A fully conjugate heat transfer analysis of gaseous flow, within slip flow regime, in short microchannel is presented. A Navier Stokes code, coupled with Maxwell and Smoluchowski slip and temperature jump model, is adopted. Due to the link between temperature and velocity field in highly compressible flows, results are presented for Nusselt number, heat sink thermal resistance and resulting wall temperature as well as Mach number profiles for different conditions, commenting on the relative importance of wall conduction, rarefaction and compressibility. Compressibility plays a major role, and the reduction in heat transfer rate due to axial conduction is quite remarkable.
Computational Analysis of Conjugate Heat Transfer in Gaseous Micro Channels
CROCE, Giulio;ROVENSKAYA, Olga;D'AGARO, Paola
2013-01-01
Abstract
A fully conjugate heat transfer analysis of gaseous flow, within slip flow regime, in short microchannel is presented. A Navier Stokes code, coupled with Maxwell and Smoluchowski slip and temperature jump model, is adopted. Due to the link between temperature and velocity field in highly compressible flows, results are presented for Nusselt number, heat sink thermal resistance and resulting wall temperature as well as Mach number profiles for different conditions, commenting on the relative importance of wall conduction, rarefaction and compressibility. Compressibility plays a major role, and the reduction in heat transfer rate due to axial conduction is quite remarkable.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.