-semantics for T .

Notice that in the above definition we require the theory T just to give a
meaning to the set B (p, ε).

If the standard semantics is not already an ε-semantics for T , then there
is no ε-semantics over-approximating {∣⋅∣}, i.e., there is no {∣⋅∣}ε such that
{∣ψ∣}ε ⊇ {∣ψ∣} for all formulæ ψ. In fact, for every ε-semantics different from the
standard semantics there exists at least one formula φ with different standard
and ε-semantics. By the rule (¬), {∣φ∣}ε ∩ {∣¬φ∣}ε = ∅. Hence, if {∣φ∣}ε ⊃ {∣φ∣},
then {∣¬φ∣}ε ⊂ {∣¬φ∣}. While if {∣φ∣}ε ⊂ {∣φ∣} and, at the same time, {∣φ∣}ε ≠ {∣φ∣},
then {∣φ∣} ⊆ {∣φ∣}ε. In both cases standard semantics of either ¬φ, or φ is not
over-approximated by its ε-semantics.

It is well known that, in the standard semantics, the reachability problem
over hybrid automata with bounded invariants is not decidable. This is not
the case if we use ε-semantics over a decidable theory in place of the standard
one. In particular, [5] introduced an algorithm for evaluating the reachable
set of functional automata with transitive dynamics using any computable ε-
semantics. The constraints imposed in [5] on the dynamics were not related to
the applicability of the suggested strategy to more general automata, but they
were due to the focus of interest of the original article. Indeed, Algorithm 1
supports any hybrid automata in Michael’s form, the transitivity condition
is not needed.

The main reachability procedure (Algorithm 1) is a variant of breadth
first search. Part of its input (apart from the specific ε-semantics and hybrid
automaton) is a collection of first-order formulæ I(v)[X] for all locations
v ∈ V of the hybrid automaton characterizing sets of initial points in the re-
spective locations. Output of the reachability procedure is again a collection
of first-order formulæ R(v)[X] representing in each location the set of all
points that are reachable from the initial points.

During the computation, the main reachability procedure maintains the
set of active locations A ⊆ V and two collections of formulæ R(v)[X] and
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N(v)[X]. The R formulæ represent (location-wise) the set of points that
have been reached up to this point of the computation and N formulæ repre-
sents points that are reachable from the already reached points with both a
discrete and a successive continuous transitions. The main reachability pro-
cedure initializes R and N formulæ, poses the current set of active locations
to all locations V, and, while the set of active locations is nonempty, it up-
dates both R, N , and A. In particular, each R formula is set to the disjunct
between itself and the corresponding N formula meaning that is should now
represent what was reachable before the last iteration of the algorithm plus
the newly reached points.

There are two auxiliary procedures: InitRN and UpdateActiveAndN. Ini-
tRN (Algorithm 2) is called exactly once at the beginning of reachability
computation. It initializes all N formulæ to false and Rs to those formulæ
that represent the sets of points that can be reached from initial points by
one continuous transition (see line 6 of Algorithm 1).

UpdateActiveAndN (Algorithm 3) takes the hybrid automaton, the cur-
rentR formulæ, the ε-semantics and the set B ⊆ V of currently active locations
as parameters. It returns the updated set of active locations together with
the new N formulæ. Initially it sets A to empty set and N formulæ to false.
Then it considers all the edges ⟨v, v′⟩, with v ∈ B, and adds those formulæ
that evaluate to the set of all points in location v′ reachable by a discrete
transition through ⟨v, v′⟩ from R and a successive continuous transition.

The formula N(v′)[X] ∧ ¬R(v′)[X] denotes the set of points reached for
the first time during the last iteration of the algorithm. Each location v′ for
which the ε-semantics evaluation of the formula is nonempty, i.e., contains at
least an open sphere of radius ε, is added to the set of new active locations A.

The while loop at line 4 of Algorithm 1 is repeated until the set of active
locations is exhausted. Since all the sets {∣Inv(v)∣}ε are bounded by hypothesis
and either {∣φ∣}ε = ∅ or {∣φ∣}ε ⊇ B (p, ε) by the definition of ε-semantics, we
conclude from Theorem 1 that, sooner or later, such a condition will be
reached and Algorithm 1 eventually terminates. Its correctness easily follows
from the same arguments that were used for the original algorithm in [5].

It is important to notice that at each iteration of the main loop only
formula for each edge from an active location is evaluated (see line 9 of
Algorithm 3) all the other commands are symbolic manipulations.
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Algorithm 1: Reachability(H,I(⋅)[X],{∣⋅∣}ε)

Data: {∣⋅∣}ε is a ε-semantics, I(v)[X] is a first-order formula for all
v ∈ V, and H is a hybrid automaton
⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩ such that {∣Inv(v)∣}ε is
bounded for all v ∈ V

Result: R(⋅)[X] such that R(v)JpK holds iff there exists a v′ such
that ⟨v, p⟩ is reachable in H from {∣I(v′)[X]∣}

1 ⟨R(⋅),N(⋅)⟩ ← InitRN(H,I(⋅))

2 /* initially all the locations are active */

3 A ← V

4 while A ≠ ∅ do /* while there are active locations */

5 for v ∈ A do /* for all active locations */

6 R(v)[X] ← R(v)[X] ∨N(v)[X] /* update reached sets */

7 end

8 /* update newly reached sets and active locations */

9 ⟨A,N(⋅)⟩ ← UpdateActiveAndN(H,R(⋅)[X],A,{∣⋅∣}ε)

10 end
11 return R(⋅)[X]

Algorithm 2: InitRN(H,I(⋅)[X])

Data: H is a hybrid automaton ⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩
and I(v)[X] is a first-order formula for all v ∈ V

Require: cReach(v)Jp, qK holds iff ⟨v, p⟩ Ð→C ⟨v, q⟩ in H
Result: The tuple ⟨R(⋅),N(⋅)⟩ such that, for all v ∈ V, N(v) = � and

if there exist a r ∈ {∣I(v)∣} such that ⟨v, r⟩ Ð→C ⟨v, s⟩ in H,
then s ∈ {∣R(v)∣}

1 for v ∈ V do
2 R(v)[X] ← ∃X′(cReach(v)JX′,XK ∧ I(v)JX′K)
3 N(v)[X] ← �

4 end
5 return ⟨R(⋅),N(⋅)⟩
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Algorithm 3: UpdateActiveAndN(H,R(⋅)[X],B,{∣⋅∣}ε)

Data: H is a hybrid automaton ⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩,
R(v)[X] is a first-order formula for all v ∈ V, B is a subset of V,
and {∣⋅∣}ε is a ε-semantics

Require: dcReach(e)Jp, qK holds iff e = ⟨v, v′⟩ and there exists a s ∈ R∗

such that ⟨v, p⟩
e
Ð→D ⟨v′, s⟩ Ð→C ⟨v′, q⟩ in H

Result: ⟨A,N(⋅)⟩ such that v ∈ A iff {∣N(v)[X] ∧ ¬R(v)[X]∣}ε ≠ ∅

and, for all v ∈ V, R(v′)JpK holds and N(v)JqK holds iff

⟨v′, p⟩
e
Ð→D ⟨v′, s⟩ Ð→C ⟨v′, q⟩ for some v′ ∈ B

1 for v ∈ V do
2 N(v)[X] ← � /* reset newly reached sets */

3 end
4 A ← ∅ /* initially no location is active */

5 for ⟨v, v′⟩ ∈ E such that v ∈ B do /* for all edges leaving a

location in B */

6 /* update newly reached sets and add what is reachable

through a jump over ⟨v, v′⟩ and a flow on v′ */

7 N(v′)[X] ← N(v′)[X] ∨ ∃X′(dcReach(⟨v, v′⟩)JX′,XK ∧RJX′K)

8 /* if a new set has been reached in v′ w.r.t. {∣⋅∣}ε */

9 if {∣N(v′)[X] ∧ ¬R(v′)[X]∣}ε ≠ ∅ then
10 A ← A∪ {v′} /* add v′ to the active locations */

11 end

12 end
13 return ⟨A,N(⋅)⟩
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4. Two Relevant ε-Semantics

This section presents two computable instances of ε-semantics: the sphere
semantics and the dilated erosion semantics.

In sphere semantics all atomic formulæ get expanded of an open sphere of
radius ε. In the case of conjunction, only the open spheres that are contained
in both conjuncts are considered. This ensures that if the semantics of a
conjunction is not empty, it includes at least a sphere of radius ε. A similar
policy is used for negation.

Definition 6 (Sphere semantics [5]). Let T be a first-order theory over the
reals and let ε > 0. The sphere semantics of ψ over T is the set (∣ψ∣)ε defined
by structural induction on ψ as follows:

● (∣t1 ○ t2∣)ε
def
= B ({∣t1 ○ t2∣}, ε), for ○ ∈ {=,<}

● (∣ψ1 ∧ ψ2∣)ε
def
= ⋃B(p,ε)⊆(∣ψ1∣)ε∩(∣ψ2∣)ε B (p, ε) ● (∣ψ1 ∨ ψ2∣)ε

def
= (∣ψ1∣)ε ∪ (∣ψ2∣)ε

● (∣∀Xψ[X,X]∣)ε
def
= (∣⋀r∈RψJr,XK∣)ε ● (∣∃Xψ[X,X]∣)ε

def
= (∣⋁r∈RψJr,XK∣)ε

● (∣¬ψ∣)ε
def
= ⋃B(p,ε)∩(∣ψ∣)ε=∅B (p, ε)

Sphere semantics has been proved to be an ε-semantics in [5]. This se-
mantics is neither an over-approximation nor an under-approximation of the
standard semantics as shown by the following example.

Example 3. Let us consider the formula X < 3. Its standard seman-
tics is {∣X < 3∣} = {p ∈ R ∣p < 3} and its sphere semantics is (∣X < 3∣)ε =

B ({∣X < 3∣}, ε) = {p ∈ R ∣p < 3 + ε}. Hence, {∣X < 3∣} ⊂ (∣X < 3∣)ε. This im-
plies that sphere semantics is not an under-appoximation semantics.

On the other hand, if we consider the formula ¬(X < 3), we have that its
standard semantics is {∣¬(X < 3)∣} = {p ∈ R ∣p >= 3}, while its sphere seman-
tics is (∣¬(X < 3)∣)ε = ⋃B(p,ε)∩(∣X<3∣)ε=∅B (p, ε) = {∣X − ε > 3∣}. So, {∣¬(X < 3)∣} ⊃
(∣¬(X < 3)∣)ε and sphere semantics is not an over-approximation semantics.

However, since sphere semantics over-approximate atoms, it can be used
to verify safety conditions.

Erosion semantics under-approximates the standard one by considering
only the centers of spheres of radius ε that are completely included in the
standard semantics. Dilated erosion semantics expands erosion semantics of
a sphere of radius ε.
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Definition 7 (Erosion and DE Semantics). Let T be a first-order theory over
the reals and let ε > 0. The erosion semantics of ψ over T is the set oψjε
defined by structural induction on ψ as follows:

●ot1 ○ t2jε
def
= ⋃B(p,ε)⊆{∣t1○t2∣}{p}

●oψ1 ∧ ψ2jε
def
= oψ1jε∩oψ2jε ●oψ1 ∨ ψ2jε

def
= oψ1jε∪oψ2jε

●o∀Xψ[X,X]jε
def
= ⋂r∈RoψJr,XKjε ●o∃Xψ[X,X]jε

def
= ⋃r∈RoψJr,XKjε

●o¬ψjε
def
= ⋃B(p,ε)∩{∣ψ∣}=∅{p}

The dilated erosion semantics, or simply, DE semantics, of ψ over T is the
set

⟫ψ⟪ε
def
= ⋃

p∈oψjε
B (p, ε) .

Let us notice that, since B (p, ε) is an open sphere, the DE semantics of
ψ is open regardless of whether oψjε is open too or not.

Example 4. Let us consider again the formula X < 3. Its erosion semantics
is oX < 3jε= ⋃B(p,ε)⊆{∣X<3∣}{p} = {p ∈ R ∣p ≤ 3 − ε}. Thus, its DE semantics is
⟫X < 3⟪ε= ⋃p∈oX<3jε B (p, ε) = {p ∈ R ∣p < 3}.

On the other hand, if we consider the formula ¬(X < 3), we have that Its
erosion semantics is o¬(X < 3)jε= ⋃B(p,ε)∩{∣X<3∣}=∅{p} = {p ∈ R ∣p ≥ 3 + ε} and
its DE semantics is ⟫¬(X < 3)⟪ε= ⋃p∈o¬(X<3)jε B (p, ε) = {p ∈ R ∣p > 3}.

As oδ(X,0) < εjε does not contain a sphere of radius ε, but it is not empty,
the erosion semantics is not an ε-semantics. However, the DE semantics is
an ε-semantics and it under-approximates the standard semantics.

Lemma 1. For any first-order formula ψ and ε ∈ R>0, ⟫ψ⟪ε⊆ {∣ψ∣}. Moreover,
the DE semantics ⟫⋅⟪ε is an ε-semantics.

Proof. First, we demonstrate that the DE semantics is an under-approximated
semantics, i.e., for any first-order formula ψ and ε ∈ R>0, ⟫ψ⟪ε⊆ {∣ψ∣}. The
proof is given by structural induction on ψ itself.

t1○t2, for ○ ∈ {=,<}. By definition of DE semantics, ⟫t1 ○ t2⟪ε= B (ot1 ○ t2jε, ε)
= B (⋃B(p,ε)⊆{∣t1○t2∣}{p}, ε) = ⋃B(p,ε)⊆{∣t1○t2∣}B (p, ε) ⊆ {∣t1 ○ t2∣}.

ψ1 ∧ ψ2. ⟫ψ1 ∧ ψ2⟪ε= B (oψ1 ∧ ψ2jε, ε) = B (oψ1jε∩oψ2jε, ε) ⊆ B (oψ1jε, ε) ∩
B (oψ2jε, ε) =⟫ψ1⟪ε∩⟫ψ2⟪ε. By inductive hypothesis, ⟫ψ1⟪ε⊆ {∣ψ1∣} and
⟫ψ2⟪ε⊆ {∣ψ2∣}, hence ⟫ψ1⟪ε∩⟫ψ2⟪ε⊆ {∣ψ1∣} ∩ {∣ψ2∣} = {∣ψ1 ∧ ψ2∣}.
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ψ1 ∨ ψ2. By definition, ⟫ψ1 ∨ ψ2⟪ε= B (oψ1 ∨ ψ2jε, ε) = B (oψ1jε∪oψ2jε, ε) =

B (oψ1jε, ε) ∪B (oψ2jε, ε) =⟫ψ1⟪ε∪⟫ψ2⟪ε. Now, by inductive hypothesis
we know that ⟫ψ1⟪ε⊆ {∣ψ1∣} and ⟫ψ2⟪ε⊆ {∣ψ2∣}, thus ⟫ψ1⟪ε∪⟫ψ2⟪ε⊆ {∣ψ1∣}∪

{∣ψ2∣} = {∣ψ1 ∨ ψ2∣}.

∀Xψ[X,X]. By the definition of DE semantics and inductive hypoth-
esis, ⟫∀Xψ[X,X]⟪ε= B (o∀Xψ[X,X]jε, ε) = B (⋂r∈RoψJr,XKjε, ε) =

B (o⋀r∈RψJr,XKjε, ε) =⟫⋀r∈RψJr,XK⟪ε. Applying the inductive step
demonstrated in the conjunction case, we can state that ⟫⋀r∈RψJr,XK⟪ε
⊆ {∣⋀r∈RψJr,XK∣} which in terms of the standard semantics corresponds
to the formula {∣∀Xψ[X,X]∣}.

∃Xψ[X,X]. By the definition of DE semantics and inductive hypothesis,
⟫∃Xψ[X,X]⟪ε= B (o∃Xψ[X,X]jε, ε) = B (⋃r∈RoψJr,XKjε, ε), which is
equal to B (o⋁r∈RψJr,XKjε, ε) =⟫⋁r∈RψJr,XK⟪ε⊆ {∣⋁r∈RψJr,XK∣}, that,
by the standard semantics, corresponds to {∣∃Xψ[X,X]∣}.

¬ψ. ⟫¬ψ⟪ε= B (⋃B(p,ε)∩{∣ψ∣}=∅{p}, ε) = ⋃B(p,ε)∩{∣ψ∣}=∅B (p, ε) ⊆ {∣¬ψ∣}.

Let us now demonstrate that the DE semantics is effectively an ε-semantics,
i.e., that it satisfies all the requirements of Definition 5.

Requirement (ε) is trivially satisfied since any DE semantics evaluation
is performed applying an ε-expansion. This means that a formula is ei-
ther empty or large at least as an ε-sphere. Let ψ = ψ1 ∧ ψ2 be a con-
junction. By definition, ⟫ψ1 ∧ ψ2⟪ε= B (oψ1 ∧ ψ2jε, ε) = B (oψ1jε∩oψ2jε, ε) ⊆

B (oψ1jε, ε) ∩B (oψ2jε, ε) =⟫ψ1⟪ε∩⟫ψ2⟪ε. Thus, requirement (∩) is satisfied.
Similarly, if ψ = ψ1 ∨ ψ2 is a disjunction, then ⟫ψ1 ∨ ψ2⟪ε= B (oψ1 ∨ ψ2jε, ε) =
B (oψ1jε∪oψ2jε, ε) = B (oψ1jε, ε) ∪ B (oψ2jε, ε) =⟫ψ1⟪ε∪⟫ψ2⟪ε, which means
that also the requirement (∪) is satisfied. Let ψ = ∀Xψ[X,X] be a quantified
formula. Thus, ⟫∀Xψ[X,X]⟪ε= B (o∀Xψ[X,X]jε, ε) = B (⋂r∈RoψJr,XKjε, ε)
= B (o⋀r∈RψJr,XKjε, ε) =⟫⋀r∈RψJr,XK⟪ε. The case of formulæ closed by the
existential quantifier operator is symmetrical to the universal one, where
the unions and disjunctions play the roles of intersections and conjunctions,
respectively. Hence, also requirements (∀) and (∃) are satisfied. Finally,
since the DE semantics is an under-approximation semantics, we know that
⟫ψ⟪ε⊆ {∣ψ∣} and ⟫¬ψ⟪ε⊆ {∣¬ψ∣}. Moreover, by the standard semantics, since
it holds that {∣ψ∣} ∩ {∣¬ψ∣} = ∅, then ⟫ψ⟪ε∩⟫¬ψ⟪ε= ∅ must hold too. Hence,
requirement (¬) is always satisfied.
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The above lemma suggests the use of DE semantics for the evaluation of
liveness properties.

At this point, we need to prove that both sphere and DE semantics
are computable. To this aim, we introduce mappings form formulæ to for-
mulæ that allow us evaluate sphere and DE semantics exploiting standard
semantics. In particular, for any first-order theory T such that B (p, ε) is T -

definable and any φ ∈ T , we can build two first-order formulæ, (φ)ε and (̃φ)ε,

in T , such that (∣φ∣)ε = {∣(φ)ε∣} and ⟫φ⟪ε= {∣(̃φ)ε∣} (see Sections 4.1 and 4.2,

respectively). It means that, whenever T is decidable, both (∣⋅∣)ε and ⟫⋅⟪ε are
computable.

4.1. From sphere into standard semantics

In our mapping from sphere to standard semantics, we need to distinguish
two kind of variables: the ε-variables (named W , Wi, W and Wi) and stan-
dard variables (named Y , Yi, Y and Yi) which are introduced to translate
the sphere semantics into the standard one. The evaluations of the former
will be perturbed by the transformation (being either (⋅)ε or (̃⋅)ε), while that
of the latter will follow the standard semantics.

Let T be a first-order theory over the reals, ϕ[Y,W] be any first-order

formula, and ε ∈ R>0. We define (ϕ[Y,W])ε by structural induction on
ϕ[Y,W] as follow:

• ((t1 ○ t2)[Y,W])ε
def
= ∃Y0((t1 ○ t2)JY,Y0K ∧ δ(Y0,W) < ε), ○ ∈ {=,<};

• (φ[Y,W] ∧ ψ[Y,W])ε
def
= ∃Y0(∀W1(δ(Y0,W1) < ε _

((φ)ε ∧ (ψ)ε)JY,W1K) ∧ δ(Y0,W) < ε);

• (φ ∨ ψ)ε
def
= (φ)ε ∨ (ψ)ε;

• (∀Wφ[Y,W,W])ε
def
= ∃Y0(∀W1(δ(Y0,W1) < ε _

∀Y (φJY, Y,W1K)ε) ∧ δ(Y0,W) < ε);

• (∃Wφ[Y,W,W])ε
def
= ∃Y (φJY, Y,WK)ε;

• (¬φ[Y,W])ε
def
= ∃Y0(∀W1(δ(Y0,W1) < ε _

¬(φJY,W1K)ε) ∧ δ(Y0,W) < ε).

With regard to the distinction between ε-variables (W , Wi, W and Wi)
and standard variables (Y , Yi, Y and Yi), let us notice that the two for-

mulæ (φ[Y,W,W])ε and (φ[Y, Y,W])ε may denote different sets. In par-
ticular, while W is perturbed by ε-semantics, Y is involved in none of the
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Minkowski sums related to above definition. For instance, if φ is W > 2,
then (φ[Y,W,W])ε ≡ ∃Y0(Y0 > 2 ∧ δ(Y0,W ) < ε), while if φ is W > 2, then

(φ[Y, Y,W])ε ≡ Y > 2.
Now we prove that the sphere semantics of ϕ and standard semantics of

(ϕ)ε are the same and that, provided the decidability of T , we can compute
sphere semantics of the formula ϕ.

Theorem 2 (Semantics Equivalence [14]). Let T be any first-order theory
and δ be a T -definable distance. The sphere semantics (∣.∣)ε over T is T -

definable in the standard semantics and, in particular, (∣ϕ[X]∣)ε = {∣(ϕ)ε[X]∣}

for any formula ϕ[X] ∈ T and all ε ∈ R>0.

Corollary 1. Let T be a first-order theory. If T is decidable and the distance
δ is definable in T , then sphere semantics (∣.∣)ε over T is decidable.

Example 5. Let us consider the formula ϕ[X]
def
= X > 0 ∧X < 2. We have

that (X > 0)ε ≡ ∃X0(X0 > 0∧δ(X0,X) < ε) ≡X0+ε > 0. By applying the same

rule, (X < 2)ε ≡ ∃X0(X0 < 2 ∧ δ(X0,X) < ε) ≡ X − 2 − ε < 0. Finally, since

ε is a positive real, (X > 0 ∧X < 2)ε ≡ ∃X0(∀X1(δ(X0,X1) < ε _ X1 + ε >
0 ∧X1 − 2 − ε < 0) ∧ δ(X0,X) < ε) ≡X > −ε ∧X ≤ 2 + ε.

Let us notice that the formula (ψ)ε is syntactically more complex than ψ.
This is mainly due to the possible introduction of new quantifier alternations.

4.2. From DE into standard semantics

As in Section 4.1, to define mappings from both erosion and DE semantics
to the standard one, we need to distinguish between ε-variables (named W ,
Wi, W and Wi) and standard variables (named Y , Yi, Y and Yi).

Let T be a first-order theory over the reals, ϕ[Y,W] be any first-order

formula, and ε ∈ R>0. There exist two formulæ (̃ϕ)ε and
«
(ϕ)ε such that

⟫ϕ⟪ε= {∣(̃φ)ε∣} and oϕjε= {∣
«
(ϕ)ε∣}. Moreover, we can compute both of them.

As a matter of fact, it is easy to prove that

̃(ϕ[X])ε = ∃X0 (δ(X,X0) < ε ∧
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ϕJX0K)ε) .

As concern the formula
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ[Y,W])ε, we define it by structural induction

on ψ as follows:
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•
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((t1 ○ t2)[Y,W])ε

def
= ∀Y1(δ(Y1,W) < ε_ (t1 ○ t2)JY,Y1K);

•
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((ψ1 ∧ ψ2)[Y,W]))ε

def
=

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1[Y,W])ε ∧

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ2[Y,W])ε;

•
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((ψ1 ∨ ψ2)[Y,W]))ε

def
=

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1[Y,W])ε ∨

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ2[Y,W])ε;

•
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(∀Wψ1[Y,W,W])ε

def
= ∀Y

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1JY, Y,WK)ε;

•
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(∃Wψ1[Y,W,W])ε

def
= ∃Y

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1JY, Y,WK)ε;

•
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(¬ψ[Y,W])ε

def
= ¬∃Y0(δ(Y0,W) < ε ∧ ψJY,Y0K).

As done for the sphere semantics, we reduce the computation of oϕjε to

the evaluation of the standard semantics of
«
(ϕ)ε.

Theorem 3. Let T be any first-order theory and δ be a T -definable distance.
The erosion semantics o⋅jε of T is T -definable in the standard semantics and,

in particular, oψ[X]jε= {∣
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
(ψ[X])ε∣} for any formula ψ[X] ∈ T and all ε ∈ R>0.

Proof. By structural induction on ψ.

ψ[Y,W] is atomic.
By the definition of the erosion semantics, ot1 ○ t2jε= ⋃B(p,ε)⊆{∣t1○t2∣}{p},
for ○ ∈ {=,<}. The right-hand term of the last equation is the union
of the centers of all the ε-spheres entirely included into the standard
semantics of (t1○t2). Any point y⃗ is included in such a union if and only
if all the points belonging to the ε-sphere centered in y⃗ satisfy (t1 ○ t2).
By the standard semantics, the latter sentence holds if and only if the
formula ∀Y1(δ(Y1,W) < ε_ (t1 ○ t2)JY,Y1K) does the same.

ψ[Y,W] has the form (ψ1 ∧ ψ2)[Y,W].

By definition, oψ1 ∧ ψ2jε
def
= oψ1jε∩oψ2jε, while, by inductive hypothesis

both oψ1jε= {∣
¬
(ψ1) ε∣} and oψ2jε= {∣

¬
(ψ2) ε∣} hold. From the standard

semantics and the definition of
ª
(⋅)ε, we deduce the thesis.
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ψ[Y,W] has the form (ψ1 ∨ ψ2)[Y,W].

Similarly to the previous case, since oψ1 ∨ ψ2jε
def
= oψ1jε∪oψ2jε and by

inductive hypothesis both oψ1jε= {∣
¬
(ψ1) ε∣} and oψ2jε= {∣

¬
(ψ2) ε∣} hold,

we can deduce the thesis directly from the standard semantics and the

definition of
ª
(⋅)ε.

ψ[Y,W] has the form ∀Wψ1[Y,W,W].

By definition, o∀Wψ1[Y,W,W]jε
def
= ⋂r∈Roψ1JY, r,WKjε. By inductive

hypothesis oψ1[Y, r,W]jε= {∣
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1[Y, r,W])ε∣} holds, while by the stan-

dard semantics ⋂r∈Roψ1[Y, r,W]jε= {∣∀Y
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1[Y, Y,W])ε∣} holds too.

Hence, from the definition of erosion semantics, we can conclude that

the sets {∣∀Y
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1[Y, Y,W])ε∣} and o∀Wψ1[Y,W,W]jε are identical.

ψ[Y,W] has the form ∃Wψ1[Y,W,W].
By using the same argument of the previous case, we deduce that

o∃Wψ1[Y,W,W]jε
def
= ⋃r∈Roψ1JY, r,WKjε= {∣∃Y

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ψ1[Y, Y,W])ε∣} holds.

ψ[Y,W] has the form ¬ψ1[Y,W].

By definition, o¬ψjε
def
= ⋃B(p,ε)∩{∣ψ1∣}=∅{p}. The right-hand term of the

last equation is the union of the centers of all the ε-spheres which do not
intersect the standard semantics of ψ1. Any point y⃗ is belongs to such
union if and only if all the points included into the ε-sphere centered
in y⃗ do not satisfy ψ. By the standard semantics, the latter sentence
holds if and only if the formula ¬∃Y0(δ(Y0,W) < ε ∧ ψJY,Y0K) does
the same.

Corollary 2. Let T be a first-order theory. If T is decidable and the distance
δ is definable in T , then DE semantics ⟫.⟪ε over T is decidable.

If in Algorithm 3 we use DE semantics, the emptiness test at line 9 can
be performed by using erosion semantics. As a matter of the facts, since
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⟫ψ⟪ε
def
= ⋃p∈oψjε B (p, ε), ⟫ψ⟪ε is empty if and only if oψjε is empty too. This

replacement does not affect the result of the computation, but it decreases the
complexity of the formulæ whose satisfiability should be tested. In particular,

given a formula ψ[X], we have that ⟫ψ⟪ε= {∣(̃ψ)ε∣} and, by definition, (̃ψ)ε

has ∣X∣ existential quantifiers more than
«
(ψ)ε.

5. Formulæ Simplifications

The formulæ translation described in Sections 4.1 and 4.2 allow us to
decide sphere and DE semantics. They can be used to evaluate any first-order
formula and the complexity of such evaluation depends on that of deciding
T . However, since we are interested in applying the translations in a quite
specific context, i.e., in the evaluation of “reachability formulæ”, we can study
syntactic simplifications tailored on those formulæ. Such simplifications may
decrease the complexity of decision procedures of the emptiness test on line 9
of Algorithm 1.

The first simplifications that we introduce concern the translations of
conjunctions of atomic formulæ from sphere semantics to the standard one.
Conjunctions arise naturally in formulæ expressing reachability since, for in-
stance, in the case of a continuous transition, it is necessary to both impose to
satisfy the invariant and the dynamics. The simplifications that we describe
can be applied only when the atoms represent convex and closed sets.

Lemma 2. Let S ⊆ Rn be a convex and closed set, ε ∈ R>0, and p ∈ Rn. If
∀X0(δ(p,X0) < ε_ ∃X1(X1 ∈ S ∧ δ(X0,X1) < ε)) holds, then p ∈ S.

Proof. The proof is given by contradiction. Let p ∈ (Rn ∖ S) satisfying the
assumption of the lemma. By letting X0 = p we get ∃X1(X1 ∈ S∧ δ(p,X1) <

ε), therefore B (p, ε) ∩ S ≠ ∅, and δ(p,S) < ε.
Then the distance δ(p, conv(S)) is a nonzero number d < ε, since S =

conv(S) is closed. Let q ∈ S be such a point that δ(q, p) = d. We can use the
linear separability theorem: because p = conv(p) and S = conv(S) are two
disjoint convex sets, there exists a separating hyperplane perpendicular to
the line through q and p.

Let us now consider a point v ∈ B (p, ε) on the line going through p and
q such that δ(v, p) = ε − d/2 and δ(v, q) = ε + d/2. Then δ(v,S) ≥ δ(v, q) > ε,
which is a contradiction with the assumption ∀X0(δ(p,X0) < ε_ ∃X1(X1 ∈
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S ∧ δ(X0,X1) < ε)), if d > 0. Therefore δ(p,S) = 0, and because S is closed,
p ∈ S.

By exploiting the above lemma, in the case of a convex and closed set
represented as conjunction of formulæ, we obtain the following result.

Theorem 4. Let T be a first-order theory over the reals, ϕ1[X], . . . , ϕk[X]

be k first-order formulæ T -definable, such that sets {∣ϕ1∣} , . . . ,{∣ϕk∣} ⊆ Rn are
convex and closed, and let ε ∈ R>0. Then the formula

ψ[X]
def
= ∃X0(∀X1(δ(X0,X1) < ε_

⋀
k
i=1 ∃Xi+1(ϕiJXi+1K ∧ δ(Xi+1,X1) < ε)) ∧ δ(X,X0) < ε)

is equivalent to the formula

θ[X]
def
= ∃X0((⋀

k
i=1ϕiJX0K) ∧ δ(X,X0) < ε).

Proof. (⇒) Let ψJqK hold for a point q ∈ Rn. That is equivalent to the formula
∃X0(∀X1(X1 ∈ B (X0, ε) _ ⋀

k
i=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∩ B (X1, ε))) ∧ X0 ∈

B (q, ε)).
Now we can use Lemma 2, letting p = X0,S = {∣ϕi∣} ) and get for any

choice of i ∈ {1, . . . , k} that X0 ∈ {∣ϕi∣} . Then, θJqK = ∃X0(X0 ∈ (⋂
k
i=1 {∣ϕ1∣}) ∧

δ(q,X0) < ε) is true for the given point q ∈ Rn.
(⇐) Let θJqK hold for a point q ∈ Rn. That means the same as the formula

∃X0(X0 ∈ (⋂
k
i=1 {∣ϕi∣}) ∩B (q, ε)), which implies ∃X0(∀X1(δ(X0,X1) < ε _

X0 ∈ ⋂
k
i=1 {∣ϕi∣})∧δ(X0,X1) < ε), that in turn implies ∃X0(∀X1(δ(X0,X1) <

ε _ ⋀ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∧ δ(Xi+1,X1) < ε))), because from above there
exists at least X2 = X0,X3 = X0, . . .Xk+1 = X0 for every X1 ∈ B (X0, ε) .
Which means ψJqK holds.

Similarly, when the convex and closed set is represented as a disjunction
of formulæ, we get the following theorem.

Theorem 5. Let T be a first-order theory over the reals, ϕ1[X], . . . , ϕk[X] be
k first-order formulæ T -definable, such that the union of sets {∣ϕ1∣} , . . . ,{∣ϕk∣} ⊆
Rn is a convex and closed subset of Rn, and let ε ∈ R>0.

Then the formula

ψ[X]
def
= ∃X0(∀X1(δ(X0,X1) < ε_

⋁
k
i=1 ∃Xi+1(ϕiJXi+1K ∧ δ(Xi+1,X1) < ε)) ∧ δ(X,X0) < ε)
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is equivalent to the formula

θ[X]
def
= ∃X0((⋁

k
i=1ϕiJX0K) ∧ δ(X,X0) < ε).

Proof. (⇒) Let ψJqK hold for a point q ∈ Rn. That is equivalent to the
formula ∃X0(∀X1(X1 ∈ B (X0, ε) _ ⋁ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∩B (X1, ε))) ∧
X0 ∈ B (q, ε)), which is equivalent to ∃X0(∀X1(X1 ∈ B (X0, ε) _ ∃X2(X2 ∈

(⋃
k
i=1 {∣ϕi∣}) ∩B (X1, ε))) ∧X0 ∈ B (q, ε)).
Now we can use Lemma 2, letting p = X0,S = ⋃

k
i=1 {∣ϕi∣}, and get X0 ∈

⋃
k
i=1 {∣ϕi[X]∣} = {∣⋁

k
i=1ϕi[X]∣} . Then θJqK = ∃X0((⋁

k
i=1ϕi[X0]) ∧ δ(q,X0) < ε)

is true for the given point q ∈ Rn.
(⇐) Let θJqK hold for a point q ∈ Rn. That means the same as the formula

∃X0(X0 ∈ (⋃
k
i=1 {∣ϕi∣}) ∩B (q, ε)), which implies ∃X0(∀X1(δ(X0,X1) < ε _

X0 ∈ ⋃
k
i=1 {∣ϕi∣})∧δ(X0,X1) < ε), that in turn implies ∃X0(∀X1(δ(X0,X1) <

ε _ ⋁ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∧ δ(Xi+1,X1) < ε))), because from above, there
exists i ∈ {1,2, . . . , k} satisfying X0 ∈ {∣ϕi∣} , which means ψJqK holds.

By applying above results to sphere semantics translation, we obtain the
following simplification.

Corollary 3. Let T be a first-order theory over the reals, ϕ1[X] and ϕ2[X]

be first-order formulæ T -definable, such that both the sets {∣ϕ1∣} and {∣ϕ2∣} are
subsets of Rn are convex and closed, and let ε ∈ R>0. Then

(∣ϕ1[X] ∧ ϕ2[X]∣)ε = {∣∃X0(ϕ1JX0K ∧ ϕ2JX0K ∧ δ(X,X0) < ε)∣} .

In the case of closed formulæ, both sphere and DE semantics are equiva-
lent to the standard one. This is mainly due to the fact that in both semantics
the rules for atoms only expand (shrink, respectively) variables. Moreover,
the rules for quantifiers replace variables with constants.

Theorem 6. If ϕ is a formula without free variables, then ⟫ϕ⟪ε=oϕjε= {∣ϕ∣}.

Proof. As first thing, let notice that the standard evaluation of a formula
ψ without free variables is a truth value which can be true (⊺) or false (�).
Hence, the standard semantics of a formula without free variables is either
{∣ψ∣} = R∗ or {∣ψ∣} = ∅. Moreover, the ε-expansions of such kind of sets,
correspond to the sets themselves, i.e., B (R∗, ε) = R∗ and B (∅, ε) = ∅.
Let first demonstrate by structural induction on a formula ψ without free
variables that oψjε= {∣ψ∣}.

23



t1 ○ t2, for ○ ∈ {=,<}. ot1 ○ t2jε is defined as the union of all the centers of the
ε-spheres entirely included into {∣t1 ○ t2∣}. Since (t1 ○ t2) is without free
variables, either {∣t1 ○ t2∣} = R∗ or {∣t1 ○ t2∣} = ∅. Let notice that both

⋃B(p,ε)⊆R∗{p} = R∗ and ⋃B(p,ε)⊆∅{p} = ∅ hold. But this means that if
(t1 ○ t2) is true, then {∣t1 ○ t2∣} = R∗ =ot1 ○ t2jε, while if (t1 ○ t2) is false,
then {∣t1 ○ t2∣} = ∅ =ot1 ○ t2jε. Then we can state that {∣t1 ○ t2∣} =ot1 ○ t2jε.

ψ1 ∧ ψ2. By the definition of erosion semantics oψ1 ∧ ψ2jε
def
= oψ1jε∩oψ2jε.

Moreover, by inductive hypothesis we know that oψ1jε= {∣ψ1∣} and oψ2jε=

{∣ψ2∣}. Hence, {∣ψ1 ∧ ψ2∣} = {∣ψ1∣} ∩ {∣ψ2∣} =oψ1jε∩oψ2jε=oψ1 ∧ ψ2jε holds.

ψ1 ∨ ψ2. Similarly to the previous case, exploiting the erosion semantics’
definition and the inductive hypothesis, we have that the equalities
{∣ψ1 ∨ ψ2∣} = {∣ψ1∣} ∪ {∣ψ2∣} =oψ1jε∪oψ2jε=oψ1 ∨ ψ2jε hold.

∀Wψ[W ]. In this case, o∀Wψ[W ]jε
def
= ⋂r∈RoψJrKjε. By inductive hypoth-

esis it holds that oψ[r]jε= {∣ψ[r]∣}. Thus, by the standard semantics it
follows that o∀Wψ[W ]jε= ⋂r∈RoψJrKjε= ⋂r∈R {∣ψJrK∣} = {∣∀Wψ[W ]∣}.

∃Wψ[W ]. Similarly to the previous case, exploiting the erosion semantics’
definition and the inductive hypothesis, we have that the equalities
o∃Wψ[W ]jε= ⋃r∈RoψJrKjε= ⋃r∈R {∣ψJrK∣} = {∣∃Wψ[W ]∣} hold.

¬ψ. By the definition of erosion semantics o¬ψjε= ⋃B(p,ε)∩{∣ψ∣}=∅{p}. Note
that if ψ is true, then o¬ψjε= ⋃B(p,ε)∩R∗=∅{p} = ∅ = {∣¬ψ∣}, while if ψ
is false, then o¬ψjε= ⋃B(p,ε)∩∅=∅{p} = R∗ = {∣¬ψ∣}, which means that
o¬ψjε= {∣¬ψ∣}.

Finally, the DE semantics ⟫⋅⟪ε of a formula ψ is defined as B (oψjε, ε). If ψ
is without free variables, we know that B (oψjε, ε) = B ({∣ψ∣}, ε). Moreover,
since in this case {∣ψ∣} is either R∗ or ∅, it holds that B ({∣ψ∣}, ε) = {∣ψ∣}, which
in turn means that ⟫ψ⟪ε= B ({∣ψ∣}, ε) = {∣ψ∣}. In conclusion we can state that
if a formula ψ is without free variables, then ⟫ψ⟪ε=oψjε= {∣ψ∣}.

6. Analysis of Two Biological Hybrid Models

In order to investigate the effectiveness of the proposed methods, we per-
formed ε-semantics based analysis on two biological models that represent
a neural oscillator system and a glycemic control in diabetic patients, re-
spectively. In this section, we present the investigated models and detail the
results of these analysis.
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6.1. Neural Oscillator

Oscillatory electrical stimuli have been considered central for the activi-
ties of several brain regions since the ’80s. It was shown that they play an
important role in the olfactory information processing [15] and they were ob-
served in the hippocampus [16], in the thalamus [17], and in the cortex [18].
Many studies suggested that, in the mammalian visual system, neuron sig-
nals may be grouped together through in-phase oscillations [19]. Hence, the
development and analysis of models representing oscillatory phenomena as-
sume a great importance in understanding the neurophysiological activities.

A simple continuous model of a single oscillator has been proposed in [20].
The model describes the evolutions of one excitatory neuron (Ne) and one
inhibitory neuron (Ni) by mean of the ordinary differential system.

f(τ, λ) ∶ {
Ẋe = −

Xe
τ + tanh (λ ∗Xe) − tanh (λ ∗Xe)

Ẋi = −
Xi
τ + tanh (λ ∗Xi) + tanh (λ ∗Xi)

, (1)

where Xe and Xi are the output of Ne and Ni, respectively, τ is a character-
istic time constant, and λ > 0 is the amplification gain.

Hopf bifurcation characterizes a qualitative change in the evolution of
f(τ, λ): if τ ∗ λ ≤ 1, then the point ⟨0,0⟩ is the unique global attractor
of the system. If, otherwise, τ ∗ λ > 1, all the evolutions converge to a
limit cycle attractor whose period is about 2π

λ and the origin is an unstable
equilibrium [21]. Fig. 3 depicts two simulations of the system f(3,1): one
from a point internal to the limit cycle and one form an external point.

6 4 2 0 2 4 6

6

4

2

0

2

4

6 Trajectory from (-0.5,-0.5)
Trajectory from (-1.0,6.0)

Figure 3: Two evolutions of the system f(3,1). They both converge to a limit cycle.
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Even if f(τ, λ) is rather simple, the ability of analyzing a complex system
obtained by composing multiple copies of this model is limited due to the
non-linearity of f(τ, λ) itself. For this reason, we are interested in the de-
velopment of a piecewise affine hybrid model whose behaviour fairly approx-
imates System (1) and that can be automatically analyzed and composed.

Moreover, while the limit cycle revealed by the differential-based model is
also exhibited by the real system, the unstable equilibrium is not observable
in nature as minimal disturbances always move the system itself away from
the origin. Hence, the differential-based model fails to represent the exact
system evolution with respect to point ⟨0,0⟩ and, because of this, we decided
to investigate it by using ε-based analysis.

We approximated the nonlinear part of the System (1) (i.e., tanh (λ ∗X))
by the piecewise function hλ,α(z) defined as follow:

hλ,α(z)
def
=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1 if z < −αλ
λ
α ∗ z if − α

λ ≤ z <
α
λ

1 if z ≥ α
λ

, (2)

where α is the approximation coefficient which determines the slope of the
central segment (see Figure 4). This leads to the hybrid automaton Hf̃ is
depicted in Figure 5.

0

−1

−0.5

0

0.5

1

X = α
λX = −αλ

tanh (λ ∗X)

hλ,α(X)

Figure 4: hλ,α(X) approximating tanh (λ ∗X).

We intend to study Hf̃ behaviour through sphere semantics, exploiting
cylindrical algebraic decomposition tools to automatically compute it. In
particular, we want to prove that each point in the space reaches a bounded
region which includes the limit cycle. Notice that in this example our au-
tomata have unbounded invariants, hence the termination of sphere seman-
tics reachability algorithm is not guaranteed.
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Xe

Xi

Xe = −
α
λ Xe =

α
λ

Xi = −
α
λ

Xi =
α
λ

Ẋe =
τ∗λ−α
τ∗α Xe −

λ
αXi

Ẋi =
λ
αXe +

τ∗λ−α
τ∗α Xi

v0

Ẋe = −
Xe
τ − λ

αXi − 1

Ẋi =
τ∗λ−α
τ∗α Xi − 1

v1

Ẋe = −
Xe
τ

Ẋi = −
Xi
τ − 2

v2

Ẋe =
τ∗λ−α
τ∗α Xe + 1

Ẋi =
λ
αXe −

Xi
τ − 1

v3

Ẋe = −
Xe
τ + 2

Ẋi = −
Xi
τ

v4

Ẋe = −
Xe
τ − λ

αXi + 1

Ẋi =
τ∗λ−α
τ∗α Xi + 1

v5

Ẋe = −
Xe
τ

Ẋi = −
Xi
τ + 2

v6

Ẋe =
τ∗λ−α
τ∗α Xe − 1

Ẋi =
λ
αXe −

Xi
τ + 1

v7

Ẋe = −
Xe
τ − 2

Ẋi = −
Xi
τ

v8

Figure 5: A graphical representation of the hybrid automaton Hf̃ associated to the func-

tion f̃α(τ, λ).

First of all, we replace the differential equations with the corresponding
first-degree Taylor polynomials. In order to keep the presentation simple, in
this section we fix the parameters as follows τ = 3, λ = 1, α = 2. Hence, the
activations correspond to the axis Xi = ±2 and Xe = ±2.

We start computing the intersections of the limit cycle with the activation
regions. For instance, there is one single point in the intersection between
the limit cycle and the segment defined by Xi = 2 and Xe > 0; we denote it

by Q0
def
= ⟨xQ0 ,2⟩. Similarly, Q1

def
= ⟨2, yQ1⟩ will be the intersection between

the limit cycle and the region Xe = 2 and Xi > 0. Let us now consider a
point P0 located on Xi = 2 such that its distance d0 from Q0 is at least 2ε,

i.e., P0
def
= ⟨xP0 ,2⟩ and δ(Q0, P0)

def
= d0 > 2ε. Moreover, let P1 a point laying

on Xe = 2 that, according to the sphere semantics, is reachable through a
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continuous evaluation from P0.
If we could prove that the distance d1 between such P1 and Q1, i.e.,

d1
def
= δ(Q1, P1), is always smaller than d0, then we would be able to conclude

that all the points which start from a distance of at least 2ε from the limit
cycle converge to a flow tube having diameter 2ε that includes the limit cycle.
Of course, to this end, we need to prove this property on all locations.

We can formalize this property through a first-order formula. In order to
generalize it and enable us to write analogous formulæ for different locations,
we denote with r and s the straight lines Xi = 2 and Xe = 2, respectively,
and with the notation Q0 ∈ (r ∩ C ∩ (Xe > 0)) the membership of Q0 to
the intersection of straight line r with limit cycle C and positive Xe semi-
plane. Moreover, by writing P0 →C P1 we denote the first-order formula
representing the continuous transition from P0 to P1 and, hence, (P0 →C P1)ε
characterizes the sphere semantics of such continuous transition. Thus, our
desired property can be expressed as: The property stating the convergence
to the limit flow tube in location v6 can be expressed as:

∀Q0Q1∀P0P1((Q0 ∈ (r ∩C ∩ (Xe > 0)) ∧Q1 ∈ (s ∩C ∩ (Xi > 0))∧

P0 ∈ (r ∩ (Xe > 0)) ∧ P1 ∈ (s ∩ (Xe > 0))∧

δ(Q0, P0) > 2ε ∧ (P0 →C P1)ε) _ δ(Q1, P1) < δ(Q0, P0)).

(3)

For all the locations, but v0, we can automatically compute a formula anal-
ogous to the above one and express the same property. This can be easily
done by changing the roles of activation border lines r and s.

We used a Python package, named pyHybridAnalysis [22] (available
at http://www.dmi.units.it/~casagran/pyHybridAnalysis/), to encode
both the ε-semantics framework and the simplifications presented in Sec-
tion 5. Moreover, this package provides easy-to-use interfaces to REDLOG [23]
and allows us to test the satisfiability of a formula. We used it to both
evaluate (P0 →C P1)ε and prove our conjectures. In particular, Formula 3
with δ induced by maximum norm, has been evaluated to true in about 25
seconds on a MacBook Pro Late 2011 having 8GB RAM. This result has
been achieved mainly thank to the linear dynamics approximation and the
simplifications presented in Section 5. As a matter of facts, without applying
formula simplification, we were not able to get any result after 1 hour.

One could argue that the linear dynamics, which has been used in the
analysis, roughly approximates the original system. However, we can easily
improve the precision of our model by augmenting the number of its locations
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(e.g., see Figure 6). This only increase the number of formulæ we have to
check and not their complexity.

5 0 5

5

0

5

Trajectory from (-0.5,-0.5)
Trajectory from (-1.0,6.0)

Figure 6: In order to better approximate the original system still using linear dynamics
we can increase the number of automaton’s locations.

As far as ⟨0,0⟩ is concerned, it is immediate to prove that, according to
sphere semantics, it reaches points different from itself and, hence, the limit
flow tube, while this not the case for the standard semantics. This is a very
simple example on which standard reachability fails to capture the behaviour
of the real system.

Other interesting properties that can be automatically verified express
the fact that by applying the sphere semantics there are points that cross
the limit cycle. Since natural phenomena are subject to noises, this appear
to be more coherent to the modeled system than what happen by applying
standard semantics.

6.2. Glycemic control in Diabetic Patients

The glycemic control in diabetic patients consists in monitoring and cor-
recting the blood glucose level of a patient affected by diabetes. Since it is
well known that a good glycemic control plays an important role in the dia-
betes care, it is important to develop and study models that may be useful
in the design of insulin infusion devices.

The investigated hybrid automaton is based on the continuos model pre-
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sented in [24]. The overall system is depicted by the following system.

Ġ = − p1G −X(G +GB) + g(t)

Ẋ = − p2X + p3I

İ = − n(I + IB) +
1

VI
i(t)

where the functions g(t) and i(t) directly depend on G and t, respectively,
and are piecewise defined as:

i(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

25
3 G(t) ≤ 4
25
3 (G(t) − 3) G(t) ∈ [4,8]
125
3 G(t) ≥ 8

g(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

t
60 t ≤ 30
120−t
180 t ∈ [30,120]

0 t ≥ 120

.

The variable G characterizes the plasma glucose concentration, X the insulin
concentration in the remote compartment, while I is the free plasma insulin
concentration. The constants GB and IB represent the basal reference values
of plasma glucose and insulin, respectively, while i(t) and g(t) describe the
infusion evolution of glucose and insulin into the bloodstream of the patient.

First of all, we divided the space into nine different sectors, according to
the combination between the different evolutions of the functions g(t) and
i(t). Since the phases of g(t) directly depend on time, we added a further
variable to our model: the time variable T that measures the time since
the beginning of the simulation. We approximate the differential equations
with the corresponding first-degree Taylor polynomials. The resultant hybrid
automaton is depicted in Figure 7, where all the activations are satisfied when
the variables G and T assume the values that lie on the dashed straight lines,
while the resets are simply identity functions.

We may want to test whether the glucose concentration does not grow
too fast. Such a behaviour can be verified by testing that the half-space
above a given line is not reachable: the higher the slope of the line, the
greater the growth of the glucose concentration. We chose the half-space
6 ∗ (t + 105) ≤ 135G and we checked that this region is not reachable from
G ∈ [−2,2]∧X = 0∧I ∈ [−0.1,0.1]. Such verification was performed exploiting
both the ε-semantics presented in Section 4. Sphere semantics was used as
parameter of Algorithm 1 in order to obtain a halting criterion that, also in
this case, takes into account natural noise. Then, we evaluated the formula
returned by the algorithm in DE semantics, with the purpose of considering
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İ = −n(I + Ib) +
125
3VI

v0
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Ẋ = −p2X + p3I
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Figure 7: A graphical representation of the glycemic control hybrid automaton.
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only states that are robustly reachable. This means that we allow the system
to be above the half-space, but only for an ε.

Notice that, by passing DE semantics to Algorithm 1, the result of the
computation would have been the empty set. This is due to the fact that
activation formulæ characterize lines which cannot include spheres.

7. Conclusions

This work describes a new reachability algorithm based on ε-semantics
which enables us to analyze any hybrid automaton in Michael’s form. It intro-
duces two ε-semantics whose evaluations can be reduced to the decidability
of first-order formulæ, and, finally, it shows how to simplify such formulæ.
Two biological applications are considered to show the effectiveness of the
approach: a neural oscillator whose components derive from the approxima-
tion of the continuous model presented in [20], and a glycemic control in
diabetic patients based on the continuous model provided in [24].

In the neural oscillator, our analysis reveals that any point which begins
its evolution from a distance of at least 2ε from the limit cycle, converges
to a flow tube which has a diameter of 2ε and that includes the limit cycle.
The use of linear dynamics together with formula simplifications and local
reformulation of the analyzed property allowed us to efficiently investigate
the system.

In the study of the glycemic control we verified the low grow of glucose
concentration combining two different ε-semantics. In particular, sphere se-
mantics was exploited in the reachability computation to introduce noise,
while DE semantics ensured that we considered only robust behaviours.

Among all the works concerning approximation techniques over hybrid
automata, the closest to our approach are [13, 25, 26]. Fränzle in [13] presents
a model of noise over hybrid automata. The introduction of noise ensures
in many cases the (semi-)decidability of the reachability problem. Another
result of (semi-)decidability always based on the concept of perturbation and
concerning the safety verification of hybrid systems is given by Ratschan
in [25]. Furthermore, ε-(bi)simulation [26] relations, which are essentially
relaxations on the infinite precision required by simulation and bisimulation,
represent tools able to remove complexity and undecidability issues related
to the analysis of the investigated model. Some more comparisons can be
found in [27].
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In the examples that we considered, some natural behaviours, which are
not captured by standard semantics, emerged by using ε-semantics. On the
other hand, we still lack a general method to prove that ε-semantics do not
neglect essential behaviours. To this aim, as future work, we are interested
in deeper analyzing the relationship between standard and ε-semantics when
ε tends to 0.

As far as the examples are concerned, we plan to analyze the behaviour of
a group of neural oscillators by combining several hybrid automata. More-
over, it is in our interest to extend the study of the glycemic control to
the computation of the whole reachability set, eventually defining new ε-
semantics and formulæ simplifications to make the computation of the reach-
ability set more efficient.
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Science, and Logic (CSL 99), Vol. 1683 of Lecture Notes in Computer
Science, Springer, 1999, pp. 126–140.

[14] A. Casagrande, T. Dreossi, C. Piazza, Hybrid automata and ε-analysis
on a neural oscillator, in: Proc. of the 1st International Workshop on
Hybrid Systems and Biology (HSB 2012), Vol. 92 of EPTCS, 2012, pp.
58–72.

[15] W. J. Freeman, C. A. Skarda, Spatial EEG patterns, non-linear dy-
namics and perception: the neo-Sherringtonian view., Brain Res 357 (3)
(1985) 147–175.

[16] R. D. Traub, R. Miles, Neuronal Networks of the Hippocampus, Cam-
bridge University Press, New York, NY, USA, 1991.

[17] M. Steriade, R. R. Llinás, The functional states of the thalamus and
the associated neuronal interplay., Physiological reviews 68 (3) (1988)
649–742.

34



[18] L. R. Silva, Y. Amitai, B. W. Connors, Intrinsic oscillations of neocortex
generated by layer 5 pyramidal neurons., Science 251 (4992) (1991) 432–
5.

[19] C. M. Gray, P. Konig, A. K. Engel, W. Singer, Oscillatory responses in
cat visual cortex exhibit inter-columnar synchronization which reflects
global stimulus properties, Nature 338 (6213) (1989) 334–337.

[20] A. Tonnelier, S. Meignen, H. Bosch, J. Demongeot, Synchronization and
desynchronization of neural oscillators, Neural Networks 12 (9) (1999)
1213 – 1228.

[21] A. F. Atiya, P. Baldi, Oscillations and synchronizations in neural net-
works: an exploration of the labeling hypothesis, Int. J. Neural Syst.
1 (2) (1989) 103–124.

[22] A. Casagrande, T. Dreossi, pyHybridAnalysis: a Package for ε-
Semantics Analysis of Hybrid Systems, in: Proc. of the 16th Euromicro
Conference on Digital System Design (DSD 2013), IEEE Computer So-
ciety Press, 2013, pp. 815–818.

[23] A. Dolzmann, T. Sturm, REDLOG: computer algebra meets computer
logic, SIGSAM Bull. 31 (2) (1997) 2–9.

[24] S. M. Furler, E. W. Kraegen, R. H. Smallwood, D. J. Chisholm, et al.,
Blood glucose control by intermittent loop closure in the basal mode:
computer simulation studies with a diabetic model, Diabetes care 8 (6)
(1985) 553–561.

[25] S. Ratschan, Safety verification of non-linear hybrid systems is quasi-
semidecidable, in: Proc. 7th Annual Conference of Theory and Appli-
cations of Models of Computation (TAMC 2010), Vol. 6108 of Lecture
Notes in Computer Science, springer, 2010, pp. 397–408.

[26] A. Girard, G. J. Pappas, Approximation metrics for discrete and con-
tinuous systems, IEEE Trans. Automat. Control 52 (5) (2007) 782–798.

[27] A. Casagrande, C. Piazza, Model checking on hybrid automata, in: Proc.
of the 15th Euromicro Conference on Digital System Design (DSD 2012),
IEEE Computer Society Press, 2012, pp. 493–500.

35


