Techniques based on Bag Of Words approach represent images by quantizing local descriptors and summarizing their distribution in a histogram. Dierently, in this paper we describe an image as multivariate Gaussian distribution, estimated over the extracted local descriptors. The estimated distribution is mapped to a high-dimensional descriptor, by concatenating the mean vector and the projection of the covariance matrix on the Euclidean space tangent to the Riemannian manifold. To deal with large scale datasets and high dimensional feature spaces the Stochastic Gradient Descent solver is adopted. The experimental results on Caltech-101 and ImageCLEF2011 show that the method obtains competitive performance with state-of-the art approaches.

Image classification with multivariate Gaussian descriptors

SERRA, Giuseppe;
2013-01-01

Abstract

Techniques based on Bag Of Words approach represent images by quantizing local descriptors and summarizing their distribution in a histogram. Dierently, in this paper we describe an image as multivariate Gaussian distribution, estimated over the extracted local descriptors. The estimated distribution is mapped to a high-dimensional descriptor, by concatenating the mean vector and the projection of the covariance matrix on the Euclidean space tangent to the Riemannian manifold. To deal with large scale datasets and high dimensional feature spaces the Stochastic Gradient Descent solver is adopted. The experimental results on Caltech-101 and ImageCLEF2011 show that the method obtains competitive performance with state-of-the art approaches.
2013
978-3-642-41183-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1105609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact