We explore the possibility of extending Mardare et al.’s quantitative algebras to the structures which naturally emerge from Combinatory Logic and the λ-calculus. First of all, we show that the framework is indeed applicable to those structures, and give soundness and completeness results. Then, we prove some negative results clearly delineating to which extent categories of metric spaces can be models of such theories. We conclude by giving several examples of non-trivial higher-order quantitative algebras.

On Quantitative Algebraic Higher-Order Theories

Honsell F.;Lenisa M.;
2022-01-01

Abstract

We explore the possibility of extending Mardare et al.’s quantitative algebras to the structures which naturally emerge from Combinatory Logic and the λ-calculus. First of all, we show that the framework is indeed applicable to those structures, and give soundness and completeness results. Then, we prove some negative results clearly delineating to which extent categories of metric spaces can be models of such theories. We conclude by giving several examples of non-trivial higher-order quantitative algebras.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1229604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact