We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.

Algebraic entropy in locally linearly compact vector spaces

CASTELLANO, Ilaria;Giordano Bruno, Anna
2017-01-01

Abstract

We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69–87, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem.
2017
978-3-319-65872-8
978-3-319-65874-2
File in questo prodotto:
File Dimensione Formato  
Ent-llcIRIS.pdf

Open Access dal 15/11/2018

Descrizione: Articolo principale, Accesso Aperto MIUR
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 317.54 kB
Formato Adobe PDF
317.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1128179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact