Visual object tracking is the problem of predicting a target object’s state in a video. Generally, bounding-boxes have been used to represent states, and a surge of effort has been spent by the community to produce efficient causal algorithms capable of locating targets with such representations. As the field is moving towards binary segmentation masks to define objects more precisely, in this paper we propose to extensively explore target-conditioned segmentation methods available in the computer vision community, in order to transform any bounding-box tracker into a segmentation tracker. Our analysis shows that such methods allow trackers to compete with recently proposed segmentation trackers, while performing quasi real-time.
An Exploration of Target-Conditioned Segmentation Methods for Visual Object Trackers
Dunnhofer M.;Martinel N.;Micheloni C.
2020-01-01
Abstract
Visual object tracking is the problem of predicting a target object’s state in a video. Generally, bounding-boxes have been used to represent states, and a surge of effort has been spent by the community to produce efficient causal algorithms capable of locating targets with such representations. As the field is moving towards binary segmentation masks to define objects more precisely, in this paper we propose to extensively explore target-conditioned segmentation methods available in the computer vision community, in order to transform any bounding-box tracker into a segmentation tracker. Our analysis shows that such methods allow trackers to compete with recently proposed segmentation trackers, while performing quasi real-time.File | Dimensione | Formato | |
---|---|---|---|
2008.00992.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non pubblico
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.