Person re-identification is an open and challenging problem in computer vision. Existing re-identification approaches focus on optimal methods for features matching (e.g., metric learning approaches) or study the inter-camera transformations of such features. These methods hardly ever pay attention to the problem of visual ambiguities shared between the first ranks. In this paper, we focus on such a problem and introduce an unsupervised ranking optimization approach based on discriminant context information analysis. The proposed approach refines a given initial ranking by removing the visual ambiguities common to first ranks. This is achieved by analyzing their content and context information. Extensive experiments on three publicly available benchmark datasets and different baseline methods have been conducted. Results demonstrate a remarkable improvement in the first positions of the ranking. Regardless of the selected dataset, state-of-the-art methods are strongly outperformed by our method. © 2015 IEEE.

Person re-identification ranking optimisation by discriminant context information analysis

MARTINEL, Niki;MICHELONI, Christian;
2015-01-01

Abstract

Person re-identification is an open and challenging problem in computer vision. Existing re-identification approaches focus on optimal methods for features matching (e.g., metric learning approaches) or study the inter-camera transformations of such features. These methods hardly ever pay attention to the problem of visual ambiguities shared between the first ranks. In this paper, we focus on such a problem and introduce an unsupervised ranking optimization approach based on discriminant context information analysis. The proposed approach refines a given initial ranking by removing the visual ambiguities common to first ranks. This is achieved by analyzing their content and context information. Extensive experiments on three publicly available benchmark datasets and different baseline methods have been conducted. Results demonstrate a remarkable improvement in the first positions of the ranking. Regardless of the selected dataset, state-of-the-art methods are strongly outperformed by our method. © 2015 IEEE.
2015
9781467383912
File in questo prodotto:
File Dimensione Formato  
mypaper.pdf

non disponibili

Descrizione: Articolo Principale
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1094705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 71
social impact