Historical handwritten document analysis is an important activity to retrieve information about our past. Given that this type of process is slow and time-consuming, the humanities community is searching for new techniques that could aid them in this activity. Document layout analysis is a branch of machine learning that aims to extract semantic informations from digitised documents. Here we propose a new framework for handwritten document layout analysis that differentiates from the current state-of-the-art by the fact that it features few-shot learning, thus allowing for good results with little manually labelled data and the dynamic instance generation process. Our results were obtained using the DIVA - HisDB dataset.

Dynamic instance generation for few-shot handwritten document layout segmentation (short paper)

De Nardin A.;Zottin S.;Paier M.;Foresti G. L.;Colombi E.;Piciarelli C.
2022-01-01

Abstract

Historical handwritten document analysis is an important activity to retrieve information about our past. Given that this type of process is slow and time-consuming, the humanities community is searching for new techniques that could aid them in this activity. Document layout analysis is a branch of machine learning that aims to extract semantic informations from digitised documents. Here we propose a new framework for handwritten document layout analysis that differentiates from the current state-of-the-art by the fact that it features few-shot learning, thus allowing for good results with little manually labelled data and the dynamic instance generation process. Our results were obtained using the DIVA - HisDB dataset.
File in questo prodotto:
File Dimensione Formato  
03_paper.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 11.39 MB
Formato Adobe PDF
11.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1240110
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact