A fully conjugate heat transfer analysis of gaseous flow, within slip flow regime, in short microchannels is presented. A Navier Stokes code, coupled with Maxwell slip and Smoluchowski temperature jump models, is adopted. The main focus is on the interaction between compressibility and heat transfer; in particular, due to the link between temperature and velocity field in highly compressible flow, it is important to recast the channel performance parameters in order to take into account the flow cooling due to the conversion between internal and kinetic energy. Results are presented for Nusselt number and a corrected heat sink thermal resistance, as well as resulting wall temperature.

Conjugate heat transfer performances for gaseous flows in short micro channels

CROCE, Giulio;
2014

Abstract

A fully conjugate heat transfer analysis of gaseous flow, within slip flow regime, in short microchannels is presented. A Navier Stokes code, coupled with Maxwell slip and Smoluchowski temperature jump models, is adopted. The main focus is on the interaction between compressibility and heat transfer; in particular, due to the link between temperature and velocity field in highly compressible flow, it is important to recast the channel performance parameters in order to take into account the flow cooling due to the conversion between internal and kinetic energy. Results are presented for Nusselt number and a corrected heat sink thermal resistance, as well as resulting wall temperature.
9780791846278
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/1101692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact