In this paper we show that the symmetric group $S_n$ has a Majorana representation $(S_n, T, W, \phi, \psi)$ only if $n\leq 12$. The converse follows by a result of Simon Norton, who proved that the Monster group has a subgroup isomorphic to $S_{12}$. Further, we give the irreducible constituents and their dimensions of the ${\mathbb R}[S_n]$-modules generated by the axial vectors for $8\leq n\leq 12$

Standard Majorana Representations of the Symmetric Groups

MAINARDIS, Mario
2014-01-01

Abstract

In this paper we show that the symmetric group $S_n$ has a Majorana representation $(S_n, T, W, \phi, \psi)$ only if $n\leq 12$. The converse follows by a result of Simon Norton, who proved that the Monster group has a subgroup isomorphic to $S_{12}$. Further, we give the irreducible constituents and their dimensions of the ${\mathbb R}[S_n]$-modules generated by the axial vectors for $8\leq n\leq 12$
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1045589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact