A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds.
Resynchronizing classes of word relations
Puppis G.
2018-01-01
Abstract
A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds.File | Dimensione | Formato | |
---|---|---|---|
ICALP 2018 Editoriale.pdf
accesso aperto
Descrizione: ICALP 2018 versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
675.08 kB
Formato
Adobe PDF
|
675.08 kB | Adobe PDF | Visualizza/Apri |
ICALP 2018 Post-print.pdf
accesso aperto
Descrizione: ICALP 2018 versione post-print
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
957.94 kB
Formato
Adobe PDF
|
957.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.