This chapter digs into the secrecy provided and guaranteed at the physical layer, named physical layer security (PLS), over power line communication (PLC) channels for in-home networks. The PLC scenario peculiarities are briefly discussed in terms of channel characteristics and noise features. The effects of the channel properties on the performance are evaluated, in terms of the achievable secrecy rate, starting from the single-input single-output (SISO) scheme with additive white Gaussian noise. The results are also compared to the more common wireless scenario, namely a scenario where the channels are independent and experience Rayleigh fading as a consequence of rich scattering. Furthermore, the performance improvement attainable with the use of multiple-input multiple-output (MIMO) transmission is discussed. The effect of increasing the transmission band 2-30 to 2-86 MHz and the effect of colored spatially correlated noise is also investigated. Moreover, a non uniform power allocation strategy, provided by the application of an alternating optimization (AO) approach is evaluated. A comparison with the channel capacity, achieved without secrecy constraints, is also performed. The experimental results are provided relying on measured noise and channel responses.

Physical layer security in power line communication networks

Tonello A. M.
2016-01-01

Abstract

This chapter digs into the secrecy provided and guaranteed at the physical layer, named physical layer security (PLS), over power line communication (PLC) channels for in-home networks. The PLC scenario peculiarities are briefly discussed in terms of channel characteristics and noise features. The effects of the channel properties on the performance are evaluated, in terms of the achievable secrecy rate, starting from the single-input single-output (SISO) scheme with additive white Gaussian noise. The results are also compared to the more common wireless scenario, namely a scenario where the channels are independent and experience Rayleigh fading as a consequence of rich scattering. Furthermore, the performance improvement attainable with the use of multiple-input multiple-output (MIMO) transmission is discussed. The effect of increasing the transmission band 2-30 to 2-86 MHz and the effect of colored spatially correlated noise is also investigated. Moreover, a non uniform power allocation strategy, provided by the application of an alternating optimization (AO) approach is evaluated. A comparison with the channel capacity, achieved without secrecy constraints, is also performed. The experimental results are provided relying on measured noise and channel responses.
2016
978-3-319-23608-7
978-3-319-23609-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact