For cumulative link models, we propose a new estimation approach aiming at median bias reduction (Kenne Pagui et al., 2017). Such approach is based on an adjustment of the score function. The method does not require finiteness of the maximum likelihood estimate and is effective in preventing boundary estimates. The resulting estimator is componentwise third-order median unbiased in the continuous case and equivariant under componentwise monotone reparameterizations. Simulation studies and an application compare the proposed method with maximum likelihood and mean bias reduction.

Median bias reduction in cumulative link models

Gioia, Vincenzo;
2020-01-01

Abstract

For cumulative link models, we propose a new estimation approach aiming at median bias reduction (Kenne Pagui et al., 2017). Such approach is based on an adjustment of the score function. The method does not require finiteness of the maximum likelihood estimate and is effective in preventing boundary estimates. The resulting estimator is componentwise third-order median unbiased in the continuous case and equivariant under componentwise monotone reparameterizations. Simulation studies and an application compare the proposed method with maximum likelihood and mean bias reduction.
2020
9788413192673
File in questo prodotto:
File Dimensione Formato  
IWSM2020_Proceeding_GioiaV.pdf

non disponibili

Descrizione: IWSM 2020 Proceeding Gioia Vincenzo
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 8.77 MB
Formato Adobe PDF
8.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1191600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact