Let L be a general second order differential elliptic operator. By using a quasilinear version of Kato’s inequality, we prove that the only weak solution of the problem L(u) = |u|^(q−1) u on RN , q > p − 1, is u = 0. Here p ≥ 1 is related to L.

An application of Kato’s inequality to quasilinear elliptic problems

D'AMBROSIO, Lorenzo;
2013-01-01

Abstract

Let L be a general second order differential elliptic operator. By using a quasilinear version of Kato’s inequality, we prove that the only weak solution of the problem L(u) = |u|^(q−1) u on RN , q > p − 1, is u = 0. Here p ≥ 1 is related to L.
2013
978-0-8218-9861-1
File in questo prodotto:
File Dimensione Formato  
conm11804Published.pdf

non disponibili

Licenza: Non pubblico
Dimensione 247.64 kB
Formato Adobe PDF
247.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact