The two major sources of disturbances for an efficient and reliable data transmission through power lines, known as power line communication (PLC), are impulsive noise (IN) and narrow band interference (NBI). In this paper, we propose an algorithm to cancel the IN and NBI simultaneously for an OFDM based PLC system. The proposed method exploits the duality of the problem, where the IN is sparse in the time domain and the NBI is sparse in the frequency domain. By virtue of this duality, we use multiple signal characterization (MUSIC) algorithm to estimate both the IN support (in time domain) and the frequency of NBI (in frequency domain). Furthermore, the minimum mean square error (MMSE) estimator is used to estimate the amplitude and phase of IN samples at the determined locations and the least square (LS) estimator is used to estimate the amplitude and phase of the NBI. Finally, the estimated IN and NBI are canceled out from the received signal, providing noise mitigated samples for demodulation. The performance of the proposed scheme is verified via numerical simulations.

Simultaneous cancellation of narrow band interference and impulsive noise in PLC systems

Tonello A.;
2016-01-01

Abstract

The two major sources of disturbances for an efficient and reliable data transmission through power lines, known as power line communication (PLC), are impulsive noise (IN) and narrow band interference (NBI). In this paper, we propose an algorithm to cancel the IN and NBI simultaneously for an OFDM based PLC system. The proposed method exploits the duality of the problem, where the IN is sparse in the time domain and the NBI is sparse in the frequency domain. By virtue of this duality, we use multiple signal characterization (MUSIC) algorithm to estimate both the IN support (in time domain) and the frequency of NBI (in frequency domain). Furthermore, the minimum mean square error (MMSE) estimator is used to estimate the amplitude and phase of IN samples at the determined locations and the least square (LS) estimator is used to estimate the amplitude and phase of the NBI. Finally, the estimated IN and NBI are canceled out from the received signal, providing noise mitigated samples for demodulation. The performance of the proposed scheme is verified via numerical simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact