We study Hilbert functions, Lefschetz properties, and Jordan type of Artinian Gorenstein algebras associated to Perazzo hypersurfaces in projective space. The main focus lies on Perazzo threefolds, for which we prove that the Hilbert functions are always unimodal. Further we prove that the Hilbert function determines whether the algebra is weak Lefschetz, and we characterize those Hilbert functions for which the weak Lefschetz property holds. By example, we verify that the Hilbert functions of Perazzo fourfolds are not always unimodal. In the particular case of Perazzo threefolds with the smallest possible Hilbert function, we give a description of the possible Jordan types for multiplication by any linear form.

Hilbert Functions and Jordan Type of Perazzo Artinian Algebras

De Poi, Pietro;
2024-01-01

Abstract

We study Hilbert functions, Lefschetz properties, and Jordan type of Artinian Gorenstein algebras associated to Perazzo hypersurfaces in projective space. The main focus lies on Perazzo threefolds, for which we prove that the Hilbert functions are always unimodal. Further we prove that the Hilbert function determines whether the algebra is weak Lefschetz, and we characterize those Hilbert functions for which the weak Lefschetz property holds. By example, we verify that the Hilbert functions of Perazzo fourfolds are not always unimodal. In the particular case of Perazzo threefolds with the smallest possible Hilbert function, we give a description of the possible Jordan types for multiplication by any linear form.
2024
9789819738854
9789819738861
File in questo prodotto:
File Dimensione Formato  
document.pdf

non disponibili

Descrizione: Stampato estratto dal file PDF del volume fornito dalla casa editrice
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 187.41 kB
Formato Adobe PDF
187.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1285344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact