A heritage-listed R/C water tower designed by the world-famous Italian engineer Pier Luigi Nervi and built in the early 1930s, representative of a wide stock of heritage-listed elevated liquid storage tanks with frame staging, is examined in this study. The assessment analysis of the structure is developed with a detailed finite element model, which includes a multi spring-mass assembly to reproduce the fluid–tank dynamic interaction. The time-history evaluation enquiry shows collapse response conditions under seismic action scaled at the maximum considered earthquake (MCE) level. Based on these data, a passive supplemental energy dissipation-based retrofit hypothesis is proposed, consisting of the installation of a dissipative bracing system incorporating pressurized fluid viscous spring-dampers. The installation details the protective technology, and the benefits induced in the seismic response of the tank structure are discussed. Costs are also estimated and compared with the costs of a conventional nondissipative bracing retrofit solution developed for the same performance.

Analysis and seismic retrofit study of a heritage-listed R/C elevated water tower

SORACE, Stefano;
2015-01-01

Abstract

A heritage-listed R/C water tower designed by the world-famous Italian engineer Pier Luigi Nervi and built in the early 1930s, representative of a wide stock of heritage-listed elevated liquid storage tanks with frame staging, is examined in this study. The assessment analysis of the structure is developed with a detailed finite element model, which includes a multi spring-mass assembly to reproduce the fluid–tank dynamic interaction. The time-history evaluation enquiry shows collapse response conditions under seismic action scaled at the maximum considered earthquake (MCE) level. Based on these data, a passive supplemental energy dissipation-based retrofit hypothesis is proposed, consisting of the installation of a dissipative bracing system incorporating pressurized fluid viscous spring-dampers. The installation details the protective technology, and the benefits induced in the seismic response of the tank structure are discussed. Costs are also estimated and compared with the costs of a conventional nondissipative bracing retrofit solution developed for the same performance.
2015
978-1-84564-924-1
File in questo prodotto:
File Dimensione Formato  
SD15049FU1_Sorace-Terenzi-Mori.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 547.55 kB
Formato Adobe PDF
547.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1069626
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact