Social media have become the ideal place for black hats and malicious individuals to target susceptible users through different attack vectors and then manipulate their opinions and interests. Fake news, radicalization, and pushing bias into the data represent some popular ways noxious users adopt to perpetrate their criminal intents. In this evolving scenario, Artificial Intelligence techniques represent a valuable tool to early detect and mitigate the risk due to the spreading of these emerging attacks. In this work, we describe the Machine Learning based solutions developed to address the problems mentioned above and our current research.
Fighting Misinformation, Radicalization and Bias in Social Media
Ritacco E.;
2023-01-01
Abstract
Social media have become the ideal place for black hats and malicious individuals to target susceptible users through different attack vectors and then manipulate their opinions and interests. Fake news, radicalization, and pushing bias into the data represent some popular ways noxious users adopt to perpetrate their criminal intents. In this evolving scenario, Artificial Intelligence techniques represent a valuable tool to early detect and mitigate the risk due to the spreading of these emerging attacks. In this work, we describe the Machine Learning based solutions developed to address the problems mentioned above and our current research.File | Dimensione | Formato | |
---|---|---|---|
38.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.