A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds.

Resynchronizing classes of word relations

Puppis G.
2018-01-01

Abstract

A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds.
2018
978-3-95977-076-7
File in questo prodotto:
File Dimensione Formato  
ICALP 2018 Editoriale.pdf

accesso aperto

Descrizione: ICALP 2018 versione editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 675.08 kB
Formato Adobe PDF
675.08 kB Adobe PDF Visualizza/Apri
ICALP 2018 Post-print.pdf

accesso aperto

Descrizione: ICALP 2018 versione post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 957.94 kB
Formato Adobe PDF
957.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1174110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact