Temporal reasoning based on intervals is nowadays ubiquitous in artificial intelligence, and the most representative interval temporal logic, called HS, was introduced by Halpern and Shoham in the eighties. There has been a great effort in the past in studying the expressive power and computational properties of the satisfiability problem for HS and its fragments, but only recently HS has been proposed as a suitable formalism for artificial intelligence applications. Such applications highlighted some of the intrinsic limits of HS: Sometimes, when dealing with real-life data one is not able to express temporal relations and propositional labels in a definite, crisp way. In this paper, following the seminal ideas of Fitting and Zadeh, among others, we present a fuzzy generalization of HS that partially solves such problems of expressive power, and we prove that, as in the crisp case, its satisfiability problem is generally undecidable.
An Approach to Fuzzy Modal Logic of Time Intervals
Dario Della Monica;Guido Sciavicco
2020-01-01
Abstract
Temporal reasoning based on intervals is nowadays ubiquitous in artificial intelligence, and the most representative interval temporal logic, called HS, was introduced by Halpern and Shoham in the eighties. There has been a great effort in the past in studying the expressive power and computational properties of the satisfiability problem for HS and its fragments, but only recently HS has been proposed as a suitable formalism for artificial intelligence applications. Such applications highlighted some of the intrinsic limits of HS: Sometimes, when dealing with real-life data one is not able to express temporal relations and propositional labels in a definite, crisp way. In this paper, following the seminal ideas of Fitting and Zadeh, among others, we present a fuzzy generalization of HS that partially solves such problems of expressive power, and we prove that, as in the crisp case, its satisfiability problem is generally undecidable.File | Dimensione | Formato | |
---|---|---|---|
ecai20_editor.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
274.56 kB
Formato
Adobe PDF
|
274.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.