Triacylglycerols (TAGs) are accumulated in specialised organelles called “oil bodies”, which are enclosed in a phospholipid monolayer embedded with some unique proteins. Upon germination, such membranes are modified to allow the availability of TAGs as an energy source during early stages of seedling growth in oilseeds. This process occurs by the sequential and/or collective action of many hydrolytic enzymes, such as phospholipases, lipoxygenases and lipases that are associated to oil body membranes. In contrast, during seed storage, oilseed lipids may undergo lipolytic degradation processes leading to a wide range of metabolites potentially harmful for seed viability. In particular, green coffee endosperm consist of approx. 99% of the mature seed mass and contains many polyunsaturated fatty acids whose degradation leads to volatile compound formation through the oxylipin pathway. In spite of this, the enzymes involved in TAGs degradation (particularly lipases) are poorly studied. Therefore, the aim of this work was to evaluate the involvement of phospholipase activity in oil body membrane degradation during storage of green coffee (Coffea arabica L.) and to determine the correlations between storage lipid mobilization and maintenance of seed viability in beans harvested in different countries (Ethiopia, India, Kenya and Tanzania). Green coffee beans were frozen and powdered in liquid nitrogen and oil bodies were extracted with cold acetone. Phospholipase A1 and A2 activities were assayed in crude extracts by a fluorimetric method, using different probes. Such activities were just partially stimulated by free Ca2+, in contrast with what reported by others. Furthermore, PLA2 activity was assayed in a wide range of pH, evidencing two peaks of pH optimum. These results suggests that green coffee bean presents at least two isoforms of PLA2. Phospholipase profiles (PLA2 and total) were correlated with the provenience of the beans, showing a higher activity in those harvested in Ethiopia, while the lower was associated to beans from India.
Phospholipase activities in green coffee beans (Coffea arabica L.) harvested in different countries
BRAIDOT, Enrico;ZANCANI, Marco;
2010-01-01
Abstract
Triacylglycerols (TAGs) are accumulated in specialised organelles called “oil bodies”, which are enclosed in a phospholipid monolayer embedded with some unique proteins. Upon germination, such membranes are modified to allow the availability of TAGs as an energy source during early stages of seedling growth in oilseeds. This process occurs by the sequential and/or collective action of many hydrolytic enzymes, such as phospholipases, lipoxygenases and lipases that are associated to oil body membranes. In contrast, during seed storage, oilseed lipids may undergo lipolytic degradation processes leading to a wide range of metabolites potentially harmful for seed viability. In particular, green coffee endosperm consist of approx. 99% of the mature seed mass and contains many polyunsaturated fatty acids whose degradation leads to volatile compound formation through the oxylipin pathway. In spite of this, the enzymes involved in TAGs degradation (particularly lipases) are poorly studied. Therefore, the aim of this work was to evaluate the involvement of phospholipase activity in oil body membrane degradation during storage of green coffee (Coffea arabica L.) and to determine the correlations between storage lipid mobilization and maintenance of seed viability in beans harvested in different countries (Ethiopia, India, Kenya and Tanzania). Green coffee beans were frozen and powdered in liquid nitrogen and oil bodies were extracted with cold acetone. Phospholipase A1 and A2 activities were assayed in crude extracts by a fluorimetric method, using different probes. Such activities were just partially stimulated by free Ca2+, in contrast with what reported by others. Furthermore, PLA2 activity was assayed in a wide range of pH, evidencing two peaks of pH optimum. These results suggests that green coffee bean presents at least two isoforms of PLA2. Phospholipase profiles (PLA2 and total) were correlated with the provenience of the beans, showing a higher activity in those harvested in Ethiopia, while the lower was associated to beans from India.File | Dimensione | Formato | |
---|---|---|---|
Libro_Abstract_Riunione_GIBB_2010.pdf
accesso aperto
Tipologia:
Abstract
Licenza:
Creative commons
Dimensione
658.05 kB
Formato
Adobe PDF
|
658.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.