The recognition of events in videos is a relevant and challenging task of automatic semantic video analysis. At present one of the most successful frameworks, used for object recognition tasks, is the bag-of-words (BoW) approach. However this approach does not model the temporal information of the video stream. In this paper we present a method to introduce temporal information within the BoW approach. Events are modeled as a sequence composed of histograms of visual features, computed from each frame using the traditional BoW model. The sequences are treated as strings where each histogram is considered as a character. Event classification of these sequences of variable size, depending on the length of the video clip, are performed using SVM classifiers with a string kernel that uses the Needlemann-Wunsch edit distance. Experimental results, performed on two datasets, soccer video and TRECVID 2005, demonstrate the validity of the proposed approach. © 2009 Springer Berlin Heidelberg.

Video event classification using bag of words and string kernels

SERRA, Giuseppe
2009

Abstract

The recognition of events in videos is a relevant and challenging task of automatic semantic video analysis. At present one of the most successful frameworks, used for object recognition tasks, is the bag-of-words (BoW) approach. However this approach does not model the temporal information of the video stream. In this paper we present a method to introduce temporal information within the BoW approach. Events are modeled as a sequence composed of histograms of visual features, computed from each frame using the traditional BoW model. The sequences are treated as strings where each histogram is considered as a character. Event classification of these sequences of variable size, depending on the length of the video clip, are performed using SVM classifiers with a string kernel that uses the Needlemann-Wunsch edit distance. Experimental results, performed on two datasets, soccer video and TRECVID 2005, demonstrate the validity of the proposed approach. © 2009 Springer Berlin Heidelberg.
978-3-642-04146-4
978-3-642-04145-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/1105598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact