We present an electrical model for the high frequency impedance spectroscopy (HFIS) response of nanoelectrodes to CCMV capsids and full virus biomolecules. The virus electrical and geometrical parameters are extracted from available atomistic descriptions. Simulations of the response at a realistic HFIS CMOS platform suggest that the frequency of optimum sensitivity is within reach of existing designs. Furthermore, they shed light on the role of virus charge and ionic strength on the expected signal. The detection of single viruses could be possible with decananometer scale electrodes operated in optimal conditions and low-noise readout circuitry. © 2017 IEEE.

Modeling and Simulation of Small CCMV Virus Detection by means of High Frequency Impedance Spectroscopy at Nanoelectrodes

COSSETTINI, ANDREA
;
SCARBOLO, Paolo;SELMI, Luca
2017-01-01

Abstract

We present an electrical model for the high frequency impedance spectroscopy (HFIS) response of nanoelectrodes to CCMV capsids and full virus biomolecules. The virus electrical and geometrical parameters are extracted from available atomistic descriptions. Simulations of the response at a realistic HFIS CMOS platform suggest that the frequency of optimum sensitivity is within reach of existing designs. Furthermore, they shed light on the role of virus charge and ionic strength on the expected signal. The detection of single viruses could be possible with decananometer scale electrodes operated in optimal conditions and low-noise readout circuitry. © 2017 IEEE.
2017
978-1-5090-3028-6
File in questo prodotto:
File Dimensione Formato  
FINAL_PROCEEDINGS.pdf

non disponibili

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1127427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact