Covariance models for multivariate normal data must ensure the positive definiteness of the covariance matrix. Computational scalability for handling large samples is further desirable. We propose flexible covariance modelling by reparameterising the covariance matrix according to two different approaches, namely the matrix logarithm and the modified Cholesky decomposition. The performances of the proposed additive covariance models (ACM) are compared on an electricity load modelling application.

A comparison of unconstrained parameterisations for additive mean and covariance matrix modelling

Vincenzo Gioia
Primo
Writing – Original Draft Preparation
;
Ruggero Bellio
Writing – Review & Editing
2022-01-01

Abstract

Covariance models for multivariate normal data must ensure the positive definiteness of the covariance matrix. Computational scalability for handling large samples is further desirable. We propose flexible covariance modelling by reparameterising the covariance matrix according to two different approaches, namely the matrix logarithm and the modified Cholesky decomposition. The performances of the proposed additive covariance models (ACM) are compared on an electricity load modelling application.
2022
978-88-5511-309-0
File in questo prodotto:
File Dimensione Formato  
IWSM2022_Proceedings_GioiaV.pdf

non disponibili

Descrizione: A comparison of unconstrained parameterisations for additive mean and covariance matrix modelling
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 7.72 MB
Formato Adobe PDF
7.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1231486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact