The contribution of this paper is twofold. Firstly, an example of a (positive) linear switched system that can be stabilized, via a controlled switching signal, but does not admit a smooth and positively homogeneous control Lyapunov function, is provided. The spectral properties of the subsystem matrices and of the Lyapunov candidates of the convex differential inclusion associated with the switched system, are thoroughly investigated. Secondly, by taking inspiration from the example, new feedback stabilization techniques for stabilizable positive switched systems are provided. © 2013 IEEE.

A stabilizable switched linear system does not necessarily admit a smooth homogeneous Lyapunov function

BLANCHINI, Franco;
2013-01-01

Abstract

The contribution of this paper is twofold. Firstly, an example of a (positive) linear switched system that can be stabilized, via a controlled switching signal, but does not admit a smooth and positively homogeneous control Lyapunov function, is provided. The spectral properties of the subsystem matrices and of the Lyapunov candidates of the convex differential inclusion associated with the switched system, are thoroughly investigated. Secondly, by taking inspiration from the example, new feedback stabilization techniques for stabilizable positive switched systems are provided. © 2013 IEEE.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1006949
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact