We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.
Algebraic entropy in locally linearly compact vector spaces
CASTELLANO, Ilaria;Giordano Bruno, Anna
2017-01-01
Abstract
We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ent-llcIRIS.pdf
Open Access dal 15/11/2018
Descrizione: Articolo principale, Accesso Aperto MIUR
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
317.54 kB
Formato
Adobe PDF
|
317.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.