This paper reports the results of a numerical study on the thermal performance of metal cellular structures that can be obtained by additive manufacturing (selective laser melting) when they are impregnated with phase change material (PCM) for possible applications in electronic cooling. Two body-centered cubic (BCC) periodic structures with cell sizes of 5 mm and 10 mm and a porosity of 87%, made of two solid materials (aluminum alloy and copper), and two paraffins with characteristic melting temperatures of 55 and 64 °C were considered. The numerical simulations are carried out using the commercial code ANSYS Fluent and are based on a previously validated purely conductive heat transfer model. The computational domains include just small repetitive portions of the considered composite structures, thus allowing substantial savings of computational time. Computed results show that, with both paraffins, the copper made finer BCC structure (5 mm) yields the best thermal performances, i.e, the shortest PCM melting time and the highest rate of thermal energy storage during transients.

Numerical analysis of the thermal energy storage in cellular structures filled with phase-change material

Nonino C.;
2022-01-01

Abstract

This paper reports the results of a numerical study on the thermal performance of metal cellular structures that can be obtained by additive manufacturing (selective laser melting) when they are impregnated with phase change material (PCM) for possible applications in electronic cooling. Two body-centered cubic (BCC) periodic structures with cell sizes of 5 mm and 10 mm and a porosity of 87%, made of two solid materials (aluminum alloy and copper), and two paraffins with characteristic melting temperatures of 55 and 64 °C were considered. The numerical simulations are carried out using the commercial code ANSYS Fluent and are based on a previously validated purely conductive heat transfer model. The computational domains include just small repetitive portions of the considered composite structures, thus allowing substantial savings of computational time. Computed results show that, with both paraffins, the copper made finer BCC structure (5 mm) yields the best thermal performances, i.e, the shortest PCM melting time and the highest rate of thermal energy storage during transients.
File in questo prodotto:
File Dimensione Formato  
Nonino_2022_J._Phys. _Conf._Ser._2385_012024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1242733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact