TOGNAN, ALESSANDRO

TOGNAN, ALESSANDRO  

DPIA - DIPARTIMENTO POLITECNICO DI INGEGNERIA E ARCHITETTURA  

Mostra records
Risultati 1 - 8 di 8 (tempo di esecuzione: 0.018 secondi).
Titolo Data di pubblicazione Autore(i) File
A Bayesian defect-based physics-guided neural network model for probabilistic fatigue endurance limit evaluation 1-gen-2024 Tognan, A; Patanè, A; Laurenti, L; Salvati, E
A defect-based physics-informed machine learning framework for fatigue finite life prediction in additive manufacturing 1-gen-2022 Salvati, Enrico; Tognan, Alessandro; Laurenti, Luca; Pelegatti, Marco; DE BONA, Francesco
Contour Method with Uncertainty Quantification: A Robust and Optimised Framework via Gaussian Process Regression 1-gen-2022 Tognan, A.; Laurenti, L.; Salvati, E.
Evaluation and Origin of Residual Stress in Hybrid Metal and Extrusion Bonding and Comparison with Friction Stir Welding 1-gen-2022 Tognan, A.; Sandnes, L.; Totis, G.; Sortino, M.; Berto, F.; Grong, O.; Salvati, E.
On the significance of diffuse crack width self-evolution in the phase-field model for residually stressed brittle materials 1-gen-2021 Salvati, E.; Menegatti, F.; Kumar, M.; Pelegatti, M.; Tognan, A.
Probabilistic defect-based modelling of fatigue strength for incomplete datasets assisted by literature data 1-gen-2023 Tognan, A.; Salvati, E.
Quantification of uncertainty in a defect-based Physics-Informed Neural Network for fatigue evaluation and insights on influencing factors 1-gen-2023 Avoledo, E.; Tognan, A.; Salvati, E.
Supervised Machine Learning Approaches for Structural Integrity: Residual Stress Evaluation and Defect-based Fatigue Modelling 10-giu-2024 Tognan, Alessandro