Genome drafts for the phytoplasmas may be rapidly and efficiently assembled from NGS sequence data alone exploiting the proper bioinformatic tools and starting from properly collected samples. Here, we describe the use of the Phytoassembly pipeline (https://github.com/cpolano/phytoassembly ), a fully automated tool that accepts as input row Illumina data from two samples (a phytoplasma infected sample and a healthy reference sample) to produce a phytoplasma genome draft, using the healthy plant host genome as a filter and profiting from the difference in reads coverage between the genome of the pathogen and that of the host. For phytoplasma infected samples containing >2% of pathogen DNA and an isogenic healthy reference sequence the resulting assemblies span the almost entire genomes.
Assembly of phytoplasma genome drafts from illumina reads using phytoassembly
Polano C.Primo
;Firrao G.
Ultimo
2019-01-01
Abstract
Genome drafts for the phytoplasmas may be rapidly and efficiently assembled from NGS sequence data alone exploiting the proper bioinformatic tools and starting from properly collected samples. Here, we describe the use of the Phytoassembly pipeline (https://github.com/cpolano/phytoassembly ), a fully automated tool that accepts as input row Illumina data from two samples (a phytoplasma infected sample and a healthy reference sample) to produce a phytoplasma genome draft, using the healthy plant host genome as a filter and profiting from the difference in reads coverage between the genome of the pathogen and that of the host. For phytoplasma infected samples containing >2% of pathogen DNA and an isogenic healthy reference sequence the resulting assemblies span the almost entire genomes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.