Learning discriminative, view-invariant and multi-scale representations of person appearance with different semantic levels is of paramount importance for person Re-Identification (Re-ID). A surge of effort has been spent by the community to learn deep Re-ID models capturing a holistic single semantic level feature representation. To improve the achieved results, additional visual attributes and body part-driven models have been considered. However, these require extensive human annotation labor or demand additional computational efforts. We argue that a pyramid-inspired method capturing multi-scale information may overcome such requirements. Precisely, multi-scale stripes that represent visual information of a person can be used by a novel architecture factorizing them into latent discriminative factors at multiple semantic levels. A multi-task loss is combined with a curriculum learning strategy to learn a discriminative and invariant person representation which is exploited for triplet-similarity learning. Results on three benchmark Re-ID datasets demonstrate that better performance than existing methods are achieved (e.g., more than 90% accuracy on the Duke-MTMC dataset).
Aggregating Deep Pyramidal Representations for Person Re-Identification
Martinel N.
Primo
;Foresti G. L.;Micheloni C.
2019-01-01
Abstract
Learning discriminative, view-invariant and multi-scale representations of person appearance with different semantic levels is of paramount importance for person Re-Identification (Re-ID). A surge of effort has been spent by the community to learn deep Re-ID models capturing a holistic single semantic level feature representation. To improve the achieved results, additional visual attributes and body part-driven models have been considered. However, these require extensive human annotation labor or demand additional computational efforts. We argue that a pyramid-inspired method capturing multi-scale information may overcome such requirements. Precisely, multi-scale stripes that represent visual information of a person can be used by a novel architecture factorizing them into latent discriminative factors at multiple semantic levels. A multi-task loss is combined with a curriculum learning strategy to learn a discriminative and invariant person representation which is exploited for triplet-similarity learning. Results on three benchmark Re-ID datasets demonstrate that better performance than existing methods are achieved (e.g., more than 90% accuracy on the Duke-MTMC dataset).File | Dimensione | Formato | |
---|---|---|---|
Martinel_Aggregating_Deep_Pyramidal_Representations_for_Person_Re-Identification_CVPRW_2019_paper.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
15.06 MB
Formato
Adobe PDF
|
15.06 MB | Adobe PDF | Visualizza/Apri |
foresti2.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.