We present an electrical model for the high frequency impedance spectroscopy (HFIS) response of nanoelectrodes to CCMV capsids and full virus biomolecules. The virus electrical and geometrical parameters are extracted from available atomistic descriptions. Simulations of the response at a realistic HFIS CMOS platform suggest that the frequency of optimum sensitivity is within reach of existing designs. Furthermore, they shed light on the role of virus charge and ionic strength on the expected signal. The detection of single viruses could be possible with decananometer scale electrodes operated in optimal conditions and low-noise readout circuitry. © 2017 IEEE.
Modeling and Simulation of Small CCMV Virus Detection by means of High Frequency Impedance Spectroscopy at Nanoelectrodes
COSSETTINI, ANDREA
;SCARBOLO, Paolo;SELMI, Luca
2017-01-01
Abstract
We present an electrical model for the high frequency impedance spectroscopy (HFIS) response of nanoelectrodes to CCMV capsids and full virus biomolecules. The virus electrical and geometrical parameters are extracted from available atomistic descriptions. Simulations of the response at a realistic HFIS CMOS platform suggest that the frequency of optimum sensitivity is within reach of existing designs. Furthermore, they shed light on the role of virus charge and ionic strength on the expected signal. The detection of single viruses could be possible with decananometer scale electrodes operated in optimal conditions and low-noise readout circuitry. © 2017 IEEE.File | Dimensione | Formato | |
---|---|---|---|
FINAL_PROCEEDINGS.pdf
non disponibili
Descrizione: articolo principale
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.