Let L be a general second order differential elliptic operator. By using a quasilinear version of Kato’s inequality, we prove that the only weak solution of the problem L(u) = |u|^(q−1) u on RN , q > p − 1, is u = 0. Here p ≥ 1 is related to L.
An application of Kato’s inequality to quasilinear elliptic problems
D'AMBROSIO, Lorenzo;
2013-01-01
Abstract
Let L be a general second order differential elliptic operator. By using a quasilinear version of Kato’s inequality, we prove that the only weak solution of the problem L(u) = |u|^(q−1) u on RN , q > p − 1, is u = 0. Here p ≥ 1 is related to L.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
conm11804Published.pdf
non disponibili
Licenza:
Non pubblico
Dimensione
247.64 kB
Formato
Adobe PDF
|
247.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.